|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * Freescale eSDHC controller driver. | 
|  | * | 
|  | * Copyright (c) 2007, 2010, 2012 Freescale Semiconductor, Inc. | 
|  | * Copyright (c) 2009 MontaVista Software, Inc. | 
|  | * Copyright 2020 NXP | 
|  | * | 
|  | * Authors: Xiaobo Xie <X.Xie@freescale.com> | 
|  | *	    Anton Vorontsov <avorontsov@ru.mvista.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/err.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/of_address.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/sys_soc.h> | 
|  | #include <linux/clk.h> | 
|  | #include <linux/ktime.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/iopoll.h> | 
|  | #include <linux/mmc/host.h> | 
|  | #include <linux/mmc/mmc.h> | 
|  | #include "sdhci-pltfm.h" | 
|  | #include "sdhci-esdhc.h" | 
|  |  | 
|  | #define VENDOR_V_22	0x12 | 
|  | #define VENDOR_V_23	0x13 | 
|  |  | 
|  | #define MMC_TIMING_NUM (MMC_TIMING_MMC_HS400 + 1) | 
|  |  | 
|  | struct esdhc_clk_fixup { | 
|  | const unsigned int sd_dflt_max_clk; | 
|  | const unsigned int max_clk[MMC_TIMING_NUM]; | 
|  | }; | 
|  |  | 
|  | static const struct esdhc_clk_fixup ls1021a_esdhc_clk = { | 
|  | .sd_dflt_max_clk = 25000000, | 
|  | .max_clk[MMC_TIMING_MMC_HS] = 46500000, | 
|  | .max_clk[MMC_TIMING_SD_HS] = 46500000, | 
|  | }; | 
|  |  | 
|  | static const struct esdhc_clk_fixup ls1046a_esdhc_clk = { | 
|  | .sd_dflt_max_clk = 25000000, | 
|  | .max_clk[MMC_TIMING_UHS_SDR104] = 167000000, | 
|  | .max_clk[MMC_TIMING_MMC_HS200] = 167000000, | 
|  | }; | 
|  |  | 
|  | static const struct esdhc_clk_fixup ls1012a_esdhc_clk = { | 
|  | .sd_dflt_max_clk = 25000000, | 
|  | .max_clk[MMC_TIMING_UHS_SDR104] = 125000000, | 
|  | .max_clk[MMC_TIMING_MMC_HS200] = 125000000, | 
|  | }; | 
|  |  | 
|  | static const struct esdhc_clk_fixup p1010_esdhc_clk = { | 
|  | .sd_dflt_max_clk = 20000000, | 
|  | .max_clk[MMC_TIMING_LEGACY] = 20000000, | 
|  | .max_clk[MMC_TIMING_MMC_HS] = 42000000, | 
|  | .max_clk[MMC_TIMING_SD_HS] = 40000000, | 
|  | }; | 
|  |  | 
|  | static const struct of_device_id sdhci_esdhc_of_match[] = { | 
|  | { .compatible = "fsl,ls1021a-esdhc", .data = &ls1021a_esdhc_clk}, | 
|  | { .compatible = "fsl,ls1046a-esdhc", .data = &ls1046a_esdhc_clk}, | 
|  | { .compatible = "fsl,ls1012a-esdhc", .data = &ls1012a_esdhc_clk}, | 
|  | { .compatible = "fsl,p1010-esdhc",   .data = &p1010_esdhc_clk}, | 
|  | { .compatible = "fsl,mpc8379-esdhc" }, | 
|  | { .compatible = "fsl,mpc8536-esdhc" }, | 
|  | { .compatible = "fsl,esdhc" }, | 
|  | { } | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, sdhci_esdhc_of_match); | 
|  |  | 
|  | struct sdhci_esdhc { | 
|  | u8 vendor_ver; | 
|  | u8 spec_ver; | 
|  | bool quirk_incorrect_hostver; | 
|  | bool quirk_limited_clk_division; | 
|  | bool quirk_unreliable_pulse_detection; | 
|  | bool quirk_tuning_erratum_type1; | 
|  | bool quirk_tuning_erratum_type2; | 
|  | bool quirk_ignore_data_inhibit; | 
|  | bool quirk_delay_before_data_reset; | 
|  | bool quirk_trans_complete_erratum; | 
|  | bool in_sw_tuning; | 
|  | unsigned int peripheral_clock; | 
|  | const struct esdhc_clk_fixup *clk_fixup; | 
|  | u32 div_ratio; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * esdhc_read*_fixup - Fixup the value read from incompatible eSDHC register | 
|  | *		       to make it compatible with SD spec. | 
|  | * | 
|  | * @host: pointer to sdhci_host | 
|  | * @spec_reg: SD spec register address | 
|  | * @value: 32bit eSDHC register value on spec_reg address | 
|  | * | 
|  | * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC | 
|  | * registers are 32 bits. There are differences in register size, register | 
|  | * address, register function, bit position and function between eSDHC spec | 
|  | * and SD spec. | 
|  | * | 
|  | * Return a fixed up register value | 
|  | */ | 
|  | static u32 esdhc_readl_fixup(struct sdhci_host *host, | 
|  | int spec_reg, u32 value) | 
|  | { | 
|  | struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); | 
|  | struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); | 
|  | u32 ret; | 
|  |  | 
|  | /* | 
|  | * The bit of ADMA flag in eSDHC is not compatible with standard | 
|  | * SDHC register, so set fake flag SDHCI_CAN_DO_ADMA2 when ADMA is | 
|  | * supported by eSDHC. | 
|  | * And for many FSL eSDHC controller, the reset value of field | 
|  | * SDHCI_CAN_DO_ADMA1 is 1, but some of them can't support ADMA, | 
|  | * only these vendor version is greater than 2.2/0x12 support ADMA. | 
|  | */ | 
|  | if ((spec_reg == SDHCI_CAPABILITIES) && (value & SDHCI_CAN_DO_ADMA1)) { | 
|  | if (esdhc->vendor_ver > VENDOR_V_22) { | 
|  | ret = value | SDHCI_CAN_DO_ADMA2; | 
|  | return ret; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * The DAT[3:0] line signal levels and the CMD line signal level are | 
|  | * not compatible with standard SDHC register. The line signal levels | 
|  | * DAT[7:0] are at bits 31:24 and the command line signal level is at | 
|  | * bit 23. All other bits are the same as in the standard SDHC | 
|  | * register. | 
|  | */ | 
|  | if (spec_reg == SDHCI_PRESENT_STATE) { | 
|  | ret = value & 0x000fffff; | 
|  | ret |= (value >> 4) & SDHCI_DATA_LVL_MASK; | 
|  | ret |= (value << 1) & SDHCI_CMD_LVL; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * DTS properties of mmc host are used to enable each speed mode | 
|  | * according to soc and board capability. So clean up | 
|  | * SDR50/SDR104/DDR50 support bits here. | 
|  | */ | 
|  | if (spec_reg == SDHCI_CAPABILITIES_1) { | 
|  | ret = value & ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 | | 
|  | SDHCI_SUPPORT_DDR50); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some controllers have unreliable Data Line Active | 
|  | * bit for commands with busy signal. This affects | 
|  | * Command Inhibit (data) bit. Just ignore it since | 
|  | * MMC core driver has already polled card status | 
|  | * with CMD13 after any command with busy siganl. | 
|  | */ | 
|  | if ((spec_reg == SDHCI_PRESENT_STATE) && | 
|  | (esdhc->quirk_ignore_data_inhibit == true)) { | 
|  | ret = value & ~SDHCI_DATA_INHIBIT; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = value; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u16 esdhc_readw_fixup(struct sdhci_host *host, | 
|  | int spec_reg, u32 value) | 
|  | { | 
|  | struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); | 
