| /* |
| * Copyright (c) 2006 Dave Airlie <airlied@linux.ie> |
| * Copyright © 2006-2008,2010 Intel Corporation |
| * Jesse Barnes <jesse.barnes@intel.com> |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: |
| * Eric Anholt <eric@anholt.net> |
| * Chris Wilson <chris@chris-wilson.co.uk> |
| */ |
| |
| #include <linux/export.h> |
| #include <linux/i2c-algo-bit.h> |
| #include <linux/i2c.h> |
| |
| #include <drm/drm_hdcp.h> |
| |
| #include "i915_drv.h" |
| #include "intel_de.h" |
| #include "intel_display_types.h" |
| #include "intel_gmbus.h" |
| |
| struct gmbus_pin { |
| const char *name; |
| enum i915_gpio gpio; |
| }; |
| |
| /* Map gmbus pin pairs to names and registers. */ |
| static const struct gmbus_pin gmbus_pins[] = { |
| [GMBUS_PIN_SSC] = { "ssc", GPIOB }, |
| [GMBUS_PIN_VGADDC] = { "vga", GPIOA }, |
| [GMBUS_PIN_PANEL] = { "panel", GPIOC }, |
| [GMBUS_PIN_DPC] = { "dpc", GPIOD }, |
| [GMBUS_PIN_DPB] = { "dpb", GPIOE }, |
| [GMBUS_PIN_DPD] = { "dpd", GPIOF }, |
| }; |
| |
| static const struct gmbus_pin gmbus_pins_bdw[] = { |
| [GMBUS_PIN_VGADDC] = { "vga", GPIOA }, |
| [GMBUS_PIN_DPC] = { "dpc", GPIOD }, |
| [GMBUS_PIN_DPB] = { "dpb", GPIOE }, |
| [GMBUS_PIN_DPD] = { "dpd", GPIOF }, |
| }; |
| |
| static const struct gmbus_pin gmbus_pins_skl[] = { |
| [GMBUS_PIN_DPC] = { "dpc", GPIOD }, |
| [GMBUS_PIN_DPB] = { "dpb", GPIOE }, |
| [GMBUS_PIN_DPD] = { "dpd", GPIOF }, |
| }; |
| |
| static const struct gmbus_pin gmbus_pins_bxt[] = { |
| [GMBUS_PIN_1_BXT] = { "dpb", GPIOB }, |
| [GMBUS_PIN_2_BXT] = { "dpc", GPIOC }, |
| [GMBUS_PIN_3_BXT] = { "misc", GPIOD }, |
| }; |
| |
| static const struct gmbus_pin gmbus_pins_cnp[] = { |
| [GMBUS_PIN_1_BXT] = { "dpb", GPIOB }, |
| [GMBUS_PIN_2_BXT] = { "dpc", GPIOC }, |
| [GMBUS_PIN_3_BXT] = { "misc", GPIOD }, |
| [GMBUS_PIN_4_CNP] = { "dpd", GPIOE }, |
| }; |
| |
| static const struct gmbus_pin gmbus_pins_icp[] = { |
| [GMBUS_PIN_1_BXT] = { "dpa", GPIOB }, |
| [GMBUS_PIN_2_BXT] = { "dpb", GPIOC }, |
| [GMBUS_PIN_3_BXT] = { "dpc", GPIOD }, |
| [GMBUS_PIN_9_TC1_ICP] = { "tc1", GPIOJ }, |
| [GMBUS_PIN_10_TC2_ICP] = { "tc2", GPIOK }, |
| [GMBUS_PIN_11_TC3_ICP] = { "tc3", GPIOL }, |
| [GMBUS_PIN_12_TC4_ICP] = { "tc4", GPIOM }, |
| [GMBUS_PIN_13_TC5_TGP] = { "tc5", GPION }, |
| [GMBUS_PIN_14_TC6_TGP] = { "tc6", GPIOO }, |
| }; |
| |
| static const struct gmbus_pin gmbus_pins_dg1[] = { |
| [GMBUS_PIN_1_BXT] = { "dpa", GPIOB }, |
| [GMBUS_PIN_2_BXT] = { "dpb", GPIOC }, |
| [GMBUS_PIN_3_BXT] = { "dpc", GPIOD }, |
| [GMBUS_PIN_4_CNP] = { "dpd", GPIOE }, |
| }; |
| |
| /* pin is expected to be valid */ |
| static const struct gmbus_pin *get_gmbus_pin(struct drm_i915_private *dev_priv, |
| unsigned int pin) |
| { |
