blob: 5b6b375a257ecbe974361486e177102ebc22d1ea [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for the TXx9 SoC DMA Controller
*
* Copyright (C) 2009 Atsushi Nemoto
*/
#include <linux/dma-mapping.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/scatterlist.h>
#include "dmaengine.h"
#include "txx9dmac.h"
static struct txx9dmac_chan *to_txx9dmac_chan(struct dma_chan *chan)
{
return container_of(chan, struct txx9dmac_chan, chan);
}
static struct txx9dmac_cregs __iomem *__dma_regs(const struct txx9dmac_chan *dc)
{
return dc->ch_regs;
}
static struct txx9dmac_cregs32 __iomem *__dma_regs32(
const struct txx9dmac_chan *dc)
{
return dc->ch_regs;
}
#define channel64_readq(dc, name) \
__raw_readq(&(__dma_regs(dc)->name))
#define channel64_writeq(dc, name, val) \
__raw_writeq((val), &(__dma_regs(dc)->name))
#define channel64_readl(dc, name) \
__raw_readl(&(__dma_regs(dc)->name))
#define channel64_writel(dc, name, val) \
__raw_writel((val), &(__dma_regs(dc)->name))
#define channel32_readl(dc, name) \
__raw_readl(&(__dma_regs32(dc)->name))
#define channel32_writel(dc, name, val) \
__raw_writel((val), &(__dma_regs32(dc)->name))
#define channel_readq(dc, name) channel64_readq(dc, name)
#define channel_writeq(dc, name, val) channel64_writeq(dc, name, val)
#define channel_readl(dc, name) \
(is_dmac64(dc) ? \
channel64_readl(dc, name) : channel32_readl(dc, name))
#define channel_writel(dc, name, val) \
(is_dmac64(dc) ? \
channel64_writel(dc, name, val) : channel32_writel(dc, name, val))
static dma_addr_t channel64_read_CHAR(const struct txx9dmac_chan *dc)
{
if (sizeof(__dma_regs(dc)->CHAR) == sizeof(u64))
return channel64_readq(dc, CHAR);
else
return channel64_readl(dc, CHAR);
}
static void channel64_write_CHAR(const struct txx9dmac_chan *dc, dma_addr_t val)
{
if (sizeof(__dma_regs(dc)->CHAR) == sizeof(u64))
channel64_writeq(dc, CHAR, val);
else
channel64_writel(dc, CHAR, val);
}
static void channel64_clear_CHAR(const struct txx9dmac_chan *dc)
{
#if defined(CONFIG_32BIT) && !defined(CONFIG_PHYS_ADDR_T_64BIT)
channel64_writel(dc, CHAR, 0);
channel64_writel(dc, __pad_CHAR, 0);
#else
channel64_writeq(dc, CHAR, 0);
#endif
}
static dma_addr_t channel_read_CHAR(const struct txx9dmac_chan *dc)
{
if (is_dmac64(dc))
return channel64_read_CHAR(dc);
else
return channel32_readl(dc, CHAR);
}
static void channel_write_CHAR(const struct txx9dmac_chan *dc, dma_addr_t val)
{
if (is_dmac64(dc))
channel64_write_CHAR(dc, val);
else
channel32_writel(dc, CHAR, val);
}
static struct txx9dmac_regs __iomem *__txx9dmac_regs(
const struct txx9dmac_dev *ddev)
{
return ddev->regs;
}
static struct txx9dmac_regs32 __iomem *__txx9dmac_regs32(
const struct txx9dmac_dev *ddev)
{
return ddev->regs;
}
#define dma64_readl(ddev, name) \
__raw_readl(&(__txx9dmac_regs(ddev)->name))
#define dma64_writel(ddev, name, val) \
__raw_writel((val), &(__txx9dmac_regs(ddev)->name))
#define dma32_readl(ddev, name) \
__raw_readl(&(__txx9dmac_regs32(ddev)->name))
#define dma32_writel(ddev, name, val) \
__raw_writel((val), &(__txx9dmac_regs32(ddev)->name))
#define dma_readl(ddev, name) \
(__is_dmac64(ddev) ? \
dma64_readl(ddev, name) : dma32_readl(ddev, name))
#define dma_writel(ddev, name, val) \
(__is_dmac64(ddev) ? \
dma64_writel(ddev, name, val) : dma32_writel(ddev, name, val))
static struct device *chan2dev(struct dma_chan *chan)
{
return &chan->dev->device;
}
static struct device *chan2parent(struct dma_chan *chan)
{
return chan->dev->device.parent;
}
static struct txx9dmac_desc *
txd_to_txx9dmac_desc(struct dma_async_tx_descriptor *txd)
{
return container_of(txd, struct txx9dmac_desc, txd);
}
static dma_addr_t desc_read_CHAR(const struct txx9dmac_chan *dc,
const struct txx9dmac_desc *desc)
{
return is_dmac64(dc) ? desc->hwdesc.CHAR : desc->hwdesc32.CHAR;
}
static void desc_write_CHAR(const struct txx9dmac_chan *dc,
struct txx9dmac_desc *desc, dma_addr_t val)
{
if (is_dmac64(dc))
desc->hwdesc.CHAR = val;
else
desc->hwdesc32.CHAR = val;
}
#define TXX9_DMA_MAX_COUNT 0x04000000
#define TXX9_DMA_INITIAL_DESC_COUNT 64
static struct txx9dmac_desc *txx9dmac_first_active(struct txx9dmac_chan *dc)
{
return list_entry(dc->active_list.next,
struct txx9dmac_desc, desc_node);
}
static struct txx9dmac_desc *txx9dmac_last_active(struct txx9dmac_chan *dc)
{