|  | struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); | 
|  | u16 ret; | 
|  | int shift = (spec_reg & 0x2) * 8; | 
|  |  | 
|  | if (spec_reg == SDHCI_TRANSFER_MODE) | 
|  | return pltfm_host->xfer_mode_shadow; | 
|  |  | 
|  | if (spec_reg == SDHCI_HOST_VERSION) | 
|  | ret = value & 0xffff; | 
|  | else | 
|  | ret = (value >> shift) & 0xffff; | 
|  | /* Workaround for T4240-R1.0-R2.0 eSDHC which has incorrect | 
|  | * vendor version and spec version information. | 
|  | */ | 
|  | if ((spec_reg == SDHCI_HOST_VERSION) && | 
|  | (esdhc->quirk_incorrect_hostver)) | 
|  | ret = (VENDOR_V_23 << SDHCI_VENDOR_VER_SHIFT) | SDHCI_SPEC_200; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u8 esdhc_readb_fixup(struct sdhci_host *host, | 
|  | int spec_reg, u32 value) | 
|  | { | 
|  | u8 ret; | 
|  | u8 dma_bits; | 
|  | int shift = (spec_reg & 0x3) * 8; | 
|  |  | 
|  | ret = (value >> shift) & 0xff; | 
|  |  | 
|  | /* | 
|  | * "DMA select" locates at offset 0x28 in SD specification, but on | 
|  | * P5020 or P3041, it locates at 0x29. | 
|  | */ | 
|  | if (spec_reg == SDHCI_HOST_CONTROL) { | 
|  | /* DMA select is 22,23 bits in Protocol Control Register */ | 
|  | dma_bits = (value >> 5) & SDHCI_CTRL_DMA_MASK; | 
|  | /* fixup the result */ | 
|  | ret &= ~SDHCI_CTRL_DMA_MASK; | 
|  | ret |= dma_bits; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * esdhc_write*_fixup - Fixup the SD spec register value so that it could be | 
|  | *			written into eSDHC register. | 
|  | * | 
|  | * @host: pointer to sdhci_host | 
|  | * @spec_reg: SD spec register address | 
|  | * @value: 8/16/32bit SD spec register value that would be written | 
|  | * @old_value: 32bit eSDHC register value on spec_reg address | 
|  | * | 
|  | * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC | 
|  | * registers are 32 bits. There are differences in register size, register | 
|  | * address, register function, bit position and function between eSDHC spec | 
|  | * and SD spec. | 
|  | * | 
|  | * Return a fixed up register value | 
|  | */ | 
|  | static u32 esdhc_writel_fixup(struct sdhci_host *host, | 
|  | int spec_reg, u32 value, u32 old_value) | 
|  | { | 
|  | u32 ret; | 
|  |  | 
|  | /* | 
|  | * Enabling IRQSTATEN[BGESEN] is just to set IRQSTAT[BGE] | 
|  | * when SYSCTL[RSTD] is set for some special operations. | 
|  | * No any impact on other operation. | 
|  | */ | 
|  | if (spec_reg == SDHCI_INT_ENABLE) | 
|  | ret = value | SDHCI_INT_BLK_GAP; | 
|  | else | 
|  | ret = value; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u32 esdhc_writew_fixup(struct sdhci_host *host, | 
|  | int spec_reg, u16 value, u32 old_value) | 
|  | { | 
|  | struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); | 
|  | int shift = (spec_reg & 0x2) * 8; | 
|  | u32 ret; | 
|  |  | 
|  | switch (spec_reg) { | 
|  | case SDHCI_TRANSFER_MODE: | 
|  | /* | 
|  | * Postpone this write, we must do it together with a | 
|  | * command write that is down below. Return old value. | 
|  | */ | 
|  | pltfm_host->xfer_mode_shadow = value; | 
|  | return old_value; | 
|  | case SDHCI_COMMAND: | 
|  | ret = (value << 16) | pltfm_host->xfer_mode_shadow; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = old_value & (~(0xffff << shift)); | 
|  | ret |= (value << shift); | 
|  |  | 
|  | if (spec_reg == SDHCI_BLOCK_SIZE) { | 
|  | /* | 
|  | * Two last DMA bits are reserved, and first one is used for | 
|  | * non-standard blksz of 4096 bytes that we don't support | 
|  | * yet. So clear the DMA boundary bits. | 
|  | */ | 
|  | ret &= (~SDHCI_MAKE_BLKSZ(0x7, 0)); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u32 esdhc_writeb_fixup(struct sdhci_host *host, | 
|  | int spec_reg, u8 value, u32 old_value) | 
|  | { | 
|  | u32 ret; | 
|  | u32 dma_bits; | 
|  | u8 tmp; | 
|  | int shift = (spec_reg & 0x3) * 8; | 
|  |  | 
|  | /* | 
|  | * eSDHC doesn't have a standard power control register, so we do | 
|  | * nothing here to avoid incorrect operation. | 
|  | */ | 
|  | if (spec_reg == SDHCI_POWER_CONTROL) | 
|  | return old_value; | 
|  | /* | 
|  | * "DMA select" location is offset 0x28 in SD specification, but on | 
|  | * P5020 or P3041, it's located at 0x29. | 
|  | */ | 
|  | if (spec_reg == SDHCI_HOST_CONTROL) { | 
|  | /* | 
|  | * If host control register is not standard, exit | 
|  | * this function | 
|  | */ | 
|  | if (host->quirks2 & SDHCI_QUIRK2_BROKEN_HOST_CONTROL) | 
|  | return old_value; | 
|  |  | 
|  | /* DMA select is 22,23 bits in Protocol Control Register */ | 
|  | dma_bits = (value & SDHCI_CTRL_DMA_MASK) << 5; | 
|  | ret = (old_value & (~(SDHCI_CTRL_DMA_MASK << 5))) | dma_bits; | 
|  | tmp = (value & (~SDHCI_CTRL_DMA_MASK)) | | 
|  | (old_value & SDHCI_CTRL_DMA_MASK); | 
|  | ret = (ret & (~0xff)) | tmp; | 
|  |  | 
|  | /* Prevent SDHCI core from writing reserved bits (e.g. HISPD) */ | 
|  | ret &= ~ESDHC_HOST_CONTROL_RES; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = (old_value & (~(0xff << shift))) | (value << shift); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u32 esdhc_be_readl(struct sdhci_host *host, int reg) | 
|  | { | 
|  | u32 ret; | 
|  | u32 value; | 
|  |  | 
|  | if (reg == SDHCI_CAPABILITIES_1) | 
|  | value = ioread32be(host->ioaddr + ESDHC_CAPABILITIES_1); | 
|  | else | 
|  | value = ioread32be(host->ioaddr + reg); | 
|  |  | 
|  | ret = esdhc_readl_fixup(host, reg, value); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u32 esdhc_le_readl(struct sdhci_host *host, int reg) | 
|  | { | 
|  | u32 ret; | 
|  | u32 value; | 
|  |  | 
|  | if (reg == SDHCI_CAPABILITIES_1) | 
|  | value = ioread32(host->ioaddr + ESDHC_CAPABILITIES_1); | 
|  | else | 
|  | value = ioread32(host->ioaddr + reg); | 
|  |  | 
|  | ret = esdhc_readl_fixup(host, reg, value); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u16 esdhc_be_readw(struct sdhci_host *host, int reg) | 
|  | { | 
|  | u16 ret; | 
|  | u32 value; | 
|  | int base = reg & ~0x3; | 
|  |  | 
|  | value = ioread32be(host->ioaddr + base); | 
|  | ret = esdhc_readw_fixup(host, reg, value); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u16 esdhc_le_readw(struct sdhci_host *host, int reg) | 
|  | { | 
|  | u16 ret; | 
|  | u32 value; | 
|  | int base = reg & ~0x3; | 
|  |  | 
|  | value = ioread32(host->ioaddr + base); | 
|  | ret = esdhc_readw_fixup(host, reg, value); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u8 esdhc_be_readb(struct sdhci_host *host, int reg) | 
