blob: ebec4ab361b82ac58e57414a3ec323034202d4f4 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2017 Oracle. All rights reserved.
*/
#include <linux/types.h>
#include "btrfs-tests.h"
#include "../ctree.h"
#include "../btrfs_inode.h"
#include "../volumes.h"
#include "../disk-io.h"
#include "../block-group.h"
static int free_extent_map_tree(struct btrfs_inode *inode)
{
struct extent_map_tree *em_tree = &inode->extent_tree;
struct extent_map *em;
struct rb_node *node;
int ret = 0;
write_lock(&em_tree->lock);
while (!RB_EMPTY_ROOT(&em_tree->root)) {
node = rb_first(&em_tree->root);
em = rb_entry(node, struct extent_map, rb_node);
remove_extent_mapping(inode, em);
#ifdef CONFIG_BTRFS_DEBUG
if (refcount_read(&em->refs) != 1) {
ret = -EINVAL;
test_err(
"em leak: em (start %llu len %llu disk_bytenr %llu disk_num_bytes %llu offset %llu) refs %d",
em->start, em->len, em->disk_bytenr,
em->disk_num_bytes, em->offset,
refcount_read(&em->refs));
refcount_set(&em->refs, 1);
}
#endif
free_extent_map(em);
}
write_unlock(&em_tree->lock);
return ret;
}
/*
* Test scenario:
*
* Suppose that no extent map has been loaded into memory yet, there is a file
* extent [0, 16K), followed by another file extent [16K, 20K), two dio reads
* are entering btrfs_get_extent() concurrently, t1 is reading [8K, 16K), t2 is
* reading [0, 8K)
*
* t1 t2
* btrfs_get_extent() btrfs_get_extent()
* -> lookup_extent_mapping() ->lookup_extent_mapping()
* -> add_extent_mapping(0, 16K)
* -> return em
* ->add_extent_mapping(0, 16K)
* -> #handle -EEXIST
*/
static int test_case_1(struct btrfs_fs_info *fs_info, struct btrfs_inode *inode)
{
struct extent_map_tree *em_tree = &inode->extent_tree;
struct extent_map *em;
u64 start = 0;
u64 len = SZ_8K;
int ret;
int ret2;
em = alloc_extent_map();
if (!em) {
test_std_err(TEST_ALLOC_EXTENT_MAP);
return -ENOMEM;
}
/* Add [0, 16K) */
em->start = 0;
em->len = SZ_16K;
em->disk_bytenr = 0;
em->disk_num_bytes = SZ_16K;
em->ram_bytes = SZ_16K;
write_lock(&em_tree->lock);
ret = btrfs_add_extent_mapping(inode, &em, em->start, em->len);
write_unlock(&em_tree->lock);
if (ret < 0) {
test_err("cannot add extent range [0, 16K)");
goto out;
}
free_extent_map(em);
/* Add [16K, 20K) following [0, 16K) */
em = alloc_extent_map();
if (!em) {
test_std_err(TEST_ALLOC_EXTENT_MAP);
ret = -ENOMEM;
goto out;
}
em->start = SZ_16K;
em->len = SZ_4K;
em->disk_bytenr = SZ_32K; /* avoid merging */
em->disk_num_bytes = SZ_4K;
em->ram_bytes = SZ_4K;
write_lock(&em_tree->lock);
ret = btrfs_add_extent_mapping(inode, &em, em->start, em->len);
write_unlock(&em_tree->lock);
if (ret < 0) {
test_err("cannot add extent range [16K, 20K)");
goto out;
}
free_extent_map(em);
em = alloc_extent_map();
if (!em) {
test_std_err(TEST_ALLOC_EXTENT_MAP);
ret = -ENOMEM;
goto out;
}
/* Add [0, 8K), should return [0, 16K) instead. */
em->start = start;
em->len = len;
em->disk_bytenr = start;
em->disk_num_bytes = len;
em->ram_bytes = len;
write_lock(&em_tree->lock);
ret = btrfs_add_extent_mapping(inode, &em, em->start, em->len);
write_unlock(&em_tree->lock);
if (ret) {
test_err("case1 [%llu %llu]: ret %d", start, start + len, ret);
goto out;
}
if (!em) {
test_err("case1 [%llu %llu]: no extent map returned",
start, start + len);
ret = -ENOENT;
goto out;
}
if (em->start != 0 || extent_map_end(em) != SZ_16K ||
em->disk_bytenr != 0 || em->disk_num_bytes != SZ_16K) {
test_err(
"case1 [%llu %llu]: ret %d return a wrong em (start %llu len %llu disk_bytenr %llu disk_num_bytes %llu",
start, start + len, ret, em->start, em->len,
em->disk_bytenr, em->disk_num_bytes);
ret = -EINVAL;
}
free_extent_map(em);
out:
ret2 = free_extent_map_tree(inode);
if (ret == 0)
ret = ret2;
return ret;
}
/*
* Test scenario:
*
* Reading the inline ending up with EEXIST, ie. read an inline
* extent and discard page cache and read it again.
