blob: efe8bd3a0e2aa5c14a0f49fd9154d0930fd56196 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Lightning Mountain centralized DMA controller driver
*
* Copyright (c) 2016 - 2020 Intel Corporation.
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/of_dma.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include "../dmaengine.h"
#include "../virt-dma.h"
#define DRIVER_NAME "lgm-dma"
#define DMA_ID 0x0008
#define DMA_ID_REV GENMASK(7, 0)
#define DMA_ID_PNR GENMASK(19, 16)
#define DMA_ID_CHNR GENMASK(26, 20)
#define DMA_ID_DW_128B BIT(27)
#define DMA_ID_AW_36B BIT(28)
#define DMA_VER32 0x32
#define DMA_VER31 0x31
#define DMA_VER22 0x0A
#define DMA_CTRL 0x0010
#define DMA_CTRL_RST BIT(0)
#define DMA_CTRL_DSRAM_PATH BIT(1)
#define DMA_CTRL_DBURST_WR BIT(3)
#define DMA_CTRL_VLD_DF_ACK BIT(4)
#define DMA_CTRL_CH_FL BIT(6)
#define DMA_CTRL_DS_FOD BIT(7)
#define DMA_CTRL_DRB BIT(8)
#define DMA_CTRL_ENBE BIT(9)
#define DMA_CTRL_DESC_TMOUT_CNT_V31 GENMASK(27, 16)
#define DMA_CTRL_DESC_TMOUT_EN_V31 BIT(30)
#define DMA_CTRL_PKTARB BIT(31)
#define DMA_CPOLL 0x0014
#define DMA_CPOLL_CNT GENMASK(15, 4)
#define DMA_CPOLL_EN BIT(31)
#define DMA_CS 0x0018
#define DMA_CS_MASK GENMASK(5, 0)
#define DMA_CCTRL 0x001C
#define DMA_CCTRL_ON BIT(0)
#define DMA_CCTRL_RST BIT(1)
#define DMA_CCTRL_CH_POLL_EN BIT(2)
#define DMA_CCTRL_CH_ABC BIT(3) /* Adaptive Burst Chop */
#define DMA_CDBA_MSB GENMASK(7, 4)
#define DMA_CCTRL_DIR_TX BIT(8)
#define DMA_CCTRL_CLASS GENMASK(11, 9)
#define DMA_CCTRL_CLASSH GENMASK(19, 18)
#define DMA_CCTRL_WR_NP_EN BIT(21)
#define DMA_CCTRL_PDEN BIT(23)
#define DMA_MAX_CLASS (SZ_32 - 1)
#define DMA_CDBA 0x0020
#define DMA_CDLEN 0x0024
#define DMA_CIS 0x0028
#define DMA_CIE 0x002C
#define DMA_CI_EOP BIT(1)
#define DMA_CI_DUR BIT(2)
#define DMA_CI_DESCPT BIT(3)
#define DMA_CI_CHOFF BIT(4)
#define DMA_CI_RDERR BIT(5)
#define DMA_CI_ALL \
(DMA_CI_EOP | DMA_CI_DUR | DMA_CI_DESCPT | DMA_CI_CHOFF | DMA_CI_RDERR)
#define DMA_PS 0x0040
#define DMA_PCTRL 0x0044
#define DMA_PCTRL_RXBL16 BIT(0)
#define DMA_PCTRL_TXBL16 BIT(1)
#define DMA_PCTRL_RXBL GENMASK(3, 2)
#define DMA_PCTRL_RXBL_8 3
#define DMA_PCTRL_TXBL GENMASK(5, 4)
#define DMA_PCTRL_TXBL_8 3
#define DMA_PCTRL_PDEN BIT(6)
#define DMA_PCTRL_RXBL32 BIT(7)
#define DMA_PCTRL_RXENDI GENMASK(9, 8)
#define DMA_PCTRL_TXENDI GENMASK(11, 10)
#define DMA_PCTRL_TXBL32 BIT(15)
#define DMA_PCTRL_MEM_FLUSH BIT(16)
#define DMA_IRNEN1 0x00E8
#define DMA_IRNCR1 0x00EC
#define DMA_IRNEN 0x00F4
#define DMA_IRNCR 0x00F8
#define DMA_C_DP_TICK 0x100
#define DMA_C_DP_TICK_TIKNARB GENMASK(15, 0)
#define DMA_C_DP_TICK_TIKARB GENMASK(31, 16)
#define DMA_C_HDRM 0x110
/*
* If header mode is set in DMA descriptor,
* If bit 30 is disabled, HDR_LEN must be configured according to channel
* requirement.
* If bit 30 is enabled(checksum with heade mode), HDR_LEN has no need to
* be configured. It will enable check sum for switch
* If header mode is not set in DMA descriptor,
* This register setting doesn't matter
*/
#define DMA_C_HDRM_HDR_SUM BIT(30)
#define DMA_C_BOFF 0x120
#define DMA_C_BOFF_BOF_LEN GENMASK(7, 0)
#define DMA_C_BOFF_EN BIT(31)
#define DMA_ORRC 0x190
#define DMA_ORRC_ORRCNT GENMASK(8, 4)
#define DMA_ORRC_EN BIT(31)
#define DMA_C_ENDIAN 0x200
#define DMA_C_END_DATAENDI GENMASK(1, 0)
#define DMA_C_END_DE_EN BIT(7)
#define DMA_C_END_DESENDI GENMASK(9, 8)
#define DMA_C_END_DES_EN BIT(16)
/* DMA controller capability */
#define DMA_ADDR_36BIT BIT(0)
#define DMA_DATA_128BIT BIT(1)
#define DMA_CHAN_FLOW_CTL BIT(2)
#define DMA_DESC_FOD BIT(3)
#define DMA_DESC_IN_SRAM BIT(4)
#define DMA_EN_BYTE_EN BIT(5)
#define DMA_DBURST_WR BIT(6)
#define DMA_VALID_DESC_FETCH_ACK BIT(7)
#define DMA_DFT_DRB BIT(8)
#define DMA_ORRC_MAX_CNT (SZ_32 - 1)
#define DMA_DFT_POLL_CNT SZ_4
#define DMA_DFT_BURST_V22 SZ_2
#define DMA_BURSTL_8DW SZ_8
#define DMA_BURSTL_16DW SZ_16
#define DMA_BURSTL_32DW SZ_32
#define DMA_DFT_BURST DMA_BURSTL_16DW
#define DMA_MAX_DESC_NUM (SZ_8K - 1)
#define DMA_CHAN_BOFF_MAX (SZ_256 - 1)
#define DMA_DFT_ENDIAN 0
#define DMA_DFT_DESC_TCNT 50
#define DMA_HDR_LEN_MAX (SZ_16K - 1)
/* DMA flags */
#define DMA_TX_CH BIT(0)
#define DMA_RX_CH BIT(1)
#define DEVICE_ALLOC_DESC BIT(2)
#define CHAN_IN_USE BIT(3)
#define DMA_HW_DESC BIT(4)
/* Descriptor fields */
#define DESC_DATA_LEN GENMASK(15, 0)
#define DESC_BYTE_OFF GENMASK(25, 23)
#define DESC_EOP BIT(28)
#define DESC_SOP BIT(29)
#define DESC_C BIT(30)
#define DESC_OWN BIT(31)
#define DMA_CHAN_RST 1
#define DMA_MAX_SIZE (BIT(16) - 1)
#define MAX_LOWER_CHANS 32
#define MASK_LOWER_CHANS GENMASK(4, 0)
#define DMA_OWN 1
#define HIGH_4_BITS GENMASK(3, 0)
#define DMA_DFT_DESC_NUM 1
#define DMA_PKT_DROP_DIS 0
enum ldma_chan_on_off {
DMA_CH_OFF = 0,
DMA_CH_ON = 1,
};
enum {
DMA_TYPE_TX = 0,
DMA_TYPE_RX,
DMA_TYPE_MCPY,
};
struct ldma_dev;
struct ldma_port;
struct ldma_chan {
struct virt_dma_chan vchan;
struct ldma_port *port; /* back pointer */