|  | { | 
|  | u8 ret; | 
|  | u32 value; | 
|  | int base = reg & ~0x3; | 
|  |  | 
|  | value = ioread32be(host->ioaddr + base); | 
|  | ret = esdhc_readb_fixup(host, reg, value); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u8 esdhc_le_readb(struct sdhci_host *host, int reg) | 
|  | { | 
|  | u8 ret; | 
|  | u32 value; | 
|  | int base = reg & ~0x3; | 
|  |  | 
|  | value = ioread32(host->ioaddr + base); | 
|  | ret = esdhc_readb_fixup(host, reg, value); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void esdhc_be_writel(struct sdhci_host *host, u32 val, int reg) | 
|  | { | 
|  | u32 value; | 
|  |  | 
|  | value = esdhc_writel_fixup(host, reg, val, 0); | 
|  | iowrite32be(value, host->ioaddr + reg); | 
|  | } | 
|  |  | 
|  | static void esdhc_le_writel(struct sdhci_host *host, u32 val, int reg) | 
|  | { | 
|  | u32 value; | 
|  |  | 
|  | value = esdhc_writel_fixup(host, reg, val, 0); | 
|  | iowrite32(value, host->ioaddr + reg); | 
|  | } | 
|  |  | 
|  | static void esdhc_be_writew(struct sdhci_host *host, u16 val, int reg) | 
|  | { | 
|  | struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); | 
|  | struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); | 
|  | int base = reg & ~0x3; | 
|  | u32 value; | 
|  | u32 ret; | 
|  |  | 
|  | value = ioread32be(host->ioaddr + base); | 
|  | ret = esdhc_writew_fixup(host, reg, val, value); | 
|  | if (reg != SDHCI_TRANSFER_MODE) | 
|  | iowrite32be(ret, host->ioaddr + base); | 
|  |  | 
|  | /* Starting SW tuning requires ESDHC_SMPCLKSEL to be set | 
|  | * 1us later after ESDHC_EXTN is set. | 
|  | */ | 
|  | if (base == ESDHC_SYSTEM_CONTROL_2) { | 
|  | if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) && | 
|  | esdhc->in_sw_tuning) { | 
|  | udelay(1); | 
|  | ret |= ESDHC_SMPCLKSEL; | 
|  | iowrite32be(ret, host->ioaddr + base); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void esdhc_le_writew(struct sdhci_host *host, u16 val, int reg) | 
|  | { | 
|  | struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); | 
|  | struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); | 
|  | int base = reg & ~0x3; | 
|  | u32 value; | 
|  | u32 ret; | 
|  |  | 
|  | value = ioread32(host->ioaddr + base); | 
|  | ret = esdhc_writew_fixup(host, reg, val, value); | 
|  | if (reg != SDHCI_TRANSFER_MODE) | 
|  | iowrite32(ret, host->ioaddr + base); | 
|  |  | 
|  | /* Starting SW tuning requires ESDHC_SMPCLKSEL to be set | 
|  | * 1us later after ESDHC_EXTN is set. | 
|  | */ | 
|  | if (base == ESDHC_SYSTEM_CONTROL_2) { | 
|  | if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) && | 
|  | esdhc->in_sw_tuning) { | 
|  | udelay(1); | 
|  | ret |= ESDHC_SMPCLKSEL; | 
|  | iowrite32(ret, host->ioaddr + base); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void esdhc_be_writeb(struct sdhci_host *host, u8 val, int reg) | 
|  | { | 
|  | int base = reg & ~0x3; | 
|  | u32 value; | 
|  | u32 ret; | 
|  |  | 
|  | value = ioread32be(host->ioaddr + base); | 
|  | ret = esdhc_writeb_fixup(host, reg, val, value); | 
|  | iowrite32be(ret, host->ioaddr + base); | 
|  | } | 
|  |  | 
|  | static void esdhc_le_writeb(struct sdhci_host *host, u8 val, int reg) | 
|  | { | 
|  | int base = reg & ~0x3; | 
|  | u32 value; | 
|  | u32 ret; | 
|  |  | 
|  | value = ioread32(host->ioaddr + base); | 
|  | ret = esdhc_writeb_fixup(host, reg, val, value); | 
|  | iowrite32(ret, host->ioaddr + base); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For Abort or Suspend after Stop at Block Gap, ignore the ADMA | 
|  | * error(IRQSTAT[ADMAE]) if both Transfer Complete(IRQSTAT[TC]) | 
|  | * and Block Gap Event(IRQSTAT[BGE]) are also set. | 
|  | * For Continue, apply soft reset for data(SYSCTL[RSTD]); | 
|  | * and re-issue the entire read transaction from beginning. | 
|  | */ | 
|  | static void esdhc_of_adma_workaround(struct sdhci_host *host, u32 intmask) | 
|  | { | 
|  | struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); | 
|  | struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); | 
|  | bool applicable; | 
|  | dma_addr_t dmastart; | 
|  | dma_addr_t dmanow; | 
|  |  | 
|  | applicable = (intmask & SDHCI_INT_DATA_END) && | 
|  | (intmask & SDHCI_INT_BLK_GAP) && | 
|  | (esdhc->vendor_ver == VENDOR_V_23); | 
|  | if (!applicable) | 
|  | return; | 
|  |  | 
|  | host->data->error = 0; | 
|  | dmastart = sg_dma_address(host->data->sg); | 
|  | dmanow = dmastart + host->data->bytes_xfered; | 
|  | /* | 
|  | * Force update to the next DMA block boundary. | 
|  | */ | 
|  | dmanow = (dmanow & ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) + | 
|  | SDHCI_DEFAULT_BOUNDARY_SIZE; | 
|  | host->data->bytes_xfered = dmanow - dmastart; | 
|  | sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS); | 
|  | } | 
|  |  | 
|  | static int esdhc_of_enable_dma(struct sdhci_host *host) | 
|  | { | 
|  | u32 value; | 
|  | struct device *dev = mmc_dev(host->mmc); | 
|  |  | 
|  | if (of_device_is_compatible(dev->of_node, "fsl,ls1043a-esdhc") || | 
|  | of_device_is_compatible(dev->of_node, "fsl,ls1046a-esdhc")) | 
|  | dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40)); | 
|  |  | 
|  | value = sdhci_readl(host, ESDHC_DMA_SYSCTL); | 
|  |  | 
|  | if (of_dma_is_coherent(dev->of_node)) | 
|  | value |= ESDHC_DMA_SNOOP; | 
|  | else | 
|  | value &= ~ESDHC_DMA_SNOOP; | 
|  |  | 
|  | sdhci_writel(host, value, ESDHC_DMA_SYSCTL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned int esdhc_of_get_max_clock(struct sdhci_host *host) | 
|  | { | 
|  | struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); | 
|  | struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); | 
|  |  | 
|  | if (esdhc->peripheral_clock) | 
|  | return esdhc->peripheral_clock; | 
|  | else | 
|  | return pltfm_host->clock; | 
|  | } | 
|  |  | 
|  | static unsigned int esdhc_of_get_min_clock(struct sdhci_host *host) | 
|  | { | 
|  | struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); | 
|  | struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); | 
|  | unsigned int clock; | 
|  |  | 
|  | if (esdhc->peripheral_clock) | 
|  | clock = esdhc->peripheral_clock; | 
|  | else | 
|  | clock = pltfm_host->clock; | 
|  | return clock / 256 / 16; | 
|  | } | 
|  |  | 
|  | static void esdhc_clock_enable(struct sdhci_host *host, bool enable) | 
|  | { | 