*/
static int test_case_2(struct btrfs_fs_info *fs_info, struct btrfs_inode *inode)
{
struct extent_map_tree *em_tree = &inode->extent_tree;
struct extent_map *em;
int ret;
int ret2;
em = alloc_extent_map();
if (!em) {
test_std_err(TEST_ALLOC_EXTENT_MAP);
return -ENOMEM;
}
/* Add [0, 1K) */
em->start = 0;
em->len = SZ_1K;
em->disk_bytenr = EXTENT_MAP_INLINE;
em->disk_num_bytes = 0;
em->ram_bytes = SZ_1K;
write_lock(&em_tree->lock);
ret = btrfs_add_extent_mapping(inode, &em, em->start, em->len);
write_unlock(&em_tree->lock);
if (ret < 0) {
test_err("cannot add extent range [0, 1K)");
goto out;
}
free_extent_map(em);
/* Add [4K, 8K) following [0, 1K) */
em = alloc_extent_map();
if (!em) {
test_std_err(TEST_ALLOC_EXTENT_MAP);
ret = -ENOMEM;
goto out;
}
em->start = SZ_4K;
em->len = SZ_4K;
em->disk_bytenr = SZ_4K;
em->disk_num_bytes = SZ_4K;
em->ram_bytes = SZ_4K;
write_lock(&em_tree->lock);
ret = btrfs_add_extent_mapping(inode, &em, em->start, em->len);
write_unlock(&em_tree->lock);
if (ret < 0) {
test_err("cannot add extent range [4K, 8K)");
goto out;
}
free_extent_map(em);
em = alloc_extent_map();
if (!em) {
test_std_err(TEST_ALLOC_EXTENT_MAP);
ret = -ENOMEM;
goto out;
}
/* Add [0, 1K) */
em->start = 0;
em->len = SZ_1K;
em->disk_bytenr = EXTENT_MAP_INLINE;
em->disk_num_bytes = 0;
em->ram_bytes = SZ_1K;
write_lock(&em_tree->lock);
ret = btrfs_add_extent_mapping(inode, &em, em->start, em->len);
write_unlock(&em_tree->lock);
if (ret) {
test_err("case2 [0 1K]: ret %d", ret);
goto out;
}
if (!em) {
test_err("case2 [0 1K]: no extent map returned");
ret = -ENOENT;
goto out;
}
if (em->start != 0 || extent_map_end(em) != SZ_1K ||
em->disk_bytenr != EXTENT_MAP_INLINE) {
test_err(
"case2 [0 1K]: ret %d return a wrong em (start %llu len %llu disk_bytenr %llu",
ret, em->start, em->len, em->disk_bytenr);
ret = -EINVAL;
}
free_extent_map(em);
out:
ret2 = free_extent_map_tree(inode);
if (ret == 0)
ret = ret2;
return ret;
}
static int __test_case_3(struct btrfs_fs_info *fs_info,
struct btrfs_inode *inode, u64 start)
{
struct extent_map_tree *em_tree = &inode->extent_tree;
struct extent_map *em;
u64 len = SZ_4K;
int ret;
int ret2;
em = alloc_extent_map();
if (!em) {
test_std_err(TEST_ALLOC_EXTENT_MAP);
return -ENOMEM;
}
/* Add [4K, 8K) */
em->start = SZ_4K;
em->len = SZ_4K;
em->disk_bytenr = SZ_4K;
em->disk_num_bytes = SZ_4K;
em->ram_bytes = SZ_4K;
write_lock(&em_tree->lock);
ret = btrfs_add_extent_mapping(inode, &em, em->start, em->len);
write_unlock(&em_tree->lock);
if (ret < 0) {
test_err("cannot add extent range [4K, 8K)");
goto out;
}
free_extent_map(em);
em = alloc_extent_map();
if (!em) {
test_std_err(TEST_ALLOC_EXTENT_MAP);