| if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1) |
| return &gmbus_pins_dg1[pin]; |
| else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) |
| return &gmbus_pins_icp[pin]; |
| else if (HAS_PCH_CNP(dev_priv)) |
| return &gmbus_pins_cnp[pin]; |
| else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) |
| return &gmbus_pins_bxt[pin]; |
| else if (DISPLAY_VER(dev_priv) == 9) |
| return &gmbus_pins_skl[pin]; |
| else if (IS_BROADWELL(dev_priv)) |
| return &gmbus_pins_bdw[pin]; |
| else |
| return &gmbus_pins[pin]; |
| } |
| |
| bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv, |
| unsigned int pin) |
| { |
| unsigned int size; |
| |
| if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1) |
| size = ARRAY_SIZE(gmbus_pins_dg1); |
| else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) |
| size = ARRAY_SIZE(gmbus_pins_icp); |
| else if (HAS_PCH_CNP(dev_priv)) |
| size = ARRAY_SIZE(gmbus_pins_cnp); |
| else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) |
| size = ARRAY_SIZE(gmbus_pins_bxt); |
| else if (DISPLAY_VER(dev_priv) == 9) |
| size = ARRAY_SIZE(gmbus_pins_skl); |
| else if (IS_BROADWELL(dev_priv)) |
| size = ARRAY_SIZE(gmbus_pins_bdw); |
| else |
| size = ARRAY_SIZE(gmbus_pins); |
| |
| return pin < size && get_gmbus_pin(dev_priv, pin)->name; |
| } |
| |
| /* Intel GPIO access functions */ |
| |
| #define I2C_RISEFALL_TIME 10 |
| |
| static inline struct intel_gmbus * |
| to_intel_gmbus(struct i2c_adapter *i2c) |
| { |
| return container_of(i2c, struct intel_gmbus, adapter); |
| } |
| |
| void |
| intel_gmbus_reset(struct drm_i915_private *dev_priv) |
| { |
| intel_de_write(dev_priv, GMBUS0, 0); |
| intel_de_write(dev_priv, GMBUS4, 0); |
| } |
| |
| static void pnv_gmbus_clock_gating(struct drm_i915_private *dev_priv, |
| bool enable) |
| { |
| u32 val; |
| |
| /* When using bit bashing for I2C, this bit needs to be set to 1 */ |
| val = intel_de_read(dev_priv, DSPCLK_GATE_D); |
| if (!enable) |
| val |= PNV_GMBUSUNIT_CLOCK_GATE_DISABLE; |
| else |
| val &= ~PNV_GMBUSUNIT_CLOCK_GATE_DISABLE; |
| intel_de_write(dev_priv, DSPCLK_GATE_D, val); |
| } |
| |
| static void pch_gmbus_clock_gating(struct drm_i915_private *dev_priv, |
| bool enable) |
| { |
| u32 val; |
| |
| val = intel_de_read(dev_priv, SOUTH_DSPCLK_GATE_D); |
| if (!enable) |
| val |= PCH_GMBUSUNIT_CLOCK_GATE_DISABLE; |
| else |
| val &= ~PCH_GMBUSUNIT_CLOCK_GATE_DISABLE; |
| intel_de_write(dev_priv, SOUTH_DSPCLK_GATE_D, val); |
| } |
| |
| static void bxt_gmbus_clock_gating(struct drm_i915_private *dev_priv, |
| bool enable) |
| { |
| u32 val; |
| |
| val = intel_de_read(dev_priv, GEN9_CLKGATE_DIS_4); |
| if (!enable) |
| val |= BXT_GMBUS_GATING_DIS; |
| else |
| val &= ~BXT_GMBUS_GATING_DIS; |