return list_entry(dc->active_list.prev,
struct txx9dmac_desc, desc_node);
}
static struct txx9dmac_desc *txx9dmac_first_queued(struct txx9dmac_chan *dc)
{
return list_entry(dc->queue.next, struct txx9dmac_desc, desc_node);
}
static struct txx9dmac_desc *txx9dmac_last_child(struct txx9dmac_desc *desc)
{
if (!list_empty(&desc->tx_list))
desc = list_entry(desc->tx_list.prev, typeof(*desc), desc_node);
return desc;
}
static dma_cookie_t txx9dmac_tx_submit(struct dma_async_tx_descriptor *tx);
static struct txx9dmac_desc *txx9dmac_desc_alloc(struct txx9dmac_chan *dc,
gfp_t flags)
{
struct txx9dmac_dev *ddev = dc->ddev;
struct txx9dmac_desc *desc;
desc = kzalloc(sizeof(*desc), flags);
if (!desc)
return NULL;
INIT_LIST_HEAD(&desc->tx_list);
dma_async_tx_descriptor_init(&desc->txd, &dc->chan);
desc->txd.tx_submit = txx9dmac_tx_submit;
/* txd.flags will be overwritten in prep funcs */
desc->txd.flags = DMA_CTRL_ACK;
desc->txd.phys = dma_map_single(chan2parent(&dc->chan), &desc->hwdesc,
ddev->descsize, DMA_TO_DEVICE);
return desc;
}
static struct txx9dmac_desc *txx9dmac_desc_get(struct txx9dmac_chan *dc)
{
struct txx9dmac_desc *desc, *_desc;
struct txx9dmac_desc *ret = NULL;
unsigned int i = 0;
spin_lock_bh(&dc->lock);
list_for_each_entry_safe(desc, _desc, &dc->free_list, desc_node) {
if (async_tx_test_ack(&desc->txd)) {
list_del(&desc->desc_node);
ret = desc;
break;
}
dev_dbg(chan2dev(&dc->chan), "desc %p not ACKed\n", desc);
i++;
}
spin_unlock_bh(&dc->lock);
dev_vdbg(chan2dev(&dc->chan), "scanned %u descriptors on freelist\n",
i);
if (!ret) {
ret = txx9dmac_desc_alloc(dc, GFP_ATOMIC);
if (ret) {
spin_lock_bh(&dc->lock);
dc->descs_allocated++;
spin_unlock_bh(&dc->lock);
} else
dev_err(chan2dev(&dc->chan),
"not enough descriptors available\n");
}
return ret;
}
static void txx9dmac_sync_desc_for_cpu(struct txx9dmac_chan *dc,
struct txx9dmac_desc *desc)
{
struct txx9dmac_dev *ddev = dc->ddev;
struct txx9dmac_desc *child;
list_for_each_entry(child, &desc->tx_list, desc_node)
dma_sync_single_for_cpu(chan2parent(&dc->chan),
child->txd.phys, ddev->descsize,
DMA_TO_DEVICE);
dma_sync_single_for_cpu(chan2parent(&dc->chan),
desc->txd.phys, ddev->descsize,
DMA_TO_DEVICE);
}
/*
* Move a descriptor, including any children, to the free list.
* `desc' must not be on any lists.
*/
static void txx9dmac_desc_put(struct txx9dmac_chan *dc,
struct txx9dmac_desc *desc)
{
if (desc) {
struct txx9dmac_desc *child;
txx9dmac_sync_desc_for_cpu(dc, desc);
spin_lock_bh(&dc->lock);
list_for_each_entry(child, &desc->tx_list, desc_node)
dev_vdbg(chan2dev(&dc->chan),
"moving child desc %p to freelist\n",
child);
list_splice_init(&desc->tx_list, &dc->free_list);
dev_vdbg(chan2dev(&dc->chan), "moving desc %p to freelist\n",
desc);
list_add(&desc->desc_node, &dc->free_list);
spin_unlock_bh(&dc->lock);
}
}
/*----------------------------------------------------------------------*/
static void txx9dmac_dump_regs(struct txx9dmac_chan *dc)
{
if (is_dmac64(dc))
dev_err(chan2dev(&dc->chan),
" CHAR: %#llx SAR: %#llx DAR: %#llx CNTR: %#x"
" SAIR: %#x DAIR: %#x CCR: %#x CSR: %#x\n",
(u64)channel64_read_CHAR(dc),
channel64_readq(dc, SAR),
channel64_readq(dc, DAR),
channel64_readl(dc, CNTR),
channel64_readl(dc, SAIR),
channel64_readl(dc, DAIR),
channel64_readl(dc, CCR),
channel64_readl(dc, CSR));
else
dev_err(chan2dev(&dc->chan),
" CHAR: %#x SAR: %#x DAR: %#x CNTR: %#x"
" SAIR: %#x DAIR: %#x CCR: %#x CSR: %#x\n",
channel32_readl(dc, CHAR),
channel32_readl(dc, SAR),
channel32_readl(dc, DAR),
channel32_readl(dc, CNTR),
channel32_readl(dc, SAIR),
channel32_readl(dc, DAIR),
channel32_readl(dc, CCR),
channel32_readl(dc, CSR));
}
static void txx9dmac_reset_chan(struct txx9dmac_chan *dc)
{
channel_writel(dc, CCR, TXX9_DMA_CCR_CHRST);
if (is_dmac64(dc)) {
channel64_clear_CHAR(dc);
channel_writeq(dc, SAR, 0);
channel_writeq(dc, DAR, 0);
} else {
channel_writel(dc, CHAR, 0);
channel_writel(dc, SAR, 0);
channel_writel(dc, DAR, 0);
}
channel_writel(dc, CNTR, 0);
channel_writel(dc, SAIR, 0);
channel_writel(dc, DAIR, 0);
channel_writel(dc, CCR, 0);
}
/* Called with dc->lock held and bh disabled */
static void txx9dmac_dostart(struct txx9dmac_chan *dc,
struct txx9dmac_desc *first)
{
struct txx9dmac_slave *ds = dc->chan.private;
u32 sai, dai;
dev_vdbg(chan2dev(&dc->chan), "dostart %u %p\n",