char name[8]; /* Channel name */
int nr; /* Channel id in hardware */
u32 flags; /* central way or channel based way */
enum ldma_chan_on_off onoff;
dma_addr_t desc_phys;
void *desc_base; /* Virtual address */
u32 desc_cnt; /* Number of descriptors */
int rst;
u32 hdrm_len;
bool hdrm_csum;
u32 boff_len;
u32 data_endian;
u32 desc_endian;
bool pden;
bool desc_rx_np;
bool data_endian_en;
bool desc_endian_en;
bool abc_en;
bool desc_init;
struct dma_pool *desc_pool; /* Descriptors pool */
u32 desc_num;
struct dw2_desc_sw *ds;
struct work_struct work;
struct dma_slave_config config;
};
struct ldma_port {
struct ldma_dev *ldev; /* back pointer */
u32 portid;
u32 rxbl;
u32 txbl;
u32 rxendi;
u32 txendi;
u32 pkt_drop;
};
/* Instance specific data */
struct ldma_inst_data {
bool desc_in_sram;
bool chan_fc;
bool desc_fod; /* Fetch On Demand */
bool valid_desc_fetch_ack;
u32 orrc; /* Outstanding read count */
const char *name;
u32 type;
};
struct ldma_dev {
struct device *dev;
void __iomem *base;
struct reset_control *rst;
struct clk *core_clk;
struct dma_device dma_dev;
u32 ver;
int irq;
struct ldma_port *ports;
struct ldma_chan *chans; /* channel list on this DMA or port */
spinlock_t dev_lock; /* Controller register exclusive */
u32 chan_nrs;
u32 port_nrs;
u32 channels_mask;
u32 flags;
u32 pollcnt;
const struct ldma_inst_data *inst;
struct workqueue_struct *wq;
};
struct dw2_desc {
u32 field;
u32 addr;
} __packed __aligned(8);
struct dw2_desc_sw {
struct virt_dma_desc vdesc;
struct ldma_chan *chan;
dma_addr_t desc_phys;
size_t desc_cnt;
size_t size;
struct dw2_desc *desc_hw;
};
static inline void
ldma_update_bits(struct ldma_dev *d, u32 mask, u32 val, u32 ofs)
{
u32 old_val, new_val;
old_val = readl(d->base + ofs);
new_val = (old_val & ~mask) | (val & mask);
if (new_val != old_val)
writel(new_val, d->base + ofs);
}
static inline struct ldma_chan *to_ldma_chan(struct dma_chan *chan)
{
return container_of(chan, struct ldma_chan, vchan.chan);
}
static inline struct ldma_dev *to_ldma_dev(struct dma_device *dma_dev)
{
return container_of(dma_dev, struct ldma_dev, dma_dev);
}
static inline struct dw2_desc_sw *to_lgm_dma_desc(struct virt_dma_desc *vdesc)
{
return container_of(vdesc, struct dw2_desc_sw, vdesc);
}
static inline bool ldma_chan_tx(struct ldma_chan *c)
{
return !!(c->flags & DMA_TX_CH);
}
static inline bool ldma_chan_is_hw_desc(struct ldma_chan *c)
{
return !!(c->flags & DMA_HW_DESC);
}
static void ldma_dev_reset(struct ldma_dev *d)
{
unsigned long flags;
spin_lock_irqsave(&d->dev_lock, flags);
ldma_update_bits(d, DMA_CTRL_RST, DMA_CTRL_RST, DMA_CTRL);
spin_unlock_irqrestore(&d->dev_lock, flags);
}
static void ldma_dev_pkt_arb_cfg(struct ldma_dev *d, bool enable)
{
unsigned long flags;
u32 mask = DMA_CTRL_PKTARB;
u32 val = enable ? DMA_CTRL_PKTARB : 0;
spin_lock_irqsave(&d->dev_lock, flags);
ldma_update_bits(d, mask, val, DMA_CTRL);
spin_unlock_irqrestore(&d->dev_lock, flags);
}
static void ldma_dev_sram_desc_cfg(struct ldma_dev *d, bool enable)
{
unsigned long flags;
u32 mask = DMA_CTRL_DSRAM_PATH;
u32 val = enable ? DMA_CTRL_DSRAM_PATH : 0;
spin_lock_irqsave(&d->dev_lock, flags);
ldma_update_bits(d, mask, val, DMA_CTRL);
spin_unlock_irqrestore(&d->dev_lock, flags);
}
static void ldma_dev_chan_flow_ctl_cfg(struct ldma_dev *d, bool enable)
{
unsigned long flags;
u32 mask, val;
if (d->inst->type != DMA_TYPE_TX)
return;
mask = DMA_CTRL_CH_FL;
val = enable ? DMA_CTRL_CH_FL : 0;
spin_lock_irqsave(&d->dev_lock, flags);
ldma_update_bits(d, mask, val, DMA_CTRL);
spin_unlock_irqrestore(&d->dev_lock, flags);
}
static void ldma_dev_global_polling_enable(struct ldma_dev *d)
{
unsigned long flags;
u32 mask = DMA_CPOLL_EN | DMA_CPOLL_CNT;
u32 val = DMA_CPOLL_EN;
val |= FIELD_PREP(DMA_CPOLL_CNT, d->pollcnt);
spin_lock_irqsave(&d->dev_lock, flags);
ldma_update_bits(d, mask, val, DMA_CPOLL);
spin_unlock_irqrestore(&d->dev_lock, flags);
}
static void ldma_dev_desc_fetch_on_demand_cfg(struct ldma_dev *d, bool enable)
{
unsigned long flags;
u32 mask, val;
if (d->inst->type == DMA_TYPE_MCPY)
return;
mask = DMA_CTRL_DS_FOD;
val = enable ? DMA_CTRL_DS_FOD : 0;
spin_lock_irqsave(&d->dev_lock, flags);
ldma_update_bits(d, mask, val, DMA_CTRL);
spin_unlock_irqrestore(&d->dev_lock, flags);
}
static void ldma_dev_byte_enable_cfg(struct ldma_dev *d, bool enable)
{
unsigned long flags;
u32 mask = DMA_CTRL_ENBE;
u32 val = enable ? DMA_CTRL_ENBE : 0;
spin_lock_irqsave(&d->dev_lock, flags);
ldma_update_bits(d, mask, val, DMA_CTRL);
spin_unlock_irqrestore(&d->dev_lock, flags);
}
static void ldma_dev_orrc_cfg(struct ldma_dev *d)
{
unsigned long flags;
u32 val = 0;
u32 mask;
if (d->inst->type == DMA_TYPE_RX)
return;
mask = DMA_ORRC_EN | DMA_ORRC_ORRCNT;
if (d->inst->orrc > 0 && d->inst->orrc <= DMA_ORRC_MAX_CNT)
val = DMA_ORRC_EN | FIELD_PREP(DMA_ORRC_ORRCNT, d->inst->orrc);
spin_lock_irqsave(&d->dev_lock, flags);
ldma_update_bits(d, mask, val, DMA_ORRC);
spin_unlock_irqrestore(&d->dev_lock, flags);