|  | struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); | 
|  | struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); | 
|  | ktime_t timeout; | 
|  | u32 val, clk_en; | 
|  |  | 
|  | clk_en = ESDHC_CLOCK_SDCLKEN; | 
|  |  | 
|  | /* | 
|  | * IPGEN/HCKEN/PEREN bits exist on eSDHC whose vendor version | 
|  | * is 2.2 or lower. | 
|  | */ | 
|  | if (esdhc->vendor_ver <= VENDOR_V_22) | 
|  | clk_en |= (ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN | | 
|  | ESDHC_CLOCK_PEREN); | 
|  |  | 
|  | val = sdhci_readl(host, ESDHC_SYSTEM_CONTROL); | 
|  |  | 
|  | if (enable) | 
|  | val |= clk_en; | 
|  | else | 
|  | val &= ~clk_en; | 
|  |  | 
|  | sdhci_writel(host, val, ESDHC_SYSTEM_CONTROL); | 
|  |  | 
|  | /* | 
|  | * Wait max 20 ms. If vendor version is 2.2 or lower, do not | 
|  | * wait clock stable bit which does not exist. | 
|  | */ | 
|  | timeout = ktime_add_ms(ktime_get(), 20); | 
|  | while (esdhc->vendor_ver > VENDOR_V_22) { | 
|  | bool timedout = ktime_after(ktime_get(), timeout); | 
|  |  | 
|  | if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE) | 
|  | break; | 
|  | if (timedout) { | 
|  | pr_err("%s: Internal clock never stabilised.\n", | 
|  | mmc_hostname(host->mmc)); | 
|  | break; | 
|  | } | 
|  | usleep_range(10, 20); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void esdhc_flush_async_fifo(struct sdhci_host *host) | 
|  | { | 
|  | ktime_t timeout; | 
|  | u32 val; | 
|  |  | 
|  | val = sdhci_readl(host, ESDHC_DMA_SYSCTL); | 
|  | val |= ESDHC_FLUSH_ASYNC_FIFO; | 
|  | sdhci_writel(host, val, ESDHC_DMA_SYSCTL); | 
|  |  | 
|  | /* Wait max 20 ms */ | 
|  | timeout = ktime_add_ms(ktime_get(), 20); | 
|  | while (1) { | 
|  | bool timedout = ktime_after(ktime_get(), timeout); | 
|  |  | 
|  | if (!(sdhci_readl(host, ESDHC_DMA_SYSCTL) & | 
|  | ESDHC_FLUSH_ASYNC_FIFO)) | 
|  | break; | 
|  | if (timedout) { | 
|  | pr_err("%s: flushing asynchronous FIFO timeout.\n", | 
|  | mmc_hostname(host->mmc)); | 
|  | break; | 
|  | } | 
|  | usleep_range(10, 20); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void esdhc_of_set_clock(struct sdhci_host *host, unsigned int clock) | 
|  | { | 
|  | struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); | 
|  | struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); | 
|  | unsigned int pre_div = 1, div = 1; | 
|  | unsigned int clock_fixup = 0; | 
|  | ktime_t timeout; | 
|  | u32 temp; | 
|  |  | 
|  | if (clock == 0) { | 
|  | host->mmc->actual_clock = 0; | 
|  | esdhc_clock_enable(host, false); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Start pre_div at 2 for vendor version < 2.3. */ | 
|  | if (esdhc->vendor_ver < VENDOR_V_23) | 
|  | pre_div = 2; | 
|  |  | 
|  | /* Fix clock value. */ | 
|  | if (host->mmc->card && mmc_card_sd(host->mmc->card) && | 
|  | esdhc->clk_fixup && host->mmc->ios.timing == MMC_TIMING_LEGACY) | 
|  | clock_fixup = esdhc->clk_fixup->sd_dflt_max_clk; | 
|  | else if (esdhc->clk_fixup) | 
|  | clock_fixup = esdhc->clk_fixup->max_clk[host->mmc->ios.timing]; | 
|  |  | 
|  | if (clock_fixup == 0 || clock < clock_fixup) | 
|  | clock_fixup = clock; | 
|  |  | 
|  | /* Calculate pre_div and div. */ | 
|  | while (host->max_clk / pre_div / 16 > clock_fixup && pre_div < 256) | 
|  | pre_div *= 2; | 
|  |  | 
|  | while (host->max_clk / pre_div / div > clock_fixup && div < 16) | 
|  | div++; | 
|  |  | 
|  | esdhc->div_ratio = pre_div * div; | 
|  |  | 
|  | /* Limit clock division for HS400 200MHz clock for quirk. */ | 
|  | if (esdhc->quirk_limited_clk_division && | 
|  | clock == MMC_HS200_MAX_DTR && | 
|  | (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 || | 
|  | host->flags & SDHCI_HS400_TUNING)) { | 
|  | if (esdhc->div_ratio <= 4) { | 
|  | pre_div = 4; | 
|  | div = 1; | 
|  | } else if (esdhc->div_ratio <= 8) { | 
|  | pre_div = 4; | 
|  | div = 2; | 
|  | } else if (esdhc->div_ratio <= 12) { | 
|  | pre_div = 4; | 
|  | div = 3; | 
|  | } else { | 
|  | pr_warn("%s: using unsupported clock division.\n", | 
|  | mmc_hostname(host->mmc)); | 
|  | } | 
|  | esdhc->div_ratio = pre_div * div; | 
|  | } | 
|  |  | 
|  | host->mmc->actual_clock = host->max_clk / esdhc->div_ratio; | 
|  |  | 
|  | dev_dbg(mmc_dev(host->mmc), "desired SD clock: %d, actual: %d\n", | 
|  | clock, host->mmc->actual_clock); | 
|  |  | 
|  | /* Set clock division into register. */ | 
|  | pre_div >>= 1; | 
|  | div--; | 
|  |  | 
|  | esdhc_clock_enable(host, false); | 
|  |  | 
|  | temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL); | 
|  | temp &= ~ESDHC_CLOCK_MASK; | 
|  | temp |= ((div << ESDHC_DIVIDER_SHIFT) | | 
|  | (pre_div << ESDHC_PREDIV_SHIFT)); | 
|  | sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL); | 
|  |  | 
|  | /* | 
|  | * Wait max 20 ms. If vendor version is 2.2 or lower, do not | 
|  | * wait clock stable bit which does not exist. | 
|  | */ | 
|  | timeout = ktime_add_ms(ktime_get(), 20); | 
|  | while (esdhc->vendor_ver > VENDOR_V_22) { | 
|  | bool timedout = ktime_after(ktime_get(), timeout); | 
|  |  | 
|  | if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE) | 
|  | break; | 
|  | if (timedout) { | 
|  | pr_err("%s: Internal clock never stabilised.\n", | 
|  | mmc_hostname(host->mmc)); | 
|  | break; | 
|  | } | 
|  | usleep_range(10, 20); | 
|  | } | 
|  |  | 
|  | /* Additional setting for HS400. */ | 
|  | if (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 && | 
|  | clock == MMC_HS200_MAX_DTR) { | 
|  | temp = sdhci_readl(host, ESDHC_TBCTL); | 
|  | sdhci_writel(host, temp | ESDHC_HS400_MODE, ESDHC_TBCTL); | 
|  | temp = sdhci_readl(host, ESDHC_SDCLKCTL); | 
|  | sdhci_writel(host, temp | ESDHC_CMD_CLK_CTL, ESDHC_SDCLKCTL); | 
|  | esdhc_clock_enable(host, true); | 
|  |  | 
|  | temp = sdhci_readl(host, ESDHC_DLLCFG0); | 
|  | temp |= ESDHC_DLL_ENABLE; | 
|  | if (host->mmc->actual_clock == MMC_HS200_MAX_DTR) | 
|  | temp |= ESDHC_DLL_FREQ_SEL; | 
|  | sdhci_writel(host, temp, ESDHC_DLLCFG0); | 
|  |  | 
|  | temp |= ESDHC_DLL_RESET; | 
|  | sdhci_writel(host, temp, ESDHC_DLLCFG0); | 
|  | udelay(1); | 
|  | temp &= ~ESDHC_DLL_RESET; | 
|  | sdhci_writel(host, temp, ESDHC_DLLCFG0); | 
|  |  | 
|  | /* Wait max 20 ms */ | 
|  | if (read_poll_timeout(sdhci_readl, temp, | 
|  | temp & ESDHC_DLL_STS_SLV_LOCK, | 
|  | 10, 20000, false, | 
|  | host, ESDHC_DLLSTAT0)) | 
|  | pr_err("%s: timeout for delay chain lock.\n", | 
|  | mmc_hostname(host->mmc)); | 
|  |  | 