ret = -ENOMEM;
goto out;
}
/* Add [0, 16K) */
em->start = 0;
em->len = SZ_16K;
em->disk_bytenr = 0;
em->disk_num_bytes = SZ_16K;
em->ram_bytes = SZ_16K;
write_lock(&em_tree->lock);
ret = btrfs_add_extent_mapping(inode, &em, start, len);
write_unlock(&em_tree->lock);
if (ret) {
test_err("case3 [%llu %llu): ret %d",
start, start + len, ret);
goto out;
}
if (!em) {
test_err("case3 [%llu %llu): no extent map returned",
start, start + len);
ret = -ENOENT;
goto out;
}
/*
* Since bytes within em are contiguous, em->block_start is identical to
* em->start.
*/
if (start < em->start || start + len > extent_map_end(em) ||
em->start != extent_map_block_start(em)) {
test_err(
"case3 [%llu %llu): ret %d em (start %llu len %llu disk_bytenr %llu block_len %llu)",
start, start + len, ret, em->start, em->len,
em->disk_bytenr, em->disk_num_bytes);
ret = -EINVAL;
}
free_extent_map(em);
out:
ret2 = free_extent_map_tree(inode);
if (ret == 0)
ret = ret2;
return ret;
}
/*
* Test scenario:
*
* Suppose that no extent map has been loaded into memory yet.
* There is a file extent [0, 16K), two jobs are running concurrently
* against it, t1 is buffered writing to [4K, 8K) and t2 is doing dio
* read from [0, 4K) or [8K, 12K) or [12K, 16K).
*
* t1 goes ahead of t2 and adds em [4K, 8K) into tree.
*
* t1 t2
* cow_file_range() btrfs_get_extent()
* -> lookup_extent_mapping()
* -> add_extent_mapping()
* -> add_extent_mapping()
*/
static int test_case_3(struct btrfs_fs_info *fs_info, struct btrfs_inode *inode)
{
int ret;
ret = __test_case_3(fs_info, inode, 0);
if (ret)
return ret;
ret = __test_case_3(fs_info, inode, SZ_8K);
if (ret)
return ret;
ret = __test_case_3(fs_info, inode, (12 * SZ_1K));
return ret;
}
static int __test_case_4(struct btrfs_fs_info *fs_info,
struct btrfs_inode *inode, u64 start)
{
struct extent_map_tree *em_tree = &inode->extent_tree;
struct extent_map *em;
u64 len = SZ_4K;
int ret;
int ret2;
em = alloc_extent_map();
if (!em) {
test_std_err(TEST_ALLOC_EXTENT_MAP);
return -ENOMEM;
}
/* Add [0K, 8K) */
em->start = 0;
em->len = SZ_8K;
em->disk_bytenr = 0;
em->disk_num_bytes = SZ_8K;
em->ram_bytes = SZ_8K;
write_lock(&em_tree->lock);
ret = btrfs_add_extent_mapping(inode, &em, em->start, em->len);
write_unlock(&em_tree->lock);
if (ret < 0) {
test_err("cannot add extent range [0, 8K)");
goto out;
}
free_extent_map(em);
em = alloc_extent_map();
if (!em) {
test_std_err(TEST_ALLOC_EXTENT_MAP);
ret = -ENOMEM;
goto out;
}
/* Add [8K, 32K) */
em->start = SZ_8K;
em->len = 24 * SZ_1K;
em->disk_bytenr = SZ_16K; /* avoid merging */
em->disk_num_bytes = 24 * SZ_1K;
em->ram_bytes = 24 * SZ_1K;
write_lock(&em_tree->lock);