}
static void ldma_dev_df_tout_cfg(struct ldma_dev *d, bool enable, int tcnt)
{
u32 mask = DMA_CTRL_DESC_TMOUT_CNT_V31;
unsigned long flags;
u32 val;
if (enable)
val = DMA_CTRL_DESC_TMOUT_EN_V31 | FIELD_PREP(DMA_CTRL_DESC_TMOUT_CNT_V31, tcnt);
else
val = 0;
spin_lock_irqsave(&d->dev_lock, flags);
ldma_update_bits(d, mask, val, DMA_CTRL);
spin_unlock_irqrestore(&d->dev_lock, flags);
}
static void ldma_dev_dburst_wr_cfg(struct ldma_dev *d, bool enable)
{
unsigned long flags;
u32 mask, val;
if (d->inst->type != DMA_TYPE_RX && d->inst->type != DMA_TYPE_MCPY)
return;
mask = DMA_CTRL_DBURST_WR;
val = enable ? DMA_CTRL_DBURST_WR : 0;
spin_lock_irqsave(&d->dev_lock, flags);
ldma_update_bits(d, mask, val, DMA_CTRL);
spin_unlock_irqrestore(&d->dev_lock, flags);
}
static void ldma_dev_vld_fetch_ack_cfg(struct ldma_dev *d, bool enable)
{
unsigned long flags;
u32 mask, val;
if (d->inst->type != DMA_TYPE_TX)
return;
mask = DMA_CTRL_VLD_DF_ACK;
val = enable ? DMA_CTRL_VLD_DF_ACK : 0;
spin_lock_irqsave(&d->dev_lock, flags);
ldma_update_bits(d, mask, val, DMA_CTRL);
spin_unlock_irqrestore(&d->dev_lock, flags);
}
static void ldma_dev_drb_cfg(struct ldma_dev *d, int enable)
{
unsigned long flags;
u32 mask = DMA_CTRL_DRB;
u32 val = enable ? DMA_CTRL_DRB : 0;
spin_lock_irqsave(&d->dev_lock, flags);
ldma_update_bits(d, mask, val, DMA_CTRL);
spin_unlock_irqrestore(&d->dev_lock, flags);
}
static int ldma_dev_cfg(struct ldma_dev *d)
{
bool enable;
ldma_dev_pkt_arb_cfg(d, true);
ldma_dev_global_polling_enable(d);
enable = !!(d->flags & DMA_DFT_DRB);
ldma_dev_drb_cfg(d, enable);
enable = !!(d->flags & DMA_EN_BYTE_EN);
ldma_dev_byte_enable_cfg(d, enable);
enable = !!(d->flags & DMA_CHAN_FLOW_CTL);
ldma_dev_chan_flow_ctl_cfg(d, enable);
enable = !!(d->flags & DMA_DESC_FOD);
ldma_dev_desc_fetch_on_demand_cfg(d, enable);
enable = !!(d->flags & DMA_DESC_IN_SRAM);
ldma_dev_sram_desc_cfg(d, enable);
enable = !!(d->flags & DMA_DBURST_WR);
ldma_dev_dburst_wr_cfg(d, enable);
enable = !!(d->flags & DMA_VALID_DESC_FETCH_ACK);
ldma_dev_vld_fetch_ack_cfg(d, enable);
if (d->ver > DMA_VER22) {
ldma_dev_orrc_cfg(d);
ldma_dev_df_tout_cfg(d, true, DMA_DFT_DESC_TCNT);
}
dev_dbg(d->dev, "%s Controller 0x%08x configuration done\n",
d->inst->name, readl(d->base + DMA_CTRL));
return 0;
}
static int ldma_chan_cctrl_cfg(struct ldma_chan *c, u32 val)
{
struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
u32 class_low, class_high;
unsigned long flags;
u32 reg;
spin_lock_irqsave(&d->dev_lock, flags);
ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
reg = readl(d->base + DMA_CCTRL);
/* Read from hardware */
if (reg & DMA_CCTRL_DIR_TX)
c->flags |= DMA_TX_CH;
else
c->flags |= DMA_RX_CH;
/* Keep the class value unchanged */
class_low = FIELD_GET(DMA_CCTRL_CLASS, reg);
class_high = FIELD_GET(DMA_CCTRL_CLASSH, reg);
val &= ~DMA_CCTRL_CLASS;
val |= FIELD_PREP(DMA_CCTRL_CLASS, class_low);
val &= ~DMA_CCTRL_CLASSH;
val |= FIELD_PREP(DMA_CCTRL_CLASSH, class_high);
writel(val, d->base + DMA_CCTRL);
spin_unlock_irqrestore(&d->dev_lock, flags);
return 0;
}
static void ldma_chan_irq_init(struct ldma_chan *c)
{
struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
unsigned long flags;
u32 enofs, crofs;
u32 cn_bit;
if (c->nr < MAX_LOWER_CHANS) {
enofs = DMA_IRNEN;
crofs = DMA_IRNCR;
} else {
enofs = DMA_IRNEN1;
crofs = DMA_IRNCR1;
}
cn_bit = BIT(c->nr & MASK_LOWER_CHANS);
spin_lock_irqsave(&d->dev_lock, flags);
ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
/* Clear all interrupts and disabled it */
writel(0, d->base + DMA_CIE);
writel(DMA_CI_ALL, d->base + DMA_CIS);
ldma_update_bits(d, cn_bit, 0, enofs);
writel(cn_bit, d->base + crofs);
spin_unlock_irqrestore(&d->dev_lock, flags);
}
static void ldma_chan_set_class(struct ldma_chan *c, u32 val)
{
struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
u32 class_val;
if (d->inst->type == DMA_TYPE_MCPY || val > DMA_MAX_CLASS)
return;
/* 3 bits low */
class_val = FIELD_PREP(DMA_CCTRL_CLASS, val & 0x7);
/* 2 bits high */
class_val |= FIELD_PREP(DMA_CCTRL_CLASSH, (val >> 3) & 0x3);
ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
ldma_update_bits(d, DMA_CCTRL_CLASS | DMA_CCTRL_CLASSH, class_val,
DMA_CCTRL);
}
static int ldma_chan_on(struct ldma_chan *c)
{
struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
unsigned long flags;
/* If descriptors not configured, not allow to turn on channel */
if (WARN_ON(!c->desc_init))
return -EINVAL;
spin_lock_irqsave(&d->dev_lock, flags);
ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
ldma_update_bits(d, DMA_CCTRL_ON, DMA_CCTRL_ON, DMA_CCTRL);
spin_unlock_irqrestore(&d->dev_lock, flags);
c->onoff = DMA_CH_ON;
return 0;
}
static int ldma_chan_off(struct ldma_chan *c)
{
struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
unsigned long flags;
u32 val;
int ret;
spin_lock_irqsave(&d->dev_lock, flags);
ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
