| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * PCI address cache; allows the lookup of PCI devices based on I/O address |
| * |
| * Copyright IBM Corporation 2004 |
| * Copyright Linas Vepstas <linas@austin.ibm.com> 2004 |
| */ |
| |
| #include <linux/list.h> |
| #include <linux/pci.h> |
| #include <linux/rbtree.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/atomic.h> |
| #include <asm/pci-bridge.h> |
| #include <asm/debugfs.h> |
| #include <asm/ppc-pci.h> |
| |
| |
| /** |
| * DOC: Overview |
| * |
| * The pci address cache subsystem. This subsystem places |
| * PCI device address resources into a red-black tree, sorted |
| * according to the address range, so that given only an i/o |
| * address, the corresponding PCI device can be **quickly** |
| * found. It is safe to perform an address lookup in an interrupt |
| * context; this ability is an important feature. |
| * |
| * Currently, the only customer of this code is the EEH subsystem; |
| * thus, this code has been somewhat tailored to suit EEH better. |
| * In particular, the cache does *not* hold the addresses of devices |
| * for which EEH is not enabled. |
| * |
| * (Implementation Note: The RB tree seems to be better/faster |
| * than any hash algo I could think of for this problem, even |
| * with the penalty of slow pointer chases for d-cache misses). |
| */ |
| |
| struct pci_io_addr_range { |
| struct rb_node rb_node; |
| resource_size_t addr_lo; |
| resource_size_t addr_hi; |
| struct eeh_dev *edev; |
| struct pci_dev *pcidev; |
| unsigned long flags; |
| }; |
| |
| static struct pci_io_addr_cache { |
| struct rb_root rb_root; |
| spinlock_t piar_lock; |
| } pci_io_addr_cache_root; |
| |
| static inline struct eeh_dev *__eeh_addr_cache_get_device(unsigned long addr) |
| { |
| struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node; |
| |
| while (n) { |
| struct pci_io_addr_range *piar; |
| piar = rb_entry(n, struct pci_io_addr_range, rb_node); |
| |
| if (addr < piar->addr_lo) |
| n = n->rb_left; |
| else if (addr > piar->addr_hi) |
| n = n->rb_right; |
| else |
| return piar->edev; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * eeh_addr_cache_get_dev - Get device, given only address |
| * @addr: mmio (PIO) phys address or i/o port number |
| * |
| * Given an mmio phys address, or a port number, find a pci device |
| * that implements this address. I/O port numbers are assumed to be offset |
| * from zero (that is, they do *not* have pci_io_addr added in). |
| * It is safe to call this function within an interrupt. |
| */ |
| struct eeh_dev *eeh_addr_cache_get_dev(unsigned long addr) |
| { |
| struct eeh_dev *edev; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags); |
| edev = __eeh_addr_cache_get_device(addr); |
| spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags); |
| return edev; |
| } |
| |
| #ifdef DEBUG |
| /* |
| * Handy-dandy debug print routine, does nothing more |
| * than print out the contents of our addr cache. |
| */ |
| static void eeh_addr_cache_print(struct pci_io_addr_cache *cache) |
| { |
| struct rb_node *n; |
| int cnt = 0; |
| |
| n = rb_first(&cache->rb_root); |
| while (n) { |
| struct pci_io_addr_range *piar; |
| piar = rb_entry(n, struct pci_io_addr_range, rb_node); |
| pr_info("PCI: %s addr range %d [%pap-%pap]: %s\n", |
| (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt, |
| &piar->addr_lo, &piar->addr_hi, pci_name(piar->pcidev)); |
| cnt++; |
| n = rb_next(n); |
| } |
| } |
| #endif |
| |
| /* Insert address range into the rb tree. */ |
| static struct pci_io_addr_range * |
| eeh_addr_cache_insert(struct pci_dev *dev, resource_size_t alo, |
| resource_size_t ahi, unsigned long flags) |
| { |
| struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node; |
| struct rb_node *parent = NULL; |
| struct pci_io_addr_range *piar; |
| |
| /* Walk tree, find a place to insert into tree */ |
| while (*p) { |
| parent = *p; |
| piar = rb_entry(parent, struct pci_io_addr_range, rb_node); |
| if (ahi < piar->addr_lo) { |
| p = &parent->rb_left; |
| } else if (alo > piar->addr_hi) { |
| p = &parent->rb_right; |
| } else { |
| if (dev != piar->pcidev || |
| alo != piar->addr_lo || ahi != piar->addr_hi) { |
| pr_warn("PIAR: overlapping address range\n"); |
| } |
| return piar; |
| } |
| } |