ret = btrfs_add_extent_mapping(inode, &em, em->start, em->len);
write_unlock(&em_tree->lock);
if (ret < 0) {
test_err("cannot add extent range [8K, 32K)");
goto out;
}
free_extent_map(em);
em = alloc_extent_map();
if (!em) {
test_std_err(TEST_ALLOC_EXTENT_MAP);
ret = -ENOMEM;
goto out;
}
/* Add [0K, 32K) */
em->start = 0;
em->len = SZ_32K;
em->disk_bytenr = 0;
em->disk_num_bytes = SZ_32K;
em->ram_bytes = SZ_32K;
write_lock(&em_tree->lock);
ret = btrfs_add_extent_mapping(inode, &em, start, len);
write_unlock(&em_tree->lock);
if (ret) {
test_err("case4 [%llu %llu): ret %d",
start, start + len, ret);
goto out;
}
if (!em) {
test_err("case4 [%llu %llu): no extent map returned",
start, start + len);
ret = -ENOENT;
goto out;
}
if (start < em->start || start + len > extent_map_end(em)) {
test_err(
"case4 [%llu %llu): ret %d, added wrong em (start %llu len %llu disk_bytenr %llu disk_num_bytes %llu)",
start, start + len, ret, em->start, em->len,
em->disk_bytenr, em->disk_num_bytes);
ret = -EINVAL;
}
free_extent_map(em);
out:
ret2 = free_extent_map_tree(inode);
if (ret == 0)
ret = ret2;
return ret;
}
/*
* Test scenario:
*
* Suppose that no extent map has been loaded into memory yet.
* There is a file extent [0, 32K), two jobs are running concurrently
* against it, t1 is doing dio write to [8K, 32K) and t2 is doing dio
* read from [0, 4K) or [4K, 8K).
*
* t1 goes ahead of t2 and splits em [0, 32K) to em [0K, 8K) and [8K 32K).
*
* t1 t2
* btrfs_get_blocks_direct() btrfs_get_blocks_direct()
* -> btrfs_get_extent() -> btrfs_get_extent()
* -> lookup_extent_mapping()
* -> add_extent_mapping() -> lookup_extent_mapping()
* # load [0, 32K)
* -> btrfs_new_extent_direct()
* -> btrfs_drop_extent_cache()
* # split [0, 32K)
* -> add_extent_mapping()
* # add [8K, 32K)
* -> add_extent_mapping()
* # handle -EEXIST when adding
* # [0, 32K)
*/
static int test_case_4(struct btrfs_fs_info *fs_info, struct btrfs_inode *inode)
{
int ret;
ret = __test_case_4(fs_info, inode, 0);
if (ret)
return ret;
ret = __test_case_4(fs_info, inode, SZ_4K);
return ret;
}
static int add_compressed_extent(struct btrfs_inode *inode,
u64 start, u64 len, u64 block_start)
{
struct extent_map_tree *em_tree = &inode->extent_tree;
struct extent_map *em;
int ret;
em = alloc_extent_map();
if (!em) {
test_std_err(TEST_ALLOC_EXTENT_MAP);
return -ENOMEM;
}
em->start = start;
em->len = len;
em->disk_bytenr = block_start;
em->disk_num_bytes = SZ_4K;
em->ram_bytes = len;
em->flags |= EXTENT_FLAG_COMPRESS_ZLIB;
write_lock(&em_tree->lock);
ret = btrfs_add_extent_mapping(inode, &em, em->start, em->len);
write_unlock(&em_tree->lock);
free_extent_map(em);
if (ret < 0) {
test_err("cannot add extent map [%llu, %llu)", start, start + len);