|  | temp = sdhci_readl(host, ESDHC_TBCTL); | 
|  | sdhci_writel(host, temp | ESDHC_HS400_WNDW_ADJUST, ESDHC_TBCTL); | 
|  |  | 
|  | esdhc_clock_enable(host, false); | 
|  | esdhc_flush_async_fifo(host); | 
|  | } | 
|  | esdhc_clock_enable(host, true); | 
|  | } | 
|  |  | 
|  | static void esdhc_pltfm_set_bus_width(struct sdhci_host *host, int width) | 
|  | { | 
|  | u32 ctrl; | 
|  |  | 
|  | ctrl = sdhci_readl(host, ESDHC_PROCTL); | 
|  | ctrl &= (~ESDHC_CTRL_BUSWIDTH_MASK); | 
|  | switch (width) { | 
|  | case MMC_BUS_WIDTH_8: | 
|  | ctrl |= ESDHC_CTRL_8BITBUS; | 
|  | break; | 
|  |  | 
|  | case MMC_BUS_WIDTH_4: | 
|  | ctrl |= ESDHC_CTRL_4BITBUS; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | sdhci_writel(host, ctrl, ESDHC_PROCTL); | 
|  | } | 
|  |  | 
|  | static void esdhc_reset(struct sdhci_host *host, u8 mask) | 
|  | { | 
|  | struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); | 
|  | struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); | 
|  | u32 val, bus_width = 0; | 
|  |  | 
|  | /* | 
|  | * Add delay to make sure all the DMA transfers are finished | 
|  | * for quirk. | 
|  | */ | 
|  | if (esdhc->quirk_delay_before_data_reset && | 
|  | (mask & SDHCI_RESET_DATA) && | 
|  | (host->flags & SDHCI_REQ_USE_DMA)) | 
|  | mdelay(5); | 
|  |  | 
|  | /* | 
|  | * Save bus-width for eSDHC whose vendor version is 2.2 | 
|  | * or lower for data reset. | 
|  | */ | 
|  | if ((mask & SDHCI_RESET_DATA) && | 
|  | (esdhc->vendor_ver <= VENDOR_V_22)) { | 
|  | val = sdhci_readl(host, ESDHC_PROCTL); | 
|  | bus_width = val & ESDHC_CTRL_BUSWIDTH_MASK; | 
|  | } | 
|  |  | 
|  | sdhci_reset(host, mask); | 
|  |  | 
|  | /* | 
|  | * Restore bus-width setting and interrupt registers for eSDHC | 
|  | * whose vendor version is 2.2 or lower for data reset. | 
|  | */ | 
|  | if ((mask & SDHCI_RESET_DATA) && | 
|  | (esdhc->vendor_ver <= VENDOR_V_22)) { | 
|  | val = sdhci_readl(host, ESDHC_PROCTL); | 
|  | val &= ~ESDHC_CTRL_BUSWIDTH_MASK; | 
|  | val |= bus_width; | 
|  | sdhci_writel(host, val, ESDHC_PROCTL); | 
|  |  | 
|  | sdhci_writel(host, host->ier, SDHCI_INT_ENABLE); | 
|  | sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some bits have to be cleaned manually for eSDHC whose spec | 
|  | * version is higher than 3.0 for all reset. | 
|  | */ | 
|  | if ((mask & SDHCI_RESET_ALL) && | 
|  | (esdhc->spec_ver >= SDHCI_SPEC_300)) { | 
|  | val = sdhci_readl(host, ESDHC_TBCTL); | 
|  | val &= ~ESDHC_TB_EN; | 
|  | sdhci_writel(host, val, ESDHC_TBCTL); | 
|  |  | 
|  | /* | 
|  | * Initialize eSDHC_DLLCFG1[DLL_PD_PULSE_STRETCH_SEL] to | 
|  | * 0 for quirk. | 
|  | */ | 
|  | if (esdhc->quirk_unreliable_pulse_detection) { | 
|  | val = sdhci_readl(host, ESDHC_DLLCFG1); | 
|  | val &= ~ESDHC_DLL_PD_PULSE_STRETCH_SEL; | 
|  | sdhci_writel(host, val, ESDHC_DLLCFG1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The SCFG, Supplemental Configuration Unit, provides SoC specific | 
|  | * configuration and status registers for the device. There is a | 
|  | * SDHC IO VSEL control register on SCFG for some platforms. It's | 
|  | * used to support SDHC IO voltage switching. | 
|  | */ | 
|  | static const struct of_device_id scfg_device_ids[] = { | 
|  | { .compatible = "fsl,t1040-scfg", }, | 
|  | { .compatible = "fsl,ls1012a-scfg", }, | 
|  | { .compatible = "fsl,ls1046a-scfg", }, | 
|  | {} | 
|  | }; | 
|  |  | 
|  | /* SDHC IO VSEL control register definition */ | 
|  | #define SCFG_SDHCIOVSELCR	0x408 | 
|  | #define SDHCIOVSELCR_TGLEN	0x80000000 | 
|  | #define SDHCIOVSELCR_VSELVAL	0x60000000 | 
|  | #define SDHCIOVSELCR_SDHC_VS	0x00000001 | 
|  |  | 
|  | static int esdhc_signal_voltage_switch(struct mmc_host *mmc, | 
|  | struct mmc_ios *ios) | 
|  | { | 
|  | struct sdhci_host *host = mmc_priv(mmc); | 
|  | struct device_node *scfg_node; | 
|  | void __iomem *scfg_base = NULL; | 
|  | u32 sdhciovselcr; | 
|  | u32 val; | 
|  |  | 
|  | /* | 
|  | * Signal Voltage Switching is only applicable for Host Controllers | 
|  | * v3.00 and above. | 
|  | */ | 
|  | if (host->version < SDHCI_SPEC_300) | 
|  | return 0; | 
|  |  | 
|  | val = sdhci_readl(host, ESDHC_PROCTL); | 
|  |  | 
|  | switch (ios->signal_voltage) { | 
|  | case MMC_SIGNAL_VOLTAGE_330: | 
|  | val &= ~ESDHC_VOLT_SEL; | 
|  | sdhci_writel(host, val, ESDHC_PROCTL); | 
|  | return 0; | 
|  | case MMC_SIGNAL_VOLTAGE_180: | 
|  | scfg_node = of_find_matching_node(NULL, scfg_device_ids); | 
|  | if (scfg_node) | 
|  | scfg_base = of_iomap(scfg_node, 0); | 
|  | if (scfg_base) { | 
|  | sdhciovselcr = SDHCIOVSELCR_TGLEN | | 
|  | SDHCIOVSELCR_VSELVAL; | 
|  | iowrite32be(sdhciovselcr, | 
|  | scfg_base + SCFG_SDHCIOVSELCR); | 
|  |  | 
|  | val |= ESDHC_VOLT_SEL; | 
|  | sdhci_writel(host, val, ESDHC_PROCTL); | 
|  | mdelay(5); | 
|  |  | 
|  | sdhciovselcr = SDHCIOVSELCR_TGLEN | | 
|  | SDHCIOVSELCR_SDHC_VS; | 
|  | iowrite32be(sdhciovselcr, | 
|  | scfg_base + SCFG_SDHCIOVSELCR); | 
|  | iounmap(scfg_base); | 
|  | } else { | 
|  | val |= ESDHC_VOLT_SEL; | 
|  | sdhci_writel(host, val, ESDHC_PROCTL); | 
|  | } | 
|  | return 0; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct soc_device_attribute soc_tuning_erratum_type1[] = { | 
|  | { .family = "QorIQ T1023", }, | 
|  | { .family = "QorIQ T1040", }, | 
|  | { .family = "QorIQ T2080", }, | 
|  | { .family = "QorIQ LS1021A", }, | 
|  | { }, | 
|  | }; | 
|  |  | 
|  | static struct soc_device_attribute soc_tuning_erratum_type2[] = { | 
|  | { .family = "QorIQ LS1012A", }, | 
|  | { .family = "QorIQ LS1043A", }, | 
|  | { .family = "QorIQ LS1046A", }, | 
|  | { .family = "QorIQ LS1080A", }, | 
|  | { .family = "QorIQ LS2080A", }, | 
|  | { .family = "QorIQ LA1575A", }, | 
|  | { }, | 
|  | }; | 
|  |  | 
|  | static void esdhc_tuning_block_enable(struct sdhci_host *host, bool enable) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | esdhc_clock_enable(host, false); | 
|  | esdhc_flush_async_fifo(host); | 
|  |  | 
|  | val = sdhci_readl(host, ESDHC_TBCTL); | 
|  | if (enable) | 
|  | val |= ESDHC_TB_EN; | 
|  | else | 
|  | val &= ~ESDHC_TB_EN; | 
|  | sdhci_writel(host, val, ESDHC_TBCTL); | 
|  |  | 
|  | esdhc_clock_enable(host, true); | 
|  | } | 
|  |  | 
|  | static void esdhc_tuning_window_ptr(struct sdhci_host *host, u8 *window_start, | 
|  | u8 *window_end) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | /* Write TBCTL[11:8]=4'h8 */ | 