first->txd.cookie, first);
/* ASSERT: channel is idle */
if (channel_readl(dc, CSR) & TXX9_DMA_CSR_XFACT) {
dev_err(chan2dev(&dc->chan),
"BUG: Attempted to start non-idle channel\n");
txx9dmac_dump_regs(dc);
/* The tasklet will hopefully advance the queue... */
return;
}
if (is_dmac64(dc)) {
channel64_writel(dc, CNTR, 0);
channel64_writel(dc, CSR, 0xffffffff);
if (ds) {
if (ds->tx_reg) {
sai = ds->reg_width;
dai = 0;
} else {
sai = 0;
dai = ds->reg_width;
}
} else {
sai = 8;
dai = 8;
}
channel64_writel(dc, SAIR, sai);
channel64_writel(dc, DAIR, dai);
/* All 64-bit DMAC supports SMPCHN */
channel64_writel(dc, CCR, dc->ccr);
/* Writing a non zero value to CHAR will assert XFACT */
channel64_write_CHAR(dc, first->txd.phys);
} else {
channel32_writel(dc, CNTR, 0);
channel32_writel(dc, CSR, 0xffffffff);
if (ds) {
if (ds->tx_reg) {
sai = ds->reg_width;
dai = 0;
} else {
sai = 0;
dai = ds->reg_width;
}
} else {
sai = 4;
dai = 4;
}
channel32_writel(dc, SAIR, sai);
channel32_writel(dc, DAIR, dai);
if (txx9_dma_have_SMPCHN()) {
channel32_writel(dc, CCR, dc->ccr);
/* Writing a non zero value to CHAR will assert XFACT */
channel32_writel(dc, CHAR, first->txd.phys);
} else {
channel32_writel(dc, CHAR, first->txd.phys);
channel32_writel(dc, CCR, dc->ccr);
}
}
}
/*----------------------------------------------------------------------*/
static void
txx9dmac_descriptor_complete(struct txx9dmac_chan *dc,
struct txx9dmac_desc *desc)
{
struct dmaengine_desc_callback cb;
struct dma_async_tx_descriptor *txd = &desc->txd;
dev_vdbg(chan2dev(&dc->chan), "descriptor %u %p complete\n",
txd->cookie, desc);
dma_cookie_complete(txd);
dmaengine_desc_get_callback(txd, &cb);
txx9dmac_sync_desc_for_cpu(dc, desc);
list_splice_init(&desc->tx_list, &dc->free_list);
list_move(&desc->desc_node, &dc->free_list);
dma_descriptor_unmap(txd);
/*
* The API requires that no submissions are done from a
* callback, so we don't need to drop the lock here
*/
dmaengine_desc_callback_invoke(&cb, NULL);
dma_run_dependencies(txd);
}
static void txx9dmac_dequeue(struct txx9dmac_chan *dc, struct list_head *list)
{
struct txx9dmac_dev *ddev = dc->ddev;
struct txx9dmac_desc *desc;
struct txx9dmac_desc *prev = NULL;
BUG_ON(!list_empty(list));
do {
desc = txx9dmac_first_queued(dc);
if (prev) {
desc_write_CHAR(dc, prev, desc->txd.phys);
dma_sync_single_for_device(chan2parent(&dc->chan),
prev->txd.phys, ddev->descsize,
DMA_TO_DEVICE);
}
prev = txx9dmac_last_child(desc);
list_move_tail(&desc->desc_node, list);
/* Make chain-completion interrupt happen */
if ((desc->txd.flags & DMA_PREP_INTERRUPT) &&
!txx9dmac_chan_INTENT(dc))
break;
} while (!list_empty(&dc->queue));
}
static void txx9dmac_complete_all(struct txx9dmac_chan *dc)
{
struct txx9dmac_desc *desc, *_desc;
LIST_HEAD(list);
/*
* Submit queued descriptors ASAP, i.e. before we go through
* the completed ones.
*/
list_splice_init(&dc->active_list, &list);
if (!list_empty(&dc->queue)) {
txx9dmac_dequeue(dc, &dc->active_list);
txx9dmac_dostart(dc, txx9dmac_first_active(dc));
}
list_for_each_entry_safe(desc, _desc, &list, desc_node)
txx9dmac_descriptor_complete(dc, desc);
}
static void txx9dmac_dump_desc(struct txx9dmac_chan *dc,
struct txx9dmac_hwdesc *desc)
{
if (is_dmac64(dc)) {
#ifdef TXX9_DMA_USE_SIMPLE_CHAIN
dev_crit(chan2dev(&dc->chan),
" desc: ch%#llx s%#llx d%#llx c%#x\n",
(u64)desc->CHAR, desc->SAR, desc->DAR, desc->CNTR);
#else
dev_crit(chan2dev(&dc->chan),
" desc: ch%#llx s%#llx d%#llx c%#x"
" si%#x di%#x cc%#x cs%#x\n",
(u64)desc->CHAR, desc->SAR, desc->DAR, desc->CNTR,
desc->SAIR, desc->DAIR, desc->CCR, desc->CSR);
#endif
} else {
struct txx9dmac_hwdesc32 *d = (struct txx9dmac_hwdesc32 *)desc;
#ifdef TXX9_DMA_USE_SIMPLE_CHAIN
dev_crit(chan2dev(&dc->chan),
" desc: ch%#x s%#x d%#x c%#x\n",
d->CHAR, d->SAR, d->DAR, d->CNTR);
#else
dev_crit(chan2dev(&dc->chan),
" desc: ch%#x s%#x d%#x c%#x"
" si%#x di%#x cc%#x cs%#x\n",
d->CHAR, d->SAR, d->DAR, d->CNTR,
d->SAIR, d->DAIR, d->CCR, d->CSR);
#endif
}
}
static void txx9dmac_handle_error(struct txx9dmac_chan *dc, u32 csr)
{
struct txx9dmac_desc *bad_desc;
struct txx9dmac_desc *child;
u32 errors;
/*
* The descriptor currently at the head of the active list is
* borked. Since we don't have any way to report errors, we'll
* just have to scream loudly and try to carry on.