ldma_update_bits(d, DMA_CCTRL_ON, 0, DMA_CCTRL);
spin_unlock_irqrestore(&d->dev_lock, flags);
ret = readl_poll_timeout_atomic(d->base + DMA_CCTRL, val,
!(val & DMA_CCTRL_ON), 0, 10000);
if (ret)
return ret;
c->onoff = DMA_CH_OFF;
return 0;
}
static void ldma_chan_desc_hw_cfg(struct ldma_chan *c, dma_addr_t desc_base,
int desc_num)
{
struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
unsigned long flags;
spin_lock_irqsave(&d->dev_lock, flags);
ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
writel(lower_32_bits(desc_base), d->base + DMA_CDBA);
/* Higher 4 bits of 36 bit addressing */
if (IS_ENABLED(CONFIG_64BIT)) {
u32 hi = upper_32_bits(desc_base) & HIGH_4_BITS;
ldma_update_bits(d, DMA_CDBA_MSB,
FIELD_PREP(DMA_CDBA_MSB, hi), DMA_CCTRL);
}
writel(desc_num, d->base + DMA_CDLEN);
spin_unlock_irqrestore(&d->dev_lock, flags);
c->desc_init = true;
}
static struct dma_async_tx_descriptor *
ldma_chan_desc_cfg(struct dma_chan *chan, dma_addr_t desc_base, int desc_num)
{
struct ldma_chan *c = to_ldma_chan(chan);
struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
struct dma_async_tx_descriptor *tx;
struct dw2_desc_sw *ds;
if (!desc_num) {
dev_err(d->dev, "Channel %d must allocate descriptor first\n",
c->nr);
return NULL;
}
if (desc_num > DMA_MAX_DESC_NUM) {
dev_err(d->dev, "Channel %d descriptor number out of range %d\n",
c->nr, desc_num);
return NULL;
}
ldma_chan_desc_hw_cfg(c, desc_base, desc_num);
c->flags |= DMA_HW_DESC;
c->desc_cnt = desc_num;
c->desc_phys = desc_base;
ds = kzalloc(sizeof(*ds), GFP_NOWAIT);
if (!ds)
return NULL;
tx = &ds->vdesc.tx;
dma_async_tx_descriptor_init(tx, chan);
return tx;
}
static int ldma_chan_reset(struct ldma_chan *c)
{
struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
unsigned long flags;
u32 val;
int ret;
ret = ldma_chan_off(c);
if (ret)
return ret;
spin_lock_irqsave(&d->dev_lock, flags);
ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
ldma_update_bits(d, DMA_CCTRL_RST, DMA_CCTRL_RST, DMA_CCTRL);
spin_unlock_irqrestore(&d->dev_lock, flags);
ret = readl_poll_timeout_atomic(d->base + DMA_CCTRL, val,
!(val & DMA_CCTRL_RST), 0, 10000);
if (ret)
return ret;
c->rst = 1;
c->desc_init = false;
return 0;
}
static void ldma_chan_byte_offset_cfg(struct ldma_chan *c, u32 boff_len)
{
struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
u32 mask = DMA_C_BOFF_EN | DMA_C_BOFF_BOF_LEN;
u32 val;
if (boff_len > 0 && boff_len <= DMA_CHAN_BOFF_MAX)
val = FIELD_PREP(DMA_C_BOFF_BOF_LEN, boff_len) | DMA_C_BOFF_EN;
else
val = 0;
ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
ldma_update_bits(d, mask, val, DMA_C_BOFF);
}
static void ldma_chan_data_endian_cfg(struct ldma_chan *c, bool enable,
u32 endian_type)
{
struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
u32 mask = DMA_C_END_DE_EN | DMA_C_END_DATAENDI;
u32 val;
if (enable)
val = DMA_C_END_DE_EN | FIELD_PREP(DMA_C_END_DATAENDI, endian_type);
else
val = 0;
ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
ldma_update_bits(d, mask, val, DMA_C_ENDIAN);
}
static void ldma_chan_desc_endian_cfg(struct ldma_chan *c, bool enable,
u32 endian_type)
{
struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
u32 mask = DMA_C_END_DES_EN | DMA_C_END_DESENDI;
u32 val;
if (enable)
val = DMA_C_END_DES_EN | FIELD_PREP(DMA_C_END_DESENDI, endian_type);
else
val = 0;
ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
ldma_update_bits(d, mask, val, DMA_C_ENDIAN);
}
static void ldma_chan_hdr_mode_cfg(struct ldma_chan *c, u32 hdr_len, bool csum)
{
struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
u32 mask, val;
/* NB, csum disabled, hdr length must be provided */
if (!csum && (!hdr_len || hdr_len > DMA_HDR_LEN_MAX))
return;
mask = DMA_C_HDRM_HDR_SUM;
val = DMA_C_HDRM_HDR_SUM;
if (!csum && hdr_len)
val = hdr_len;
ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
ldma_update_bits(d, mask, val, DMA_C_HDRM);
}
static void ldma_chan_rxwr_np_cfg(struct ldma_chan *c, bool enable)
{
struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
u32 mask, val;
/* Only valid for RX channel */
if (ldma_chan_tx(c))
return;
mask = DMA_CCTRL_WR_NP_EN;
val = enable ? DMA_CCTRL_WR_NP_EN : 0;
ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
ldma_update_bits(d, mask, val, DMA_CCTRL);
}
static void ldma_chan_abc_cfg(struct ldma_chan *c, bool enable)
{
struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
u32 mask, val;
if (d->ver < DMA_VER32 || ldma_chan_tx(c))
return;
mask = DMA_CCTRL_CH_ABC;
val = enable ? DMA_CCTRL_CH_ABC : 0;
ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
ldma_update_bits(d, mask, val, DMA_CCTRL);
}
static int ldma_port_cfg(struct ldma_port *p)
{
unsigned long flags;
struct ldma_dev *d;
u32 reg;
d = p->ldev;
reg = FIELD_PREP(DMA_PCTRL_TXENDI, p->txendi);
reg |= FIELD_PREP(DMA_PCTRL_RXENDI, p->rxendi);
if (d->ver == DMA_VER22) {
reg |= FIELD_PREP(DMA_PCTRL_TXBL, p->txbl);
reg |= FIELD_PREP(DMA_PCTRL_RXBL, p->rxbl);