| piar = kzalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC); |
| if (!piar) |
| return NULL; |
| |
| piar->addr_lo = alo; |
| piar->addr_hi = ahi; |
| piar->edev = pci_dev_to_eeh_dev(dev); |
| piar->pcidev = dev; |
| piar->flags = flags; |
| |
| eeh_edev_dbg(piar->edev, "PIAR: insert range=[%pap:%pap]\n", |
| &alo, &ahi); |
| |
| rb_link_node(&piar->rb_node, parent, p); |
| rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root); |
| |
| return piar; |
| } |
| |
| static void __eeh_addr_cache_insert_dev(struct pci_dev *dev) |
| { |
| struct eeh_dev *edev; |
| int i; |
| |
| edev = pci_dev_to_eeh_dev(dev); |
| if (!edev) { |
| pr_warn("PCI: no EEH dev found for %s\n", |
| pci_name(dev)); |
| return; |
| } |
| |
| /* Skip any devices for which EEH is not enabled. */ |
| if (!edev->pe) { |
| dev_dbg(&dev->dev, "EEH: Skip building address cache\n"); |
| return; |
| } |
| |
| /* |
| * Walk resources on this device, poke the first 7 (6 normal BAR and 1 |
| * ROM BAR) into the tree. |
| */ |
| for (i = 0; i <= PCI_ROM_RESOURCE; i++) { |
| resource_size_t start = pci_resource_start(dev,i); |
| resource_size_t end = pci_resource_end(dev,i); |
| unsigned long flags = pci_resource_flags(dev,i); |
| |
| /* We are interested only bus addresses, not dma or other stuff */ |
| if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM))) |
| continue; |
| if (start == 0 || ~start == 0 || end == 0 || ~end == 0) |
| continue; |
| eeh_addr_cache_insert(dev, start, end, flags); |
| } |
| } |
| |
| /** |
| * eeh_addr_cache_insert_dev - Add a device to the address cache |
| * @dev: PCI device whose I/O addresses we are interested in. |
| * |
| * In order to support the fast lookup of devices based on addresses, |
| * we maintain a cache of devices that can be quickly searched. |
| * This routine adds a device to that cache. |
| */ |
| void eeh_addr_cache_insert_dev(struct pci_dev *dev) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags); |
| __eeh_addr_cache_insert_dev(dev); |
| spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags); |
| } |
| |
| static inline void __eeh_addr_cache_rmv_dev(struct pci_dev *dev) |
| { |
| struct rb_node *n; |
| |
| restart: |
| n = rb_first(&pci_io_addr_cache_root.rb_root); |
| while (n) { |
| struct pci_io_addr_range *piar; |
| piar = rb_entry(n, struct pci_io_addr_range, rb_node); |
| |
| if (piar->pcidev == dev) { |
| eeh_edev_dbg(piar->edev, "PIAR: remove range=[%pap:%pap]\n", |
| &piar->addr_lo, &piar->addr_hi); |
| rb_erase(n, &pci_io_addr_cache_root.rb_root); |
| kfree(piar); |
| goto restart; |
| } |
| n = rb_next(n); |
| } |
| } |
| |
| /** |
| * eeh_addr_cache_rmv_dev - remove pci device from addr cache |
| * @dev: device to remove |
| * |
| * Remove a device from the addr-cache tree. |
| * This is potentially expensive, since it will walk |
| * the tree multiple times (once per resource). |
| * But so what; device removal doesn't need to be that fast. |
| */ |
| void eeh_addr_cache_rmv_dev(struct pci_dev *dev) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags); |
| __eeh_addr_cache_rmv_dev(dev); |
| spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags); |
| } |
| |
| /** |
| * eeh_addr_cache_init - Initialize a cache of I/O addresses |
| * |
| * Initialize a cache of pci i/o addresses. This cache will be used to |
| * find the pci device that corresponds to a given address. |
| */ |
| void eeh_addr_cache_init(void) |
| { |
| spin_lock_init(&pci_io_addr_cache_root.piar_lock); |
| } |
| |
| static int eeh_addr_cache_show(struct seq_file *s, void *v) |
| { |
| struct pci_io_addr_range *piar; |
| struct rb_node *n; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags); |
| for (n = rb_first(&pci_io_addr_cache_root.rb_root); n; n = rb_next(n)) { |
| piar = rb_entry(n, struct pci_io_addr_range, rb_node); |
| |
| seq_printf(s, "%s addr range [%pap-%pap]: %s\n", |
| (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", |
| &piar->addr_lo, &piar->addr_hi, pci_name(piar->pcidev)); |
| } |
| spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags); |
| |
| return 0; |
| } |
| DEFINE_SHOW_ATTRIBUTE(eeh_addr_cache); |
| |
| void eeh_cache_debugfs_init(void) |
| { |
| debugfs_create_file_unsafe("eeh_address_cache", 0400, |
| powerpc_debugfs_root, NULL, |
| &eeh_addr_cache_fops); |
| } |