*/
dev_crit(chan2dev(&dc->chan), "Abnormal Chain Completion\n");
txx9dmac_dump_regs(dc);
bad_desc = txx9dmac_first_active(dc);
list_del_init(&bad_desc->desc_node);
/* Clear all error flags and try to restart the controller */
errors = csr & (TXX9_DMA_CSR_ABCHC |
TXX9_DMA_CSR_CFERR | TXX9_DMA_CSR_CHERR |
TXX9_DMA_CSR_DESERR | TXX9_DMA_CSR_SORERR);
channel_writel(dc, CSR, errors);
if (list_empty(&dc->active_list) && !list_empty(&dc->queue))
txx9dmac_dequeue(dc, &dc->active_list);
if (!list_empty(&dc->active_list))
txx9dmac_dostart(dc, txx9dmac_first_active(dc));
dev_crit(chan2dev(&dc->chan),
"Bad descriptor submitted for DMA! (cookie: %d)\n",
bad_desc->txd.cookie);
txx9dmac_dump_desc(dc, &bad_desc->hwdesc);
list_for_each_entry(child, &bad_desc->tx_list, desc_node)
txx9dmac_dump_desc(dc, &child->hwdesc);
/* Pretend the descriptor completed successfully */
txx9dmac_descriptor_complete(dc, bad_desc);
}
static void txx9dmac_scan_descriptors(struct txx9dmac_chan *dc)
{
dma_addr_t chain;
struct txx9dmac_desc *desc, *_desc;
struct txx9dmac_desc *child;
u32 csr;
if (is_dmac64(dc)) {
chain = channel64_read_CHAR(dc);
csr = channel64_readl(dc, CSR);
channel64_writel(dc, CSR, csr);
} else {
chain = channel32_readl(dc, CHAR);
csr = channel32_readl(dc, CSR);
channel32_writel(dc, CSR, csr);
}
/* For dynamic chain, we should look at XFACT instead of NCHNC */
if (!(csr & (TXX9_DMA_CSR_XFACT | TXX9_DMA_CSR_ABCHC))) {
/* Everything we've submitted is done */
txx9dmac_complete_all(dc);
return;
}
if (!(csr & TXX9_DMA_CSR_CHNEN))
chain = 0; /* last descriptor of this chain */
dev_vdbg(chan2dev(&dc->chan), "scan_descriptors: char=%#llx\n",
(u64)chain);
list_for_each_entry_safe(desc, _desc, &dc->active_list, desc_node) {
if (desc_read_CHAR(dc, desc) == chain) {
/* This one is currently in progress */
if (csr & TXX9_DMA_CSR_ABCHC)
goto scan_done;
return;
}
list_for_each_entry(child, &desc->tx_list, desc_node)
if (desc_read_CHAR(dc, child) == chain) {
/* Currently in progress */
if (csr & TXX9_DMA_CSR_ABCHC)
goto scan_done;
return;
}
/*
* No descriptors so far seem to be in progress, i.e.
* this one must be done.
*/
txx9dmac_descriptor_complete(dc, desc);
}
scan_done:
if (csr & TXX9_DMA_CSR_ABCHC) {
txx9dmac_handle_error(dc, csr);
return;
}
dev_err(chan2dev(&dc->chan),
"BUG: All descriptors done, but channel not idle!\n");
/* Try to continue after resetting the channel... */
txx9dmac_reset_chan(dc);
if (!list_empty(&dc->queue)) {
txx9dmac_dequeue(dc, &dc->active_list);
txx9dmac_dostart(dc, txx9dmac_first_active(dc));
}
}
static void txx9dmac_chan_tasklet(struct tasklet_struct *t)
{
int irq;
u32 csr;
struct txx9dmac_chan *dc;
dc = from_tasklet(dc, t, tasklet);
csr = channel_readl(dc, CSR);
dev_vdbg(chan2dev(&dc->chan), "tasklet: status=%x\n", csr);
spin_lock(&dc->lock);
if (csr & (TXX9_DMA_CSR_ABCHC | TXX9_DMA_CSR_NCHNC |
TXX9_DMA_CSR_NTRNFC))
txx9dmac_scan_descriptors(dc);
spin_unlock(&dc->lock);
irq = dc->irq;
enable_irq(irq);
}
static irqreturn_t txx9dmac_chan_interrupt(int irq, void *dev_id)
{
struct txx9dmac_chan *dc = dev_id;
dev_vdbg(chan2dev(&dc->chan), "interrupt: status=%#x\n",
channel_readl(dc, CSR));
tasklet_schedule(&dc->tasklet);
/*
* Just disable the interrupts. We'll turn them back on in the
* softirq handler.