|  | val = sdhci_readl(host, ESDHC_TBCTL); | 
|  | val &= ~(0xf << 8); | 
|  | val |= 8 << 8; | 
|  | sdhci_writel(host, val, ESDHC_TBCTL); | 
|  |  | 
|  | mdelay(1); | 
|  |  | 
|  | /* Read TBCTL[31:0] register and rewrite again */ | 
|  | val = sdhci_readl(host, ESDHC_TBCTL); | 
|  | sdhci_writel(host, val, ESDHC_TBCTL); | 
|  |  | 
|  | mdelay(1); | 
|  |  | 
|  | /* Read the TBSTAT[31:0] register twice */ | 
|  | val = sdhci_readl(host, ESDHC_TBSTAT); | 
|  | val = sdhci_readl(host, ESDHC_TBSTAT); | 
|  |  | 
|  | *window_end = val & 0xff; | 
|  | *window_start = (val >> 8) & 0xff; | 
|  | } | 
|  |  | 
|  | static void esdhc_prepare_sw_tuning(struct sdhci_host *host, u8 *window_start, | 
|  | u8 *window_end) | 
|  | { | 
|  | struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); | 
|  | struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); | 
|  | u8 start_ptr, end_ptr; | 
|  |  | 
|  | if (esdhc->quirk_tuning_erratum_type1) { | 
|  | *window_start = 5 * esdhc->div_ratio; | 
|  | *window_end = 3 * esdhc->div_ratio; | 
|  | return; | 
|  | } | 
|  |  | 
|  | esdhc_tuning_window_ptr(host, &start_ptr, &end_ptr); | 
|  |  | 
|  | /* Reset data lines by setting ESDHCCTL[RSTD] */ | 
|  | sdhci_reset(host, SDHCI_RESET_DATA); | 
|  | /* Write 32'hFFFF_FFFF to IRQSTAT register */ | 
|  | sdhci_writel(host, 0xFFFFFFFF, SDHCI_INT_STATUS); | 
|  |  | 
|  | /* If TBSTAT[15:8]-TBSTAT[7:0] > (4 * div_ratio) + 2 | 
|  | * or TBSTAT[7:0]-TBSTAT[15:8] > (4 * div_ratio) + 2, | 
|  | * then program TBPTR[TB_WNDW_END_PTR] = 4 * div_ratio | 
|  | * and program TBPTR[TB_WNDW_START_PTR] = 8 * div_ratio. | 
|  | */ | 
|  |  | 
|  | if (abs(start_ptr - end_ptr) > (4 * esdhc->div_ratio + 2)) { | 
|  | *window_start = 8 * esdhc->div_ratio; | 
|  | *window_end = 4 * esdhc->div_ratio; | 
|  | } else { | 
|  | *window_start = 5 * esdhc->div_ratio; | 
|  | *window_end = 3 * esdhc->div_ratio; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int esdhc_execute_sw_tuning(struct mmc_host *mmc, u32 opcode, | 
|  | u8 window_start, u8 window_end) | 
|  | { | 
|  | struct sdhci_host *host = mmc_priv(mmc); | 
|  | struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); | 
|  | struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | /* Program TBPTR[TB_WNDW_END_PTR] and TBPTR[TB_WNDW_START_PTR] */ | 
|  | val = ((u32)window_start << ESDHC_WNDW_STRT_PTR_SHIFT) & | 
|  | ESDHC_WNDW_STRT_PTR_MASK; | 
|  | val |= window_end & ESDHC_WNDW_END_PTR_MASK; | 
|  | sdhci_writel(host, val, ESDHC_TBPTR); | 
|  |  | 
|  | /* Program the software tuning mode by setting TBCTL[TB_MODE]=2'h3 */ | 
|  | val = sdhci_readl(host, ESDHC_TBCTL); | 
|  | val &= ~ESDHC_TB_MODE_MASK; | 
|  | val |= ESDHC_TB_MODE_SW; | 
|  | sdhci_writel(host, val, ESDHC_TBCTL); | 
|  |  | 
|  | esdhc->in_sw_tuning = true; | 
|  | ret = sdhci_execute_tuning(mmc, opcode); | 
|  | esdhc->in_sw_tuning = false; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int esdhc_execute_tuning(struct mmc_host *mmc, u32 opcode) | 
|  | { | 
|  | struct sdhci_host *host = mmc_priv(mmc); | 
|  | struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); | 
|  | struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); | 
|  | u8 window_start, window_end; | 
|  | int ret, retries = 1; | 
|  | bool hs400_tuning; | 
|  | unsigned int clk; | 
|  | u32 val; | 
|  |  | 
|  | /* For tuning mode, the sd clock divisor value | 
|  | * must be larger than 3 according to reference manual. | 
|  | */ | 
|  | clk = esdhc->peripheral_clock / 3; | 
|  | if (host->clock > clk) | 
|  | esdhc_of_set_clock(host, clk); | 
|  |  | 
|  | esdhc_tuning_block_enable(host, true); | 
|  |  | 
|  | /* | 
|  | * The eSDHC controller takes the data timeout value into account | 
|  | * during tuning. If the SD card is too slow sending the response, the | 
|  | * timer will expire and a "Buffer Read Ready" interrupt without data | 
|  | * is triggered. This leads to tuning errors. | 
|  | * | 
|  | * Just set the timeout to the maximum value because the core will | 
|  | * already take care of it in sdhci_send_tuning(). | 
|  | */ | 
|  | sdhci_writeb(host, 0xe, SDHCI_TIMEOUT_CONTROL); | 
|  |  | 
|  | hs400_tuning = host->flags & SDHCI_HS400_TUNING; | 
|  |  | 
|  | do { | 
|  | if (esdhc->quirk_limited_clk_division && | 
|  | hs400_tuning) | 
|  | esdhc_of_set_clock(host, host->clock); | 
|  |  | 
|  | /* Do HW tuning */ | 
|  | val = sdhci_readl(host, ESDHC_TBCTL); | 
|  | val &= ~ESDHC_TB_MODE_MASK; | 
|  | val |= ESDHC_TB_MODE_3; | 
|  | sdhci_writel(host, val, ESDHC_TBCTL); | 
|  |  | 
|  | ret = sdhci_execute_tuning(mmc, opcode); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | /* For type2 affected platforms of the tuning erratum, | 
|  | * tuning may succeed although eSDHC might not have | 
|  | * tuned properly. Need to check tuning window. | 
|  | */ | 
|  | if (esdhc->quirk_tuning_erratum_type2 && | 
|  | !host->tuning_err) { | 
|  | esdhc_tuning_window_ptr(host, &window_start, | 
|  | &window_end); | 
|  | if (abs(window_start - window_end) > | 
|  | (4 * esdhc->div_ratio + 2)) | 
|  | host->tuning_err = -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* If HW tuning fails and triggers erratum, | 
|  | * try workaround. | 
|  | */ | 
|  | ret = host->tuning_err; | 
|  | if (ret == -EAGAIN && | 
|  | (esdhc->quirk_tuning_erratum_type1 || | 
|  | esdhc->quirk_tuning_erratum_type2)) { | 
|  | /* Recover HS400 tuning flag */ | 
|  | if (hs400_tuning) | 
|  | host->flags |= SDHCI_HS400_TUNING; | 
|  | pr_info("%s: Hold on to use fixed sampling clock. Try SW tuning!\n", | 
|  | mmc_hostname(mmc)); | 
|  | /* Do SW tuning */ | 
|  | esdhc_prepare_sw_tuning(host, &window_start, | 
|  | &window_end); | 
|  | ret = esdhc_execute_sw_tuning(mmc, opcode, | 
|  | window_start, | 
|  | window_end); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | /* Retry both HW/SW tuning with reduced clock. */ | 
|  | ret = host->tuning_err; | 
|  | if (ret == -EAGAIN && retries) { | 
|  | /* Recover HS400 tuning flag */ | 
|  | if (hs400_tuning) | 
|  | host->flags |= SDHCI_HS400_TUNING; | 
|  |  | 
|  | clk = host->max_clk / (esdhc->div_ratio + 1); | 
|  | esdhc_of_set_clock(host, clk); | 
|  | pr_info("%s: Hold on to use fixed sampling clock. Try tuning with reduced clock!\n", | 
|  | mmc_hostname(mmc)); | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } while (retries--); | 
|  |  | 
|  | if (ret) { | 