return ret;
}
return 0;
}
struct extent_range {
u64 start;
u64 len;
};
/* The valid states of the tree after every drop, as described below. */
struct extent_range valid_ranges[][7] = {
{
{ .start = 0, .len = SZ_8K }, /* [0, 8K) */
{ .start = SZ_4K * 3, .len = SZ_4K * 3}, /* [12k, 24k) */
{ .start = SZ_4K * 6, .len = SZ_4K * 3}, /* [24k, 36k) */
{ .start = SZ_32K + SZ_4K, .len = SZ_4K}, /* [36k, 40k) */
{ .start = SZ_4K * 10, .len = SZ_4K * 6}, /* [40k, 64k) */
},
{
{ .start = 0, .len = SZ_8K }, /* [0, 8K) */
{ .start = SZ_4K * 5, .len = SZ_4K}, /* [20k, 24k) */
{ .start = SZ_4K * 6, .len = SZ_4K * 3}, /* [24k, 36k) */
{ .start = SZ_32K + SZ_4K, .len = SZ_4K}, /* [36k, 40k) */
{ .start = SZ_4K * 10, .len = SZ_4K * 6}, /* [40k, 64k) */
},
{
{ .start = 0, .len = SZ_8K }, /* [0, 8K) */
{ .start = SZ_4K * 5, .len = SZ_4K}, /* [20k, 24k) */
{ .start = SZ_4K * 6, .len = SZ_4K}, /* [24k, 28k) */
{ .start = SZ_32K, .len = SZ_4K}, /* [32k, 36k) */
{ .start = SZ_32K + SZ_4K, .len = SZ_4K}, /* [36k, 40k) */
{ .start = SZ_4K * 10, .len = SZ_4K * 6}, /* [40k, 64k) */
},
{
{ .start = 0, .len = SZ_8K}, /* [0, 8K) */
{ .start = SZ_4K * 5, .len = SZ_4K}, /* [20k, 24k) */
{ .start = SZ_4K * 6, .len = SZ_4K}, /* [24k, 28k) */
}
};
static int validate_range(struct extent_map_tree *em_tree, int index)
{
struct rb_node *n;
int i;
for (i = 0, n = rb_first(&em_tree->root);
valid_ranges[index][i].len && n;
i++, n = rb_next(n)) {
struct extent_map *entry = rb_entry(n, struct extent_map, rb_node);
if (entry->start != valid_ranges[index][i].start) {
test_err("mapping has start %llu expected %llu",
entry->start, valid_ranges[index][i].start);
return -EINVAL;
}
if (entry->len != valid_ranges[index][i].len) {
test_err("mapping has len %llu expected %llu",
entry->len, valid_ranges[index][i].len);
return -EINVAL;
}
}
/*
* We exited because we don't have any more entries in the extent_map
* but we still expect more valid entries.
*/
if (valid_ranges[index][i].len) {
test_err("missing an entry");
return -EINVAL;
}
/* We exited the loop but still have entries in the extent map. */
if (n) {
test_err("we have a left over entry in the extent map we didn't expect");
return -EINVAL;
}
return 0;
}
/*
* Test scenario:
*
* Test the various edge cases of btrfs_drop_extent_map_range, create the
* following ranges
*
* [0, 12k)[12k, 24k)[24k, 36k)[36k, 40k)[40k,64k)
*
* And then we'll drop:
*
* [8k, 12k) - test the single front split
* [12k, 20k) - test the single back split
* [28k, 32k) - test the double split
* [32k, 64k) - test whole em dropping
*
* They'll have the EXTENT_FLAG_COMPRESSED flag set to keep the em tree from
* merging the em's.