*/
disable_irq_nosync(irq);
return IRQ_HANDLED;
}
static void txx9dmac_tasklet(struct tasklet_struct *t)
{
int irq;
u32 csr;
struct txx9dmac_chan *dc;
struct txx9dmac_dev *ddev = from_tasklet(ddev, t, tasklet);
u32 mcr;
int i;
mcr = dma_readl(ddev, MCR);
dev_vdbg(ddev->chan[0]->dma.dev, "tasklet: mcr=%x\n", mcr);
for (i = 0; i < TXX9_DMA_MAX_NR_CHANNELS; i++) {
if ((mcr >> (24 + i)) & 0x11) {
dc = ddev->chan[i];
csr = channel_readl(dc, CSR);
dev_vdbg(chan2dev(&dc->chan), "tasklet: status=%x\n",
csr);
spin_lock(&dc->lock);
if (csr & (TXX9_DMA_CSR_ABCHC | TXX9_DMA_CSR_NCHNC |
TXX9_DMA_CSR_NTRNFC))
txx9dmac_scan_descriptors(dc);
spin_unlock(&dc->lock);
}
}
irq = ddev->irq;
enable_irq(irq);
}
static irqreturn_t txx9dmac_interrupt(int irq, void *dev_id)
{
struct txx9dmac_dev *ddev = dev_id;
dev_vdbg(ddev->chan[0]->dma.dev, "interrupt: status=%#x\n",
dma_readl(ddev, MCR));
tasklet_schedule(&ddev->tasklet);
/*
* Just disable the interrupts. We'll turn them back on in the
* softirq handler.
*/
disable_irq_nosync(irq);
return IRQ_HANDLED;
}
/*----------------------------------------------------------------------*/
static dma_cookie_t txx9dmac_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct txx9dmac_desc *desc = txd_to_txx9dmac_desc(tx);
struct txx9dmac_chan *dc = to_txx9dmac_chan(tx->chan);
dma_cookie_t cookie;
spin_lock_bh(&dc->lock);
cookie = dma_cookie_assign(tx);
dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u %p\n",
desc->txd.cookie, desc);
list_add_tail(&desc->desc_node, &dc->queue);
spin_unlock_bh(&dc->lock);
return cookie;
}
static struct dma_async_tx_descriptor *
txx9dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
size_t len, unsigned long flags)
{
struct txx9dmac_chan *dc = to_txx9dmac_chan(chan);
struct txx9dmac_dev *ddev = dc->ddev;
struct txx9dmac_desc *desc;
struct txx9dmac_desc *first;
struct txx9dmac_desc *prev;
size_t xfer_count;
size_t offset;
dev_vdbg(chan2dev(chan), "prep_dma_memcpy d%#llx s%#llx l%#zx f%#lx\n",
(u64)dest, (u64)src, len, flags);
if (unlikely(!len)) {
dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
return NULL;
}
prev = first = NULL;
for (offset = 0; offset < len; offset += xfer_count) {
xfer_count = min_t(size_t, len - offset, TXX9_DMA_MAX_COUNT);
/*
* Workaround for ERT-TX49H2-033, ERT-TX49H3-020,
* ERT-TX49H4-016 (slightly conservative)
*/
if (__is_dmac64(ddev)) {
if (xfer_count > 0x100 &&
(xfer_count & 0xff) >= 0xfa &&
(xfer_count & 0xff) <= 0xff)
xfer_count -= 0x20;
} else {
if (xfer_count > 0x80 &&
(xfer_count & 0x7f) >= 0x7e &&
(xfer_count & 0x7f) <= 0x7f)
xfer_count -= 0x20;
}
desc = txx9dmac_desc_get(dc);
if (!desc) {
txx9dmac_desc_put(dc, first);
return NULL;
}
if (__is_dmac64(ddev)) {
desc->hwdesc.SAR = src + offset;
desc->hwdesc.DAR = dest + offset;
desc->hwdesc.CNTR = xfer_count;
txx9dmac_desc_set_nosimple(ddev, desc, 8, 8,
dc->ccr | TXX9_DMA_CCR_XFACT);
} else {
desc->hwdesc32.SAR = src + offset;
desc->hwdesc32.DAR = dest + offset;
desc->hwdesc32.CNTR = xfer_count;
txx9dmac_desc_set_nosimple(ddev, desc, 4, 4,
dc->ccr | TXX9_DMA_CCR_XFACT);
}
/*
* The descriptors on tx_list are not reachable from
* the dc->queue list or dc->active_list after a
* submit. If we put all descriptors on active_list,
* calling of callback on the completion will be more
* complex.