|  | esdhc_tuning_block_enable(host, false); | 
|  | } else if (hs400_tuning) { | 
|  | val = sdhci_readl(host, ESDHC_SDTIMNGCTL); | 
|  | val |= ESDHC_FLW_CTL_BG; | 
|  | sdhci_writel(host, val, ESDHC_SDTIMNGCTL); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void esdhc_set_uhs_signaling(struct sdhci_host *host, | 
|  | unsigned int timing) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | /* | 
|  | * There are specific registers setting for HS400 mode. | 
|  | * Clean all of them if controller is in HS400 mode to | 
|  | * exit HS400 mode before re-setting any speed mode. | 
|  | */ | 
|  | val = sdhci_readl(host, ESDHC_TBCTL); | 
|  | if (val & ESDHC_HS400_MODE) { | 
|  | val = sdhci_readl(host, ESDHC_SDTIMNGCTL); | 
|  | val &= ~ESDHC_FLW_CTL_BG; | 
|  | sdhci_writel(host, val, ESDHC_SDTIMNGCTL); | 
|  |  | 
|  | val = sdhci_readl(host, ESDHC_SDCLKCTL); | 
|  | val &= ~ESDHC_CMD_CLK_CTL; | 
|  | sdhci_writel(host, val, ESDHC_SDCLKCTL); | 
|  |  | 
|  | esdhc_clock_enable(host, false); | 
|  | val = sdhci_readl(host, ESDHC_TBCTL); | 
|  | val &= ~ESDHC_HS400_MODE; | 
|  | sdhci_writel(host, val, ESDHC_TBCTL); | 
|  | esdhc_clock_enable(host, true); | 
|  |  | 
|  | val = sdhci_readl(host, ESDHC_DLLCFG0); | 
|  | val &= ~(ESDHC_DLL_ENABLE | ESDHC_DLL_FREQ_SEL); | 
|  | sdhci_writel(host, val, ESDHC_DLLCFG0); | 
|  |  | 
|  | val = sdhci_readl(host, ESDHC_TBCTL); | 
|  | val &= ~ESDHC_HS400_WNDW_ADJUST; | 
|  | sdhci_writel(host, val, ESDHC_TBCTL); | 
|  |  | 
|  | esdhc_tuning_block_enable(host, false); | 
|  | } | 
|  |  | 
|  | if (timing == MMC_TIMING_MMC_HS400) | 
|  | esdhc_tuning_block_enable(host, true); | 
|  | else | 
|  | sdhci_set_uhs_signaling(host, timing); | 
|  | } | 
|  |  | 
|  | static u32 esdhc_irq(struct sdhci_host *host, u32 intmask) | 
|  | { | 
|  | struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); | 
|  | struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); | 
|  | u32 command; | 
|  |  | 
|  | if (esdhc->quirk_trans_complete_erratum) { | 
|  | command = SDHCI_GET_CMD(sdhci_readw(host, | 
|  | SDHCI_COMMAND)); | 
|  | if (command == MMC_WRITE_MULTIPLE_BLOCK && | 
|  | sdhci_readw(host, SDHCI_BLOCK_COUNT) && | 
|  | intmask & SDHCI_INT_DATA_END) { | 
|  | intmask &= ~SDHCI_INT_DATA_END; | 
|  | sdhci_writel(host, SDHCI_INT_DATA_END, | 
|  | SDHCI_INT_STATUS); | 
|  | } | 
|  | } | 
|  | return intmask; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM_SLEEP | 
|  | static u32 esdhc_proctl; | 
|  | static int esdhc_of_suspend(struct device *dev) | 
|  | { | 
|  | struct sdhci_host *host = dev_get_drvdata(dev); | 
|  |  | 
|  | esdhc_proctl = sdhci_readl(host, SDHCI_HOST_CONTROL); | 
|  |  | 
|  | if (host->tuning_mode != SDHCI_TUNING_MODE_3) | 
|  | mmc_retune_needed(host->mmc); | 
|  |  | 
|  | return sdhci_suspend_host(host); | 
|  | } | 
|  |  | 
|  | static int esdhc_of_resume(struct device *dev) | 
|  | { | 
|  | struct sdhci_host *host = dev_get_drvdata(dev); | 
|  | int ret = sdhci_resume_host(host); | 
|  |  | 
|  | if (ret == 0) { | 
|  | /* Isn't this already done by sdhci_resume_host() ? --rmk */ | 
|  | esdhc_of_enable_dma(host); | 
|  | sdhci_writel(host, esdhc_proctl, SDHCI_HOST_CONTROL); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static SIMPLE_DEV_PM_OPS(esdhc_of_dev_pm_ops, | 
|  | esdhc_of_suspend, | 
|  | esdhc_of_resume); | 
|  |  | 
|  | static const struct sdhci_ops sdhci_esdhc_be_ops = { | 
|  | .read_l = esdhc_be_readl, | 
|  | .read_w = esdhc_be_readw, | 
|  | .read_b = esdhc_be_readb, | 
|  | .write_l = esdhc_be_writel, | 
|  | .write_w = esdhc_be_writew, | 
|  | .write_b = esdhc_be_writeb, | 
|  | .set_clock = esdhc_of_set_clock, | 
|  | .enable_dma = esdhc_of_enable_dma, | 
|  | .get_max_clock = esdhc_of_get_max_clock, | 
|  | .get_min_clock = esdhc_of_get_min_clock, | 
|  | .adma_workaround = esdhc_of_adma_workaround, | 
|  | .set_bus_width = esdhc_pltfm_set_bus_width, | 
|  | .reset = esdhc_reset, | 
|  | .set_uhs_signaling = esdhc_set_uhs_signaling, | 
|  | .irq = esdhc_irq, | 
|  | }; | 
|  |  | 
|  | static const struct sdhci_ops sdhci_esdhc_le_ops = { | 
|  | .read_l = esdhc_le_readl, | 
|  | .read_w = esdhc_le_readw, | 
|  | .read_b = esdhc_le_readb, | 
|  | .write_l = esdhc_le_writel, | 
|  | .write_w = esdhc_le_writew, | 
|  | .write_b = esdhc_le_writeb, | 
|  | .set_clock = esdhc_of_set_clock, | 
|  | .enable_dma = esdhc_of_enable_dma, | 
|  | .get_max_clock = esdhc_of_get_max_clock, | 
|  | .get_min_clock = esdhc_of_get_min_clock, | 
|  | .adma_workaround = esdhc_of_adma_workaround, | 
|  | .set_bus_width = esdhc_pltfm_set_bus_width, | 
|  | .reset = esdhc_reset, | 
|  | .set_uhs_signaling = esdhc_set_uhs_signaling, | 
|  | .irq = esdhc_irq, | 
|  | }; | 
|  |  | 
|  | static const struct sdhci_pltfm_data sdhci_esdhc_be_pdata = { | 
|  | .quirks = ESDHC_DEFAULT_QUIRKS | | 
|  | #ifdef CONFIG_PPC | 
|  | SDHCI_QUIRK_BROKEN_CARD_DETECTION | | 
|  | #endif | 
|  | SDHCI_QUIRK_NO_CARD_NO_RESET | | 
|  | SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC, | 
|  | .ops = &sdhci_esdhc_be_ops, | 
|  | }; | 
|  |  | 
|  | static const struct sdhci_pltfm_data sdhci_esdhc_le_pdata = { | 
|  | .quirks = ESDHC_DEFAULT_QUIRKS | | 
|  | SDHCI_QUIRK_NO_CARD_NO_RESET | | 
|  | SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC, | 
|  | .ops = &sdhci_esdhc_le_ops, | 
|  | }; | 
|  |  | 
|  | static struct soc_device_attribute soc_incorrect_hostver[] = { | 
|  | { .family = "QorIQ T4240", .revision = "1.0", }, | 
|  | { .family = "QorIQ T4240", .revision = "2.0", }, | 
|  | { }, | 
|  | }; | 
|  |  | 
|  | static struct soc_device_attribute soc_fixup_sdhc_clkdivs[] = { | 
|  | { .family = "QorIQ LX2160A", .revision = "1.0", }, | 
|  | { .family = "QorIQ LX2160A", .revision = "2.0", }, | 
|  | { .family = "QorIQ LS1028A", .revision = "1.0", }, | 
|  | { }, | 
|  | }; | 
|  |  | 
|  | static struct soc_device_attribute soc_unreliable_pulse_detection[] = { | 
|  | { .family = "QorIQ LX2160A", .revision = "1.0", }, | 
|  | { .family = "QorIQ LX2160A", .revision = "2.0", }, | 
|  | { .family = "QorIQ LS1028A", .revision = "1.0", }, | 
|  | { }, | 
|  | }; | 
|  |  | 
|  | static void esdhc_init(struct platform_device *pdev, struct sdhci_host *host) | 
|  | { | 
|  | const struct of_device_id *match; | 
|  | struct sdhci_pltfm_host *pltfm_host; | 
|  | struct sdhci_esdhc *esdhc; | 
|  | struct device_node *np; | 
|  | struct clk *clk; | 
|  | u32 val; | 