*/
static int test_case_5(struct btrfs_fs_info *fs_info, struct btrfs_inode *inode)
{
u64 start, end;
int ret;
int ret2;
test_msg("Running btrfs_drop_extent_map_range tests");
/* [0, 12k) */
ret = add_compressed_extent(inode, 0, SZ_4K * 3, 0);
if (ret) {
test_err("cannot add extent range [0, 12K)");
goto out;
}
/* [12k, 24k) */
ret = add_compressed_extent(inode, SZ_4K * 3, SZ_4K * 3, SZ_4K);
if (ret) {
test_err("cannot add extent range [12k, 24k)");
goto out;
}
/* [24k, 36k) */
ret = add_compressed_extent(inode, SZ_4K * 6, SZ_4K * 3, SZ_8K);
if (ret) {
test_err("cannot add extent range [12k, 24k)");
goto out;
}
/* [36k, 40k) */
ret = add_compressed_extent(inode, SZ_32K + SZ_4K, SZ_4K, SZ_4K * 3);
if (ret) {
test_err("cannot add extent range [12k, 24k)");
goto out;
}
/* [40k, 64k) */
ret = add_compressed_extent(inode, SZ_4K * 10, SZ_4K * 6, SZ_16K);
if (ret) {
test_err("cannot add extent range [12k, 24k)");
goto out;
}
/* Drop [8k, 12k) */
start = SZ_8K;
end = (3 * SZ_4K) - 1;
btrfs_drop_extent_map_range(inode, start, end, false);
ret = validate_range(&inode->extent_tree, 0);
if (ret)
goto out;
/* Drop [12k, 20k) */
start = SZ_4K * 3;
end = SZ_16K + SZ_4K - 1;
btrfs_drop_extent_map_range(inode, start, end, false);
ret = validate_range(&inode->extent_tree, 1);
if (ret)
goto out;
/* Drop [28k, 32k) */
start = SZ_32K - SZ_4K;
end = SZ_32K - 1;
btrfs_drop_extent_map_range(inode, start, end, false);
ret = validate_range(&inode->extent_tree, 2);
if (ret)
goto out;
/* Drop [32k, 64k) */
start = SZ_32K;
end = SZ_64K - 1;
btrfs_drop_extent_map_range(inode, start, end, false);
ret = validate_range(&inode->extent_tree, 3);
if (ret)
goto out;
out:
ret2 = free_extent_map_tree(inode);
if (ret == 0)
ret = ret2;
return ret;
}
/*
* Test the btrfs_add_extent_mapping helper which will attempt to create an em
* for areas between two existing ems. Validate it doesn't do this when there
* are two unmerged em's side by side.
*/
static int test_case_6(struct btrfs_fs_info *fs_info, struct btrfs_inode *inode)
{
struct extent_map_tree *em_tree = &inode->extent_tree;
struct extent_map *em = NULL;
int ret;
int ret2;
ret = add_compressed_extent(inode, 0, SZ_4K, 0);
if (ret)
goto out;
ret = add_compressed_extent(inode, SZ_4K, SZ_4K, 0);
if (ret)
goto out;
em = alloc_extent_map();
if (!em) {
test_std_err(TEST_ALLOC_EXTENT_MAP);
ret = -ENOMEM;
goto out;
}
em->start = SZ_4K;
em->len = SZ_4K;
em->disk_bytenr = SZ_16K;
em->disk_num_bytes = SZ_16K;
em->ram_bytes = SZ_16K;
write_lock(&em_tree->lock);
ret = btrfs_add_extent_mapping(inode, &em, 0, SZ_8K);
write_unlock(&em_tree->lock);
if (ret != 0) {
test_err("got an error when adding our em: %d", ret);
goto out;
}
ret = -EINVAL;
if (em->start != 0) {
test_err("unexpected em->start at %llu, wanted 0", em->start);
goto out;
}
if (em->len != SZ_4K) {
test_err("unexpected em->len %llu, expected 4K", em->len);
goto out;
}
ret = 0;
out:
free_extent_map(em);
ret2 = free_extent_map_tree(inode);
if (ret == 0)
ret = ret2;
return ret;
}
/*
* Regression test for btrfs_drop_extent_map_range. Calling with skip_pinned ==
* true would mess up the start/end calculations and subsequent splits would be
* incorrect.
*/
static int test_case_7(struct btrfs_fs_info *fs_info, struct btrfs_inode *inode)
{
struct extent_map_tree *em_tree = &inode->extent_tree;
struct extent_map *em;
int ret;
int ret2;
test_msg("Running btrfs_drop_extent_cache with pinned");
em = alloc_extent_map();
if (!em) {
test_std_err(TEST_ALLOC_EXTENT_MAP);
return -ENOMEM;
}
/* [0, 16K), pinned */
em->start = 0;
em->len = SZ_16K;
em->disk_bytenr = 0;
em->disk_num_bytes = SZ_4K;
em->ram_bytes = SZ_16K;
em->flags |= (EXTENT_FLAG_PINNED | EXTENT_FLAG_COMPRESS_ZLIB);
write_lock(&em_tree->lock);
ret = btrfs_add_extent_mapping(inode, &em, em->start, em->len);
write_unlock(&em_tree->lock);
if (ret < 0) {
test_err("couldn't add extent map");
goto out;
}
free_extent_map(em);
em = alloc_extent_map();
if (!em) {
test_std_err(TEST_ALLOC_EXTENT_MAP);
ret = -ENOMEM;
goto out;
}
/* [32K, 48K), not pinned */
em->start = SZ_32K;
em->len = SZ_16K;
em->disk_bytenr = SZ_32K;
em->disk_num_bytes = SZ_16K;
em->ram_bytes = SZ_16K;
write_lock(&em_tree->lock);
ret = btrfs_add_extent_mapping(inode, &em, em->start, em->len);
write_unlock(&em_tree->lock);
if (ret < 0) {
test_err("couldn't add extent map");
goto out;
}
free_extent_map(em);
/*
* Drop [0, 36K) This should skip the [0, 4K) extent and then split the
* [32K, 48K) extent.