*/
if (!first) {
first = desc;
} else {
desc_write_CHAR(dc, prev, desc->txd.phys);
dma_sync_single_for_device(chan2parent(&dc->chan),
prev->txd.phys, ddev->descsize,
DMA_TO_DEVICE);
list_add_tail(&desc->desc_node, &first->tx_list);
}
prev = desc;
}
/* Trigger interrupt after last block */
if (flags & DMA_PREP_INTERRUPT)
txx9dmac_desc_set_INTENT(ddev, prev);
desc_write_CHAR(dc, prev, 0);
dma_sync_single_for_device(chan2parent(&dc->chan),
prev->txd.phys, ddev->descsize,
DMA_TO_DEVICE);
first->txd.flags = flags;
first->len = len;
return &first->txd;
}
static struct dma_async_tx_descriptor *
txx9dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_transfer_direction direction,
unsigned long flags, void *context)
{
struct txx9dmac_chan *dc = to_txx9dmac_chan(chan);
struct txx9dmac_dev *ddev = dc->ddev;
struct txx9dmac_slave *ds = chan->private;
struct txx9dmac_desc *prev;
struct txx9dmac_desc *first;
unsigned int i;
struct scatterlist *sg;
dev_vdbg(chan2dev(chan), "prep_dma_slave\n");
BUG_ON(!ds || !ds->reg_width);
if (ds->tx_reg)
BUG_ON(direction != DMA_MEM_TO_DEV);
else
BUG_ON(direction != DMA_DEV_TO_MEM);
if (unlikely(!sg_len))
return NULL;
prev = first = NULL;
for_each_sg(sgl, sg, sg_len, i) {
struct txx9dmac_desc *desc;
dma_addr_t mem;
u32 sai, dai;
desc = txx9dmac_desc_get(dc);
if (!desc) {
txx9dmac_desc_put(dc, first);
return NULL;
}
mem = sg_dma_address(sg);
if (__is_dmac64(ddev)) {
if (direction == DMA_MEM_TO_DEV) {
desc->hwdesc.SAR = mem;
desc->hwdesc.DAR = ds->tx_reg;
} else {
desc->hwdesc.SAR = ds->rx_reg;
desc->hwdesc.DAR = mem;
}
desc->hwdesc.CNTR = sg_dma_len(sg);
} else {
if (direction == DMA_MEM_TO_DEV) {
desc->hwdesc32.SAR = mem;
desc->hwdesc32.DAR = ds->tx_reg;
} else {
desc->hwdesc32.SAR = ds->rx_reg;
desc->hwdesc32.DAR = mem;
}
desc->hwdesc32.CNTR = sg_dma_len(sg);
}
if (direction == DMA_MEM_TO_DEV) {
sai = ds->reg_width;
dai = 0;
} else {
sai = 0;
dai = ds->reg_width;
}
txx9dmac_desc_set_nosimple(ddev, desc, sai, dai,
dc->ccr | TXX9_DMA_CCR_XFACT);
if (!first) {
first = desc;
} else {
desc_write_CHAR(dc, prev, desc->txd.phys);
dma_sync_single_for_device(chan2parent(&dc->chan),
prev->txd.phys,
ddev->descsize,
DMA_TO_DEVICE);
list_add_tail(&desc->desc_node, &first->tx_list);
}
prev = desc;
}
/* Trigger interrupt after last block */
if (flags & DMA_PREP_INTERRUPT)
txx9dmac_desc_set_INTENT(ddev, prev);
desc_write_CHAR(dc, prev, 0);
dma_sync_single_for_device(chan2parent(&dc->chan),
prev->txd.phys, ddev->descsize,
DMA_TO_DEVICE);
first->txd.flags = flags;
first->len = 0;
return &first->txd;
}
static int txx9dmac_terminate_all(struct dma_chan *chan)
{
struct txx9dmac_chan *dc = to_txx9dmac_chan(chan);
struct txx9dmac_desc *desc, *_desc;
LIST_HEAD(list);
dev_vdbg(chan2dev(chan), "terminate_all\n");
spin_lock_bh(&dc->lock);
txx9dmac_reset_chan(dc);
/* active_list entries will end up before queued entries */
list_splice_init(&dc->queue, &list);
list_splice_init(&dc->active_list, &list);
spin_unlock_bh(&dc->lock);
/* Flush all pending and queued descriptors */
list_for_each_entry_safe(desc, _desc, &list, desc_node)
txx9dmac_descriptor_complete(dc, desc);
return 0;
}
static enum dma_status
txx9dmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct txx9dmac_chan *dc = to_txx9dmac_chan(chan);
enum dma_status ret;
ret = dma_cookie_status(chan, cookie, txstate);
if (ret == DMA_COMPLETE)
return DMA_COMPLETE;
spin_lock_bh(&dc->lock);
txx9dmac_scan_descriptors(dc);
spin_unlock_bh(&dc->lock);
return dma_cookie_status(chan, cookie, txstate);
}
static void txx9dmac_chain_dynamic(struct txx9dmac_chan *dc,
struct txx9dmac_desc *prev)
{
struct txx9dmac_dev *ddev = dc->ddev;
struct txx9dmac_desc *desc;
LIST_HEAD(list);
prev = txx9dmac_last_child(prev);
txx9dmac_dequeue(dc, &list);
desc = list_entry(list.next, struct txx9dmac_desc, desc_node);
desc_write_CHAR(dc, prev, desc->txd.phys);
dma_sync_single_for_device(chan2parent(&dc->chan),
prev->txd.phys, ddev->descsize,
DMA_TO_DEVICE);
if (!(channel_readl(dc, CSR) & TXX9_DMA_CSR_CHNEN) &&
channel_read_CHAR(dc) == prev->txd.phys)
/* Restart chain DMA */
channel_write_CHAR(dc, desc->txd.phys);
list_splice_tail(&list, &dc->active_list);
}
static void txx9dmac_issue_pending(struct dma_chan *chan)
{
struct txx9dmac_chan *dc = to_txx9dmac_chan(chan);