|  | u16 host_ver; | 
|  |  | 
|  | pltfm_host = sdhci_priv(host); | 
|  | esdhc = sdhci_pltfm_priv(pltfm_host); | 
|  |  | 
|  | host_ver = sdhci_readw(host, SDHCI_HOST_VERSION); | 
|  | esdhc->vendor_ver = (host_ver & SDHCI_VENDOR_VER_MASK) >> | 
|  | SDHCI_VENDOR_VER_SHIFT; | 
|  | esdhc->spec_ver = host_ver & SDHCI_SPEC_VER_MASK; | 
|  | if (soc_device_match(soc_incorrect_hostver)) | 
|  | esdhc->quirk_incorrect_hostver = true; | 
|  | else | 
|  | esdhc->quirk_incorrect_hostver = false; | 
|  |  | 
|  | if (soc_device_match(soc_fixup_sdhc_clkdivs)) | 
|  | esdhc->quirk_limited_clk_division = true; | 
|  | else | 
|  | esdhc->quirk_limited_clk_division = false; | 
|  |  | 
|  | if (soc_device_match(soc_unreliable_pulse_detection)) | 
|  | esdhc->quirk_unreliable_pulse_detection = true; | 
|  | else | 
|  | esdhc->quirk_unreliable_pulse_detection = false; | 
|  |  | 
|  | match = of_match_node(sdhci_esdhc_of_match, pdev->dev.of_node); | 
|  | if (match) | 
|  | esdhc->clk_fixup = match->data; | 
|  | np = pdev->dev.of_node; | 
|  |  | 
|  | if (of_device_is_compatible(np, "fsl,p2020-esdhc")) { | 
|  | esdhc->quirk_delay_before_data_reset = true; | 
|  | esdhc->quirk_trans_complete_erratum = true; | 
|  | } | 
|  |  | 
|  | clk = of_clk_get(np, 0); | 
|  | if (!IS_ERR(clk)) { | 
|  | /* | 
|  | * esdhc->peripheral_clock would be assigned with a value | 
|  | * which is eSDHC base clock when use periperal clock. | 
|  | * For some platforms, the clock value got by common clk | 
|  | * API is peripheral clock while the eSDHC base clock is | 
|  | * 1/2 peripheral clock. | 
|  | */ | 
|  | if (of_device_is_compatible(np, "fsl,ls1046a-esdhc") || | 
|  | of_device_is_compatible(np, "fsl,ls1028a-esdhc") || | 
|  | of_device_is_compatible(np, "fsl,ls1088a-esdhc")) | 
|  | esdhc->peripheral_clock = clk_get_rate(clk) / 2; | 
|  | else | 
|  | esdhc->peripheral_clock = clk_get_rate(clk); | 
|  |  | 
|  | clk_put(clk); | 
|  | } | 
|  |  | 
|  | esdhc_clock_enable(host, false); | 
|  | val = sdhci_readl(host, ESDHC_DMA_SYSCTL); | 
|  | /* | 
|  | * This bit is not able to be reset by SDHCI_RESET_ALL. Need to | 
|  | * initialize it as 1 or 0 once, to override the different value | 
|  | * which may be configured in bootloader. | 
|  | */ | 
|  | if (esdhc->peripheral_clock) | 
|  | val |= ESDHC_PERIPHERAL_CLK_SEL; | 
|  | else | 
|  | val &= ~ESDHC_PERIPHERAL_CLK_SEL; | 
|  | sdhci_writel(host, val, ESDHC_DMA_SYSCTL); | 
|  | esdhc_clock_enable(host, true); | 
|  | } | 
|  |  | 
|  | static int esdhc_hs400_prepare_ddr(struct mmc_host *mmc) | 
|  | { | 
|  | esdhc_tuning_block_enable(mmc_priv(mmc), false); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sdhci_esdhc_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct sdhci_host *host; | 
|  | struct device_node *np; | 
|  | struct sdhci_pltfm_host *pltfm_host; | 
|  | struct sdhci_esdhc *esdhc; | 
|  | int ret; | 
|  |  | 
|  | np = pdev->dev.of_node; | 
|  |  | 
|  | if (of_property_read_bool(np, "little-endian")) | 
|  | host = sdhci_pltfm_init(pdev, &sdhci_esdhc_le_pdata, | 
|  | sizeof(struct sdhci_esdhc)); | 
|  | else | 
|  | host = sdhci_pltfm_init(pdev, &sdhci_esdhc_be_pdata, | 
|  | sizeof(struct sdhci_esdhc)); | 
|  |  | 
|  | if (IS_ERR(host)) | 
|  | return PTR_ERR(host); | 
|  |  | 
|  | host->mmc_host_ops.start_signal_voltage_switch = | 
|  | esdhc_signal_voltage_switch; | 
|  | host->mmc_host_ops.execute_tuning = esdhc_execute_tuning; | 
|  | host->mmc_host_ops.hs400_prepare_ddr = esdhc_hs400_prepare_ddr; | 
|  | host->tuning_delay = 1; | 
|  |  | 
|  | esdhc_init(pdev, host); | 
|  |  | 
|  | sdhci_get_of_property(pdev); | 
|  |  | 
|  | pltfm_host = sdhci_priv(host); | 
|  | esdhc = sdhci_pltfm_priv(pltfm_host); | 
|  | if (soc_device_match(soc_tuning_erratum_type1)) | 
|  | esdhc->quirk_tuning_erratum_type1 = true; | 
|  | else | 
|  | esdhc->quirk_tuning_erratum_type1 = false; | 
|  |  | 
|  | if (soc_device_match(soc_tuning_erratum_type2)) | 
|  | esdhc->quirk_tuning_erratum_type2 = true; | 
|  | else | 
|  | esdhc->quirk_tuning_erratum_type2 = false; | 
|  |  | 
|  | if (esdhc->vendor_ver == VENDOR_V_22) | 
|  | host->quirks2 |= SDHCI_QUIRK2_HOST_NO_CMD23; | 
|  |  | 
|  | if (esdhc->vendor_ver > VENDOR_V_22) | 
|  | host->quirks &= ~SDHCI_QUIRK_NO_BUSY_IRQ; | 
|  |  | 
|  | if (of_find_compatible_node(NULL, NULL, "fsl,p2020-esdhc")) { | 
|  | host->quirks |= SDHCI_QUIRK_RESET_AFTER_REQUEST; | 
|  | host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL; | 
|  | } | 
|  |  | 
|  | if (of_device_is_compatible(np, "fsl,p5040-esdhc") || | 
|  | of_device_is_compatible(np, "fsl,p5020-esdhc") || | 
|  | of_device_is_compatible(np, "fsl,p4080-esdhc") || | 
|  | of_device_is_compatible(np, "fsl,p1020-esdhc") || | 
|  | of_device_is_compatible(np, "fsl,t1040-esdhc")) | 
|  | host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION; | 
|  |  | 
|  | if (of_device_is_compatible(np, "fsl,ls1021a-esdhc")) | 
|  | host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL; | 
|  |  | 
|  | esdhc->quirk_ignore_data_inhibit = false; | 
|  | if (of_device_is_compatible(np, "fsl,p2020-esdhc")) { | 
|  | /* | 
|  | * Freescale messed up with P2020 as it has a non-standard | 
|  | * host control register | 
|  | */ | 
|  | host->quirks2 |= SDHCI_QUIRK2_BROKEN_HOST_CONTROL; | 
|  | esdhc->quirk_ignore_data_inhibit = true; | 
|  | } | 
|  |  | 
|  | /* call to generic mmc_of_parse to support additional capabilities */ | 
|  | ret = mmc_of_parse(host->mmc); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | mmc_of_parse_voltage(host->mmc, &host->ocr_mask); | 
|  |  | 
|  | ret = sdhci_add_host(host); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | return 0; | 
|  | err: | 
|  | sdhci_pltfm_free(pdev); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct platform_driver sdhci_esdhc_driver = { | 
|  | .driver = { | 
|  | .name = "sdhci-esdhc", | 
|  | .probe_type = PROBE_PREFER_ASYNCHRONOUS, | 
|  | .of_match_table = sdhci_esdhc_of_match, | 
|  | .pm = &esdhc_of_dev_pm_ops, | 
|  | }, | 
|  | .probe = sdhci_esdhc_probe, | 
|  | .remove = sdhci_pltfm_unregister, | 
|  | }; | 
|  |  | 
|  | module_platform_driver(sdhci_esdhc_driver); | 
|  |  | 
|  | MODULE_DESCRIPTION("SDHCI OF driver for Freescale MPC eSDHC"); | 
|  | MODULE_AUTHOR("Xiaobo Xie <X.Xie@freescale.com>, " | 
|  | "Anton Vorontsov <avorontsov@ru.mvista.com>"); | 
|  | MODULE_LICENSE("GPL v2"); |