} else {
reg |= FIELD_PREP(DMA_PCTRL_PDEN, p->pkt_drop);
if (p->txbl == DMA_BURSTL_32DW)
reg |= DMA_PCTRL_TXBL32;
else if (p->txbl == DMA_BURSTL_16DW)
reg |= DMA_PCTRL_TXBL16;
else
reg |= FIELD_PREP(DMA_PCTRL_TXBL, DMA_PCTRL_TXBL_8);
if (p->rxbl == DMA_BURSTL_32DW)
reg |= DMA_PCTRL_RXBL32;
else if (p->rxbl == DMA_BURSTL_16DW)
reg |= DMA_PCTRL_RXBL16;
else
reg |= FIELD_PREP(DMA_PCTRL_RXBL, DMA_PCTRL_RXBL_8);
}
spin_lock_irqsave(&d->dev_lock, flags);
writel(p->portid, d->base + DMA_PS);
writel(reg, d->base + DMA_PCTRL);
spin_unlock_irqrestore(&d->dev_lock, flags);
reg = readl(d->base + DMA_PCTRL); /* read back */
dev_dbg(d->dev, "Port Control 0x%08x configuration done\n", reg);
return 0;
}
static int ldma_chan_cfg(struct ldma_chan *c)
{
struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
unsigned long flags;
u32 reg;
reg = c->pden ? DMA_CCTRL_PDEN : 0;
reg |= c->onoff ? DMA_CCTRL_ON : 0;
reg |= c->rst ? DMA_CCTRL_RST : 0;
ldma_chan_cctrl_cfg(c, reg);
ldma_chan_irq_init(c);
if (d->ver <= DMA_VER22)
return 0;
spin_lock_irqsave(&d->dev_lock, flags);
ldma_chan_set_class(c, c->nr);
ldma_chan_byte_offset_cfg(c, c->boff_len);
ldma_chan_data_endian_cfg(c, c->data_endian_en, c->data_endian);
ldma_chan_desc_endian_cfg(c, c->desc_endian_en, c->desc_endian);
ldma_chan_hdr_mode_cfg(c, c->hdrm_len, c->hdrm_csum);
ldma_chan_rxwr_np_cfg(c, c->desc_rx_np);
ldma_chan_abc_cfg(c, c->abc_en);
spin_unlock_irqrestore(&d->dev_lock, flags);
if (ldma_chan_is_hw_desc(c))
ldma_chan_desc_hw_cfg(c, c->desc_phys, c->desc_cnt);
return 0;
}
static void ldma_dev_init(struct ldma_dev *d)
{
unsigned long ch_mask = (unsigned long)d->channels_mask;
struct ldma_port *p;
struct ldma_chan *c;
int i;
u32 j;
spin_lock_init(&d->dev_lock);
ldma_dev_reset(d);
ldma_dev_cfg(d);
/* DMA port initialization */
for (i = 0; i < d->port_nrs; i++) {
p = &d->ports[i];
ldma_port_cfg(p);
}
/* DMA channel initialization */
for_each_set_bit(j, &ch_mask, d->chan_nrs) {
c = &d->chans[j];
ldma_chan_cfg(c);
}
}
static int ldma_cfg_init(struct ldma_dev *d)
{
struct fwnode_handle *fwnode = dev_fwnode(d->dev);
struct ldma_port *p;
int i;
if (fwnode_property_read_bool(fwnode, "intel,dma-byte-en"))
d->flags |= DMA_EN_BYTE_EN;
if (fwnode_property_read_bool(fwnode, "intel,dma-dburst-wr"))
d->flags |= DMA_DBURST_WR;
if (fwnode_property_read_bool(fwnode, "intel,dma-drb"))
d->flags |= DMA_DFT_DRB;
if (fwnode_property_read_u32(fwnode, "intel,dma-poll-cnt",
&d->pollcnt))
d->pollcnt = DMA_DFT_POLL_CNT;
if (d->inst->chan_fc)
d->flags |= DMA_CHAN_FLOW_CTL;
if (d->inst->desc_fod)
d->flags |= DMA_DESC_FOD;
if (d->inst->desc_in_sram)
d->flags |= DMA_DESC_IN_SRAM;
if (d->inst->valid_desc_fetch_ack)
d->flags |= DMA_VALID_DESC_FETCH_ACK;
if (d->ver > DMA_VER22) {
if (!d->port_nrs)
return -EINVAL;
for (i = 0; i < d->port_nrs; i++) {
p = &d->ports[i];
p->rxendi = DMA_DFT_ENDIAN;
p->txendi = DMA_DFT_ENDIAN;
p->rxbl = DMA_DFT_BURST;
p->txbl = DMA_DFT_BURST;
p->pkt_drop = DMA_PKT_DROP_DIS;
}
}
return 0;
}
static void dma_free_desc_resource(struct virt_dma_desc *vdesc)
{
struct dw2_desc_sw *ds = to_lgm_dma_desc(vdesc);
struct ldma_chan *c = ds->chan;
dma_pool_free(c->desc_pool, ds->desc_hw, ds->desc_phys);
kfree(ds);
}
static struct dw2_desc_sw *
dma_alloc_desc_resource(int num, struct ldma_chan *c)
{
struct device *dev = c->vchan.chan.device->dev;
struct dw2_desc_sw *ds;
if (num > c->desc_num) {
dev_err(dev, "sg num %d exceed max %d\n", num, c->desc_num);
return NULL;
}
ds = kzalloc(sizeof(*ds), GFP_NOWAIT);
if (!ds)
return NULL;
ds->chan = c;
ds->desc_hw = dma_pool_zalloc(c->desc_pool, GFP_ATOMIC,
&ds->desc_phys);
if (!ds->desc_hw) {
dev_dbg(dev, "out of memory for link descriptor\n");
kfree(ds);
return NULL;
}
ds->desc_cnt = num;
return ds;
}
static void ldma_chan_irq_en(struct ldma_chan *c)
{
struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
unsigned long flags;
spin_lock_irqsave(&d->dev_lock, flags);
writel(c->nr, d->base + DMA_CS);
writel(DMA_CI_EOP, d->base + DMA_CIE);
writel(BIT(c->nr), d->base + DMA_IRNEN);
spin_unlock_irqrestore(&d->dev_lock, flags);
}
static void ldma_issue_pending(struct dma_chan *chan)
{
struct ldma_chan *c = to_ldma_chan(chan);
struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
unsigned long flags;
if (d->ver == DMA_VER22) {
spin_lock_irqsave(&c->vchan.lock, flags);
if (vchan_issue_pending(&c->vchan)) {
struct virt_dma_desc *vdesc;
/* Get the next descriptor */
vdesc = vchan_next_desc(&c->vchan);
if (!vdesc) {
c->ds = NULL;
spin_unlock_irqrestore(&c->vchan.lock, flags);
return;
}
list_del(&vdesc->node);
c->ds = to_lgm_dma_desc(vdesc);
ldma_chan_desc_hw_cfg(c, c->ds->desc_phys, c->ds->desc_cnt);
ldma_chan_irq_en(c);
}
spin_unlock_irqrestore(&c->vchan.lock, flags);
}
ldma_chan_on(c);
}
static void ldma_synchronize(struct dma_chan *chan)
{
struct ldma_chan *c = to_ldma_chan(chan);
/*
* clear any pending work if any. In that
* case the resource needs to be free here.