*/
btrfs_drop_extent_map_range(inode, 0, (36 * SZ_1K) - 1, true);
/* Make sure our extent maps look sane. */
ret = -EINVAL;
em = lookup_extent_mapping(em_tree, 0, SZ_16K);
if (!em) {
test_err("didn't find an em at 0 as expected");
goto out;
}
if (em->start != 0) {
test_err("em->start is %llu, expected 0", em->start);
goto out;
}
if (em->len != SZ_16K) {
test_err("em->len is %llu, expected 16K", em->len);
goto out;
}
free_extent_map(em);
read_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, SZ_16K, SZ_16K);
read_unlock(&em_tree->lock);
if (em) {
test_err("found an em when we weren't expecting one");
goto out;
}
read_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, SZ_32K, SZ_16K);
read_unlock(&em_tree->lock);
if (!em) {
test_err("didn't find an em at 32K as expected");
goto out;
}
if (em->start != (36 * SZ_1K)) {
test_err("em->start is %llu, expected 36K", em->start);
goto out;
}
if (em->len != (12 * SZ_1K)) {
test_err("em->len is %llu, expected 12K", em->len);
goto out;
}
if (extent_map_block_start(em) != SZ_32K + SZ_4K) {
test_err("em->block_start is %llu, expected 36K",
extent_map_block_start(em));
goto out;
}
free_extent_map(em);
read_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, 48 * SZ_1K, (u64)-1);
read_unlock(&em_tree->lock);
if (em) {
test_err("found an unexpected em above 48K");
goto out;
}
ret = 0;
out:
free_extent_map(em);
/* Unpin our extent to prevent warning when removing it below. */
ret2 = unpin_extent_cache(inode, 0, SZ_16K, 0);
if (ret == 0)
ret = ret2;
ret2 = free_extent_map_tree(inode);
if (ret == 0)
ret = ret2;
return ret;
}
struct rmap_test_vector {
u64 raid_type;
u64 physical_start;
u64 data_stripe_size;
u64 num_data_stripes;
u64 num_stripes;
/* Assume we won't have more than 5 physical stripes */
u64 data_stripe_phys_start[5];
bool expected_mapped_addr;
/* Physical to logical addresses */
u64 mapped_logical[5];
};
static int test_rmap_block(struct btrfs_fs_info *fs_info,
struct rmap_test_vector *test)
{
struct btrfs_chunk_map *map;
u64 *logical = NULL;
int i, out_ndaddrs, out_stripe_len;
int ret;
map = btrfs_alloc_chunk_map(test->num_stripes, GFP_KERNEL);
if (!map) {
test_std_err(TEST_ALLOC_CHUNK_MAP);
return -ENOMEM;
}
/* Start at 4GiB logical address */
map->start = SZ_4G;
map->chunk_len = test->data_stripe_size * test->num_data_stripes;
map->stripe_size = test->data_stripe_size;
map->num_stripes = test->num_stripes;
map->type = test->raid_type;
for (i = 0; i < map->num_stripes; i++) {
struct btrfs_device *dev = btrfs_alloc_dummy_device(fs_info);
if (IS_ERR(dev)) {
test_err("cannot allocate device");
ret = PTR_ERR(dev);
goto out;
}
map->stripes[i].dev = dev;
map->stripes[i].physical = test->data_stripe_phys_start[i];
}
ret = btrfs_add_chunk_map(fs_info, map);
if (ret) {
test_err("error adding chunk map to mapping tree");
goto out_free;
}
ret = btrfs_rmap_block(fs_info, map->start, btrfs_sb_offset(1),