spin_lock_bh(&dc->lock);
if (!list_empty(&dc->active_list))
txx9dmac_scan_descriptors(dc);
if (!list_empty(&dc->queue)) {
if (list_empty(&dc->active_list)) {
txx9dmac_dequeue(dc, &dc->active_list);
txx9dmac_dostart(dc, txx9dmac_first_active(dc));
} else if (txx9_dma_have_SMPCHN()) {
struct txx9dmac_desc *prev = txx9dmac_last_active(dc);
if (!(prev->txd.flags & DMA_PREP_INTERRUPT) ||
txx9dmac_chan_INTENT(dc))
txx9dmac_chain_dynamic(dc, prev);
}
}
spin_unlock_bh(&dc->lock);
}
static int txx9dmac_alloc_chan_resources(struct dma_chan *chan)
{
struct txx9dmac_chan *dc = to_txx9dmac_chan(chan);
struct txx9dmac_slave *ds = chan->private;
struct txx9dmac_desc *desc;
int i;
dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
/* ASSERT: channel is idle */
if (channel_readl(dc, CSR) & TXX9_DMA_CSR_XFACT) {
dev_dbg(chan2dev(chan), "DMA channel not idle?\n");
return -EIO;
}
dma_cookie_init(chan);
dc->ccr = TXX9_DMA_CCR_IMMCHN | TXX9_DMA_CCR_INTENE | CCR_LE;
txx9dmac_chan_set_SMPCHN(dc);
if (!txx9_dma_have_SMPCHN() || (dc->ccr & TXX9_DMA_CCR_SMPCHN))
dc->ccr |= TXX9_DMA_CCR_INTENC;
if (chan->device->device_prep_dma_memcpy) {
if (ds)
return -EINVAL;
dc->ccr |= TXX9_DMA_CCR_XFSZ_X8;
} else {
if (!ds ||
(ds->tx_reg && ds->rx_reg) || (!ds->tx_reg && !ds->rx_reg))
return -EINVAL;
dc->ccr |= TXX9_DMA_CCR_EXTRQ |
TXX9_DMA_CCR_XFSZ(__ffs(ds->reg_width));
txx9dmac_chan_set_INTENT(dc);
}
spin_lock_bh(&dc->lock);
i = dc->descs_allocated;
while (dc->descs_allocated < TXX9_DMA_INITIAL_DESC_COUNT) {
spin_unlock_bh(&dc->lock);
desc = txx9dmac_desc_alloc(dc, GFP_KERNEL);
if (!desc) {
dev_info(chan2dev(chan),
"only allocated %d descriptors\n", i);
spin_lock_bh(&dc->lock);
break;
}
txx9dmac_desc_put(dc, desc);
spin_lock_bh(&dc->lock);
i = ++dc->descs_allocated;
}
spin_unlock_bh(&dc->lock);
dev_dbg(chan2dev(chan),
"alloc_chan_resources allocated %d descriptors\n", i);
return i;
}
static void txx9dmac_free_chan_resources(struct dma_chan *chan)
{
struct txx9dmac_chan *dc = to_txx9dmac_chan(chan);
struct txx9dmac_dev *ddev = dc->ddev;
struct txx9dmac_desc *desc, *_desc;
LIST_HEAD(list);
dev_dbg(chan2dev(chan), "free_chan_resources (descs allocated=%u)\n",
dc->descs_allocated);
/* ASSERT: channel is idle */
BUG_ON(!list_empty(&dc->active_list));
BUG_ON(!list_empty(&dc->queue));
BUG_ON(channel_readl(dc, CSR) & TXX9_DMA_CSR_XFACT);
spin_lock_bh(&dc->lock);
list_splice_init(&dc->free_list, &list);
dc->descs_allocated = 0;
spin_unlock_bh(&dc->lock);
list_for_each_entry_safe(desc, _desc, &list, desc_node) {
dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc);
dma_unmap_single(chan2parent(chan), desc->txd.phys,
ddev->descsize, DMA_TO_DEVICE);
kfree(desc);
}
dev_vdbg(chan2dev(chan), "free_chan_resources done\n");
}
/*----------------------------------------------------------------------*/
static void txx9dmac_off(struct txx9dmac_dev *ddev)
{
dma_writel(ddev, MCR, 0);
}
static int __init txx9dmac_chan_probe(struct platform_device *pdev)
{
struct txx9dmac_chan_platform_data *cpdata =
dev_get_platdata(&pdev->dev);
struct platform_device *dmac_dev = cpdata->dmac_dev;
struct txx9dmac_platform_data *pdata = dev_get_platdata(&dmac_dev->dev);
struct txx9dmac_chan *dc;
int err;
int ch = pdev->id % TXX9_DMA_MAX_NR_CHANNELS;
int irq;
dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
if (!dc)
return -ENOMEM;
dc->dma.dev = &pdev->dev;
dc->dma.device_alloc_chan_resources = txx9dmac_alloc_chan_resources;
dc->dma.device_free_chan_resources = txx9dmac_free_chan_resources;
dc->dma.device_terminate_all = txx9dmac_terminate_all;
dc->dma.device_tx_status = txx9dmac_tx_status;
dc->dma.device_issue_pending = txx9dmac_issue_pending;
if (pdata && pdata->memcpy_chan == ch) {
dc->dma.device_prep_dma_memcpy = txx9dmac_prep_dma_memcpy;
dma_cap_set(DMA_MEMCPY, dc->dma.cap_mask);
} else {
dc->dma.device_prep_slave_sg = txx9dmac_prep_slave_sg;
dma_cap_set(DMA_SLAVE, dc->dma.cap_mask);
dma_cap_set(DMA_PRIVATE, dc->dma.cap_mask);
}
INIT_LIST_HEAD(&dc->dma.channels);
dc->ddev = platform_get_drvdata(dmac_dev);
if (dc->ddev->irq < 0) {
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
tasklet_setup(&dc->tasklet, txx9dmac_chan_tasklet);
dc->irq = irq;
err = devm_request_irq(&pdev->dev, dc->irq,
txx9dmac_chan_interrupt, 0, dev_name(&pdev->dev), dc);
if (err)