*/
cancel_work_sync(&c->work);
vchan_synchronize(&c->vchan);
if (c->ds)
dma_free_desc_resource(&c->ds->vdesc);
}
static int ldma_terminate_all(struct dma_chan *chan)
{
struct ldma_chan *c = to_ldma_chan(chan);
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&c->vchan.lock, flags);
vchan_get_all_descriptors(&c->vchan, &head);
spin_unlock_irqrestore(&c->vchan.lock, flags);
vchan_dma_desc_free_list(&c->vchan, &head);
return ldma_chan_reset(c);
}
static int ldma_resume_chan(struct dma_chan *chan)
{
struct ldma_chan *c = to_ldma_chan(chan);
ldma_chan_on(c);
return 0;
}
static int ldma_pause_chan(struct dma_chan *chan)
{
struct ldma_chan *c = to_ldma_chan(chan);
return ldma_chan_off(c);
}
static enum dma_status
ldma_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct ldma_chan *c = to_ldma_chan(chan);
struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
enum dma_status status = DMA_COMPLETE;
if (d->ver == DMA_VER22)
status = dma_cookie_status(chan, cookie, txstate);
return status;
}
static void dma_chan_irq(int irq, void *data)
{
struct ldma_chan *c = data;
struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
u32 stat;
/* Disable channel interrupts */
writel(c->nr, d->base + DMA_CS);
stat = readl(d->base + DMA_CIS);
if (!stat)
return;
writel(readl(d->base + DMA_CIE) & ~DMA_CI_ALL, d->base + DMA_CIE);
writel(stat, d->base + DMA_CIS);
queue_work(d->wq, &c->work);
}
static irqreturn_t dma_interrupt(int irq, void *dev_id)
{
struct ldma_dev *d = dev_id;
struct ldma_chan *c;
unsigned long irncr;
u32 cid;
irncr = readl(d->base + DMA_IRNCR);
if (!irncr) {
dev_err(d->dev, "dummy interrupt\n");
return IRQ_NONE;
}
for_each_set_bit(cid, &irncr, d->chan_nrs) {
/* Mask */
writel(readl(d->base + DMA_IRNEN) & ~BIT(cid), d->base + DMA_IRNEN);
/* Ack */
writel(readl(d->base + DMA_IRNCR) | BIT(cid), d->base + DMA_IRNCR);
c = &d->chans[cid];
dma_chan_irq(irq, c);
}
return IRQ_HANDLED;
}
static void prep_slave_burst_len(struct ldma_chan *c)
{
struct ldma_port *p = c->port;
struct dma_slave_config *cfg = &c->config;
if (cfg->dst_maxburst)
cfg->src_maxburst = cfg->dst_maxburst;
/* TX and RX has the same burst length */
p->txbl = ilog2(cfg->src_maxburst);
p->rxbl = p->txbl;
}
static struct dma_async_tx_descriptor *
ldma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sglen, enum dma_transfer_direction dir,
unsigned long flags, void *context)
{
struct ldma_chan *c = to_ldma_chan(chan);
struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
size_t len, avail, total = 0;
struct dw2_desc *hw_ds;
struct dw2_desc_sw *ds;
struct scatterlist *sg;
int num = sglen, i;
dma_addr_t addr;
if (!sgl)
return NULL;
if (d->ver > DMA_VER22)
return ldma_chan_desc_cfg(chan, sgl->dma_address, sglen);
for_each_sg(sgl, sg, sglen, i) {
avail = sg_dma_len(sg);
if (avail > DMA_MAX_SIZE)
num += DIV_ROUND_UP(avail, DMA_MAX_SIZE) - 1;
}
ds = dma_alloc_desc_resource(num, c);
if (!ds)
return NULL;
c->ds = ds;
num = 0;
/* sop and eop has to be handled nicely */
for_each_sg(sgl, sg, sglen, i) {
addr = sg_dma_address(sg);
avail = sg_dma_len(sg);
total += avail;
do {
len = min_t(size_t, avail, DMA_MAX_SIZE);
hw_ds = &ds->desc_hw[num];
switch (sglen) {
case 1:
hw_ds->field &= ~DESC_SOP;
hw_ds->field |= FIELD_PREP(DESC_SOP, 1);
hw_ds->field &= ~DESC_EOP;
hw_ds->field |= FIELD_PREP(DESC_EOP, 1);
break;
default:
if (num == 0) {
hw_ds->field &= ~DESC_SOP;
hw_ds->field |= FIELD_PREP(DESC_SOP, 1);
hw_ds->field &= ~DESC_EOP;
hw_ds->field |= FIELD_PREP(DESC_EOP, 0);
} else if (num == (sglen - 1)) {
hw_ds->field &= ~DESC_SOP;
hw_ds->field |= FIELD_PREP(DESC_SOP, 0);
hw_ds->field &= ~DESC_EOP;
hw_ds->field |= FIELD_PREP(DESC_EOP, 1);
} else {
hw_ds->field &= ~DESC_SOP;
hw_ds->field |= FIELD_PREP(DESC_SOP, 0);
hw_ds->field &= ~DESC_EOP;
hw_ds->field |= FIELD_PREP(DESC_EOP, 0);
}
break;
}
/* Only 32 bit address supported */
hw_ds->addr = (u32)addr;
hw_ds->field &= ~DESC_DATA_LEN;
hw_ds->field |= FIELD_PREP(DESC_DATA_LEN, len);
hw_ds->field &= ~DESC_C;
hw_ds->field |= FIELD_PREP(DESC_C, 0);
hw_ds->field &= ~DESC_BYTE_OFF;
hw_ds->field |= FIELD_PREP(DESC_BYTE_OFF, addr & 0x3);
/* Ensure data ready before ownership change */
wmb();
hw_ds->field &= ~DESC_OWN;
hw_ds->field |= FIELD_PREP(DESC_OWN, DMA_OWN);
/* Ensure ownership changed before moving forward */
wmb();
num++;
addr += len;
avail -= len;
} while (avail);
}
ds->size = total;
prep_slave_burst_len(c);
return vchan_tx_prep(&c->vchan, &ds->vdesc, DMA_CTRL_ACK);
}
static int
ldma_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg)
{
struct ldma_chan *c = to_ldma_chan(chan);
memcpy(&c->config, cfg, sizeof(c->config));
return 0;
}
static int ldma_alloc_chan_resources(struct dma_chan *chan)
{
struct ldma_chan *c = to_ldma_chan(chan);
struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
struct device *dev = c->vchan.chan.device->dev;
size_t desc_sz;
if (d->ver > DMA_VER22) {
c->flags |= CHAN_IN_USE;
return 0;
}
if (c->desc_pool)
return c->desc_num;
desc_sz = c->desc_num * sizeof(struct dw2_desc);
c->desc_pool = dma_pool_create(c->name, dev, desc_sz,
__alignof__(struct dw2_desc), 0);
if (!c->desc_pool) {