&logical, &out_ndaddrs, &out_stripe_len);
if (ret || (out_ndaddrs == 0 && test->expected_mapped_addr)) {
test_err("didn't rmap anything but expected %d",
test->expected_mapped_addr);
goto out;
}
if (out_stripe_len != BTRFS_STRIPE_LEN) {
test_err("calculated stripe length doesn't match");
goto out;
}
if (out_ndaddrs != test->expected_mapped_addr) {
for (i = 0; i < out_ndaddrs; i++)
test_msg("mapped %llu", logical[i]);
test_err("unexpected number of mapped addresses: %d", out_ndaddrs);
goto out;
}
for (i = 0; i < out_ndaddrs; i++) {
if (logical[i] != test->mapped_logical[i]) {
test_err("unexpected logical address mapped");
goto out;
}
}
ret = 0;
out:
btrfs_remove_chunk_map(fs_info, map);
out_free:
kfree(logical);
return ret;
}
int btrfs_test_extent_map(void)
{
struct btrfs_fs_info *fs_info = NULL;
struct inode *inode;
struct btrfs_root *root = NULL;
int ret = 0, i;
struct rmap_test_vector rmap_tests[] = {
{
/*
* Test a chunk with 2 data stripes one of which
* intersects the physical address of the super block
* is correctly recognised.
*/
.raid_type = BTRFS_BLOCK_GROUP_RAID1,
.physical_start = SZ_64M - SZ_4M,
.data_stripe_size = SZ_256M,
.num_data_stripes = 2,
.num_stripes = 2,
.data_stripe_phys_start =
{SZ_64M - SZ_4M, SZ_64M - SZ_4M + SZ_256M},
.expected_mapped_addr = true,
.mapped_logical= {SZ_4G + SZ_4M}
},
{
/*
* Test that out-of-range physical addresses are
* ignored
*/
/* SINGLE chunk type */
.raid_type = 0,
.physical_start = SZ_4G,
.data_stripe_size = SZ_256M,
.num_data_stripes = 1,
.num_stripes = 1,
.data_stripe_phys_start = {SZ_256M},
.expected_mapped_addr = false,
.mapped_logical = {0}
}
};
test_msg("running extent_map tests");
/*
* Note: the fs_info is not set up completely, we only need
* fs_info::fsid for the tracepoint.
*/
fs_info = btrfs_alloc_dummy_fs_info(PAGE_SIZE, PAGE_SIZE);
if (!fs_info) {
test_std_err(TEST_ALLOC_FS_INFO);
return -ENOMEM;
}
inode = btrfs_new_test_inode();
if (!inode) {
test_std_err(TEST_ALLOC_INODE);
ret = -ENOMEM;
goto out;
}
root = btrfs_alloc_dummy_root(fs_info);
if (IS_ERR(root)) {
test_std_err(TEST_ALLOC_ROOT);
ret = PTR_ERR(root);
root = NULL;
goto out;
}
BTRFS_I(inode)->root = root;
ret = test_case_1(fs_info, BTRFS_I(inode));
if (ret)
goto out;
ret = test_case_2(fs_info, BTRFS_I(inode));
if (ret)
goto out;
ret = test_case_3(fs_info, BTRFS_I(inode));
if (ret)
goto out;
ret = test_case_4(fs_info, BTRFS_I(inode));
if (ret)
goto out;
ret = test_case_5(fs_info, BTRFS_I(inode));
if (ret)
goto out;
ret = test_case_6(fs_info, BTRFS_I(inode));
if (ret)
goto out;
ret = test_case_7(fs_info, BTRFS_I(inode));
if (ret)
goto out;
test_msg("running rmap tests");
for (i = 0; i < ARRAY_SIZE(rmap_tests); i++) {
ret = test_rmap_block(fs_info, &rmap_tests[i]);
if (ret)
goto out;
}
out:
iput(inode);
btrfs_free_dummy_root(root);
btrfs_free_dummy_fs_info(fs_info);
return ret;
}