return err;
} else
dc->irq = -1;
dc->ddev->chan[ch] = dc;
dc->chan.device = &dc->dma;
list_add_tail(&dc->chan.device_node, &dc->chan.device->channels);
dma_cookie_init(&dc->chan);
if (is_dmac64(dc))
dc->ch_regs = &__txx9dmac_regs(dc->ddev)->CHAN[ch];
else
dc->ch_regs = &__txx9dmac_regs32(dc->ddev)->CHAN[ch];
spin_lock_init(&dc->lock);
INIT_LIST_HEAD(&dc->active_list);
INIT_LIST_HEAD(&dc->queue);
INIT_LIST_HEAD(&dc->free_list);
txx9dmac_reset_chan(dc);
platform_set_drvdata(pdev, dc);
err = dma_async_device_register(&dc->dma);
if (err)
return err;
dev_dbg(&pdev->dev, "TXx9 DMA Channel (dma%d%s%s)\n",
dc->dma.dev_id,
dma_has_cap(DMA_MEMCPY, dc->dma.cap_mask) ? " memcpy" : "",
dma_has_cap(DMA_SLAVE, dc->dma.cap_mask) ? " slave" : "");
return 0;
}
static int txx9dmac_chan_remove(struct platform_device *pdev)
{
struct txx9dmac_chan *dc = platform_get_drvdata(pdev);
dma_async_device_unregister(&dc->dma);
if (dc->irq >= 0) {
devm_free_irq(&pdev->dev, dc->irq, dc);
tasklet_kill(&dc->tasklet);
}
dc->ddev->chan[pdev->id % TXX9_DMA_MAX_NR_CHANNELS] = NULL;
return 0;
}
static int __init txx9dmac_probe(struct platform_device *pdev)
{
struct txx9dmac_platform_data *pdata = dev_get_platdata(&pdev->dev);
struct resource *io;
struct txx9dmac_dev *ddev;
u32 mcr;
int err;
io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!io)
return -EINVAL;
ddev = devm_kzalloc(&pdev->dev, sizeof(*ddev), GFP_KERNEL);
if (!ddev)
return -ENOMEM;
if (!devm_request_mem_region(&pdev->dev, io->start, resource_size(io),
dev_name(&pdev->dev)))
return -EBUSY;
ddev->regs = devm_ioremap(&pdev->dev, io->start, resource_size(io));
if (!ddev->regs)
return -ENOMEM;
ddev->have_64bit_regs = pdata->have_64bit_regs;
if (__is_dmac64(ddev))
ddev->descsize = sizeof(struct txx9dmac_hwdesc);
else
ddev->descsize = sizeof(struct txx9dmac_hwdesc32);
/* force dma off, just in case */
txx9dmac_off(ddev);
ddev->irq = platform_get_irq(pdev, 0);
if (ddev->irq >= 0) {
tasklet_setup(&ddev->tasklet, txx9dmac_tasklet);
err = devm_request_irq(&pdev->dev, ddev->irq,
txx9dmac_interrupt, 0, dev_name(&pdev->dev), ddev);
if (err)
return err;
}
mcr = TXX9_DMA_MCR_MSTEN | MCR_LE;
if (pdata && pdata->memcpy_chan >= 0)
mcr |= TXX9_DMA_MCR_FIFUM(pdata->memcpy_chan);
dma_writel(ddev, MCR, mcr);
platform_set_drvdata(pdev, ddev);
return 0;
}
static int txx9dmac_remove(struct platform_device *pdev)
{
struct txx9dmac_dev *ddev = platform_get_drvdata(pdev);
txx9dmac_off(ddev);
if (ddev->irq >= 0) {
devm_free_irq(&pdev->dev, ddev->irq, ddev);
tasklet_kill(&ddev->tasklet);
}
return 0;
}
static void txx9dmac_shutdown(struct platform_device *pdev)
{
struct txx9dmac_dev *ddev = platform_get_drvdata(pdev);
txx9dmac_off(ddev);
}
static int txx9dmac_suspend_noirq(struct device *dev)
{
struct txx9dmac_dev *ddev = dev_get_drvdata(dev);
txx9dmac_off(ddev);
return 0;
}
static int txx9dmac_resume_noirq(struct device *dev)
{
struct txx9dmac_dev *ddev = dev_get_drvdata(dev);
struct txx9dmac_platform_data *pdata = dev_get_platdata(dev);
u32 mcr;
mcr = TXX9_DMA_MCR_MSTEN | MCR_LE;
if (pdata && pdata->memcpy_chan >= 0)
mcr |= TXX9_DMA_MCR_FIFUM(pdata->memcpy_chan);
dma_writel(ddev, MCR, mcr);
return 0;
}
static const struct dev_pm_ops txx9dmac_dev_pm_ops = {
.suspend_noirq = txx9dmac_suspend_noirq,
.resume_noirq = txx9dmac_resume_noirq,
};
static struct platform_driver txx9dmac_chan_driver = {
.remove = txx9dmac_chan_remove,
.driver = {
.name = "txx9dmac-chan",
},
};
static struct platform_driver txx9dmac_driver = {
.remove = txx9dmac_remove,
.shutdown = txx9dmac_shutdown,
.driver = {
.name = "txx9dmac",
.pm = &txx9dmac_dev_pm_ops,
},
};
static int __init txx9dmac_init(void)
{
int rc;
rc = platform_driver_probe(&txx9dmac_driver, txx9dmac_probe);
if (!rc) {
rc = platform_driver_probe(&txx9dmac_chan_driver,
txx9dmac_chan_probe);
if (rc)
platform_driver_unregister(&txx9dmac_driver);
}
return rc;
}
module_init(txx9dmac_init);
static void __exit txx9dmac_exit(void)
{
platform_driver_unregister(&txx9dmac_chan_driver);
platform_driver_unregister(&txx9dmac_driver);
}
module_exit(txx9dmac_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("TXx9 DMA Controller driver");
MODULE_AUTHOR("Atsushi Nemoto <anemo@mba.ocn.ne.jp>");
MODULE_ALIAS("platform:txx9dmac");
MODULE_ALIAS("platform:txx9dmac-chan");