dev_err(dev, "unable to allocate descriptor pool\n");
return -ENOMEM;
}
return c->desc_num;
}
static void ldma_free_chan_resources(struct dma_chan *chan)
{
struct ldma_chan *c = to_ldma_chan(chan);
struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
if (d->ver == DMA_VER22) {
dma_pool_destroy(c->desc_pool);
c->desc_pool = NULL;
vchan_free_chan_resources(to_virt_chan(chan));
ldma_chan_reset(c);
} else {
c->flags &= ~CHAN_IN_USE;
}
}
static void dma_work(struct work_struct *work)
{
struct ldma_chan *c = container_of(work, struct ldma_chan, work);
struct dma_async_tx_descriptor *tx = &c->ds->vdesc.tx;
struct virt_dma_chan *vc = &c->vchan;
struct dmaengine_desc_callback cb;
struct virt_dma_desc *vd, *_vd;
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&c->vchan.lock, flags);
list_splice_tail_init(&vc->desc_completed, &head);
spin_unlock_irqrestore(&c->vchan.lock, flags);
dmaengine_desc_get_callback(tx, &cb);
dma_cookie_complete(tx);
dmaengine_desc_callback_invoke(&cb, NULL);
list_for_each_entry_safe(vd, _vd, &head, node) {
dmaengine_desc_get_callback(tx, &cb);
dma_cookie_complete(tx);
list_del(&vd->node);
dmaengine_desc_callback_invoke(&cb, NULL);
vchan_vdesc_fini(vd);
}
c->ds = NULL;
}
static void
update_burst_len_v22(struct ldma_chan *c, struct ldma_port *p, u32 burst)
{
if (ldma_chan_tx(c))
p->txbl = ilog2(burst);
else
p->rxbl = ilog2(burst);
}
static void
update_burst_len_v3X(struct ldma_chan *c, struct ldma_port *p, u32 burst)
{
if (ldma_chan_tx(c))
p->txbl = burst;
else
p->rxbl = burst;
}
static int
update_client_configs(struct of_dma *ofdma, struct of_phandle_args *spec)
{
struct ldma_dev *d = ofdma->of_dma_data;
u32 chan_id = spec->args[0];
u32 port_id = spec->args[1];
u32 burst = spec->args[2];
struct ldma_port *p;
struct ldma_chan *c;
if (chan_id >= d->chan_nrs || port_id >= d->port_nrs)
return 0;
p = &d->ports[port_id];
c = &d->chans[chan_id];
c->port = p;
if (d->ver == DMA_VER22)
update_burst_len_v22(c, p, burst);
else
update_burst_len_v3X(c, p, burst);
ldma_port_cfg(p);
return 1;
}
static struct dma_chan *ldma_xlate(struct of_phandle_args *spec,
struct of_dma *ofdma)
{
struct ldma_dev *d = ofdma->of_dma_data;
u32 chan_id = spec->args[0];
int ret;
if (!spec->args_count)
return NULL;
/* if args_count is 1 driver use default settings */
if (spec->args_count > 1) {
ret = update_client_configs(ofdma, spec);
if (!ret)
return NULL;
}
return dma_get_slave_channel(&d->chans[chan_id].vchan.chan);
}
static void ldma_dma_init_v22(int i, struct ldma_dev *d)
{
struct ldma_chan *c;
c = &d->chans[i];
c->nr = i; /* Real channel number */
c->rst = DMA_CHAN_RST;
c->desc_num = DMA_DFT_DESC_NUM;
snprintf(c->name, sizeof(c->name), "chan%d", c->nr);
INIT_WORK(&c->work, dma_work);
c->vchan.desc_free = dma_free_desc_resource;
vchan_init(&c->vchan, &d->dma_dev);
}
static void ldma_dma_init_v3X(int i, struct ldma_dev *d)
{
struct ldma_chan *c;
c = &d->chans[i];
c->data_endian = DMA_DFT_ENDIAN;
c->desc_endian = DMA_DFT_ENDIAN;
c->data_endian_en = false;
c->desc_endian_en = false;
c->desc_rx_np = false;
c->flags |= DEVICE_ALLOC_DESC;
c->onoff = DMA_CH_OFF;
c->rst = DMA_CHAN_RST;
c->abc_en = true;
c->hdrm_csum = false;
c->boff_len = 0;
c->nr = i;
c->vchan.desc_free = dma_free_desc_resource;
vchan_init(&c->vchan, &d->dma_dev);
}
static int ldma_init_v22(struct ldma_dev *d, struct platform_device *pdev)
{
int ret;
ret = device_property_read_u32(d->dev, "dma-channels", &d->chan_nrs);
if (ret < 0) {
dev_err(d->dev, "unable to read dma-channels property\n");
return ret;
}
d->irq = platform_get_irq(pdev, 0);
if (d->irq < 0)
return d->irq;
ret = devm_request_irq(&pdev->dev, d->irq, dma_interrupt, 0,
DRIVER_NAME, d);
if (ret)
return ret;
d->wq = alloc_ordered_workqueue("dma_wq", WQ_MEM_RECLAIM |
WQ_HIGHPRI);
if (!d->wq)
return -ENOMEM;
return 0;
}
static void ldma_clk_disable(void *data)
{
struct ldma_dev *d = data;
clk_disable_unprepare(d->core_clk);
reset_control_assert(d->rst);
}
static const struct ldma_inst_data dma0 = {
.name = "dma0",
.chan_fc = false,
.desc_fod = false,
.desc_in_sram = false,
.valid_desc_fetch_ack = false,
};
static const struct ldma_inst_data dma2tx = {
.name = "dma2tx",
.type = DMA_TYPE_TX,
.orrc = 16,
.chan_fc = true,
.desc_fod = true,
.desc_in_sram = true,
.valid_desc_fetch_ack = true,
};
static const struct ldma_inst_data dma1rx = {
.name = "dma1rx",
.type = DMA_TYPE_RX,
.orrc = 16,
.chan_fc = false,
.desc_fod = true,
.desc_in_sram = true,
.valid_desc_fetch_ack = false,
};
static const struct ldma_inst_data dma1tx = {
.name = "dma1tx",
.type = DMA_TYPE_TX,
.orrc = 16,
.chan_fc = true,
.desc_fod = true,
.desc_in_sram = true,
.valid_desc_fetch_ack = true,
};
static const struct ldma_inst_data dma0tx = {
.name = "dma0tx",
.type = DMA_TYPE_TX,
.orrc = 16,
.chan_fc = true,
.desc_fod = true,
.desc_in_sram = true,
.valid_desc_fetch_ack = true,
};
static const struct ldma_inst_data dma3 = {
.name = "dma3",
.type = DMA_TYPE_MCPY,
.orrc = 16,
.chan_fc = false,
.desc_fod = false,
.desc_in_sram = true,
.valid_desc_fetch_ack = false,
};
static const struct ldma_inst_data toe_dma30 = {
.name = "toe_dma30",
.type = DMA_TYPE_MCPY,
.orrc = 16,
.chan_fc = false,
.desc_fod = false,
.desc_in_sram = true,
.valid_desc_fetch_ack = true,
};
static const struct ldma_inst_data toe_dma31 = {
.name = "toe_dma31",
.type = DMA_TYPE_MCPY,
.orrc = 16,
.chan_fc = false,
.desc_fod = false,
.desc_in_sram = true,
.valid_desc_fetch_ack = true,
};
static const struct of_device_id intel_ldma_match[] = {
{ .compatible = "intel,lgm-cdma", .data = &dma0},
{ .compatible = "intel,lgm-dma2tx", .data = &dma2tx},
{ .compatible = "intel,lgm-dma1rx", .data = &dma1rx},
{ .compatible = "intel,lgm-dma1tx", .data = &dma1tx},
{ .compatible = "intel,lgm-dma0tx", .data = &dma0tx},
{ .compatible = "intel,lgm-dma3", .data = &dma3},
{ .compatible = "intel,lgm-toe-dma30", .data = &toe_dma30},
{ .compatible = "intel,lgm-toe-dma31", .data = &toe_dma31},
{}
};
static int intel_ldma_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct dma_device *dma_dev;
unsigned long ch_mask;
struct ldma_chan *c;
struct ldma_port *p;
struct ldma_dev *d;
u32 id, bitn = 32, j;
int i, ret;
d = devm_kzalloc(dev, sizeof(*d), GFP_KERNEL);
if (!d)
return -ENOMEM;
/* Link controller to platform device */
d->dev = &pdev->dev;
d->inst = device_get_match_data(dev);
if (!d->inst) {
dev_err(dev, "No device match found\n");
return -ENODEV;
}
d->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(d->base))
return PTR_ERR(d->base);
/* Power up and reset the dma engine, some DMAs always on?? */
d->core_clk = devm_clk_get_optional(dev, NULL);
if (IS_ERR(d->core_clk))
return PTR_ERR(d->core_clk);
clk_prepare_enable(d->core_clk);
d->rst = devm_reset_control_get_optional(dev, NULL);
if (IS_ERR(d->rst))
return PTR_ERR(d->rst);
reset_control_deassert(d->rst);
ret = devm_add_action_or_reset(dev, ldma_clk_disable, d);
if (ret) {
dev_err(dev, "Failed to devm_add_action_or_reset, %d\n", ret);
return ret;
}
id = readl(d->base + DMA_ID);
d->chan_nrs = FIELD_GET(DMA_ID_CHNR, id);
d->port_nrs = FIELD_GET(DMA_ID_PNR, id);
d->ver = FIELD_GET(DMA_ID_REV, id);
if (id & DMA_ID_AW_36B)
d->flags |= DMA_ADDR_36BIT;
if (IS_ENABLED(CONFIG_64BIT) && (id & DMA_ID_AW_36B))
bitn = 36;
if (id & DMA_ID_DW_128B)
d->flags |= DMA_DATA_128BIT;
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(bitn));
if (ret) {
dev_err(dev, "No usable DMA configuration\n");
return ret;
}
if (d->ver == DMA_VER22) {
ret = ldma_init_v22(d, pdev);
if (ret)
return ret;
}
ret = device_property_read_u32(dev, "dma-channel-mask", &d->channels_mask);
if (ret < 0)
d->channels_mask = GENMASK(d->chan_nrs - 1, 0);
dma_dev = &d->dma_dev;
dma_cap_zero(dma_dev->cap_mask);
dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
/* Channel initializations */
INIT_LIST_HEAD(&dma_dev->channels);
/* Port Initializations */
d->ports = devm_kcalloc(dev, d->port_nrs, sizeof(*p), GFP_KERNEL);
if (!d->ports)
return -ENOMEM;
/* Channels Initializations */
d->chans = devm_kcalloc(d->dev, d->chan_nrs, sizeof(*c), GFP_KERNEL);
if (!d->chans)
return -ENOMEM;
for (i = 0; i < d->port_nrs; i++) {
p = &d->ports[i];
p->portid = i;
p->ldev = d;
}
ret = ldma_cfg_init(d);
if (ret)
return ret;
dma_dev->dev = &pdev->dev;
ch_mask = (unsigned long)d->channels_mask;
for_each_set_bit(j, &ch_mask, d->chan_nrs) {
if (d->ver == DMA_VER22)
ldma_dma_init_v22(j, d);
else
ldma_dma_init_v3X(j, d);
}
dma_dev->device_alloc_chan_resources = ldma_alloc_chan_resources;
dma_dev->device_free_chan_resources = ldma_free_chan_resources;
dma_dev->device_terminate_all = ldma_terminate_all;
dma_dev->device_issue_pending = ldma_issue_pending;
dma_dev->device_tx_status = ldma_tx_status;
dma_dev->device_resume = ldma_resume_chan;
dma_dev->device_pause = ldma_pause_chan;
dma_dev->device_prep_slave_sg = ldma_prep_slave_sg;
if (d->ver == DMA_VER22) {
dma_dev->device_config = ldma_slave_config;
dma_dev->device_synchronize = ldma_synchronize;
dma_dev->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
dma_dev->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
dma_dev->directions = BIT(DMA_MEM_TO_DEV) |
BIT(DMA_DEV_TO_MEM);
dma_dev->residue_granularity =
DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
}
platform_set_drvdata(pdev, d);
ldma_dev_init(d);
ret = dma_async_device_register(dma_dev);
if (ret) {
dev_err(dev, "Failed to register slave DMA engine device\n");
return ret;
}
ret = of_dma_controller_register(pdev->dev.of_node, ldma_xlate, d);
if (ret) {
dev_err(dev, "Failed to register of DMA controller\n");
dma_async_device_unregister(dma_dev);
return ret;
}
dev_info(dev, "Init done - rev: %x, ports: %d channels: %d\n", d->ver,
d->port_nrs, d->chan_nrs);
return 0;
}
static struct platform_driver intel_ldma_driver = {
.probe = intel_ldma_probe,
.driver = {
.name = DRIVER_NAME,
.of_match_table = intel_ldma_match,
},
};
/*
* Perform this driver as device_initcall to make sure initialization happens
* before its DMA clients of some are platform specific and also to provide
* registered DMA channels and DMA capabilities to clients before their
* initialization.
*/
static int __init intel_ldma_init(void)
{
return platform_driver_register(&intel_ldma_driver);
}
device_initcall(intel_ldma_init);