| intel_de_write(dev_priv, GEN9_CLKGATE_DIS_4, val); |
| } |
| |
| static u32 get_reserved(struct intel_gmbus *bus) |
| { |
| struct drm_i915_private *i915 = bus->dev_priv; |
| struct intel_uncore *uncore = &i915->uncore; |
| u32 reserved = 0; |
| |
| /* On most chips, these bits must be preserved in software. */ |
| if (!IS_I830(i915) && !IS_I845G(i915)) |
| reserved = intel_uncore_read_notrace(uncore, bus->gpio_reg) & |
| (GPIO_DATA_PULLUP_DISABLE | |
| GPIO_CLOCK_PULLUP_DISABLE); |
| |
| return reserved; |
| } |
| |
| static int get_clock(void *data) |
| { |
| struct intel_gmbus *bus = data; |
| struct intel_uncore *uncore = &bus->dev_priv->uncore; |
| u32 reserved = get_reserved(bus); |
| |
| intel_uncore_write_notrace(uncore, |
| bus->gpio_reg, |
| reserved | GPIO_CLOCK_DIR_MASK); |
| intel_uncore_write_notrace(uncore, bus->gpio_reg, reserved); |
| |
| return (intel_uncore_read_notrace(uncore, bus->gpio_reg) & |
| GPIO_CLOCK_VAL_IN) != 0; |
| } |
| |
| static int get_data(void *data) |
| { |
| struct intel_gmbus *bus = data; |
| struct intel_uncore *uncore = &bus->dev_priv->uncore; |
| u32 reserved = get_reserved(bus); |
| |
| intel_uncore_write_notrace(uncore, |
| bus->gpio_reg, |
| reserved | GPIO_DATA_DIR_MASK); |
| intel_uncore_write_notrace(uncore, bus->gpio_reg, reserved); |
| |
| return (intel_uncore_read_notrace(uncore, bus->gpio_reg) & |
| GPIO_DATA_VAL_IN) != 0; |
| } |
| |
| static void set_clock(void *data, int state_high) |
| { |
| struct intel_gmbus *bus = data; |
| struct intel_uncore *uncore = &bus->dev_priv->uncore; |
| u32 reserved = get_reserved(bus); |
| u32 clock_bits; |
| |
| if (state_high) |
| clock_bits = GPIO_CLOCK_DIR_IN | GPIO_CLOCK_DIR_MASK; |
| else |
| clock_bits = GPIO_CLOCK_DIR_OUT | GPIO_CLOCK_DIR_MASK | |
| GPIO_CLOCK_VAL_MASK; |
| |
| intel_uncore_write_notrace(uncore, |
| bus->gpio_reg, |
| reserved | clock_bits); |
| intel_uncore_posting_read(uncore, bus->gpio_reg); |
| } |
| |
| static void set_data(void *data, int state_high) |
| { |
| struct intel_gmbus *bus = data; |
| struct intel_uncore *uncore = &bus->dev_priv->uncore; |
| u32 reserved = get_reserved(bus); |
| u32 data_bits; |
| |
| if (state_high) |
| data_bits = GPIO_DATA_DIR_IN | GPIO_DATA_DIR_MASK; |
| else |
| data_bits = GPIO_DATA_DIR_OUT | GPIO_DATA_DIR_MASK | |
| GPIO_DATA_VAL_MASK; |
| |
| intel_uncore_write_notrace(uncore, bus->gpio_reg, reserved | data_bits); |
| intel_uncore_posting_read(uncore, bus->gpio_reg); |
| } |
| |
| static int |
| intel_gpio_pre_xfer(struct i2c_adapter *adapter) |
| { |
| struct intel_gmbus *bus = container_of(adapter, |
| struct intel_gmbus, |
| adapter); |
| struct drm_i915_private *dev_priv = bus->dev_priv; |
| |
| intel_gmbus_reset(dev_priv); |
| |
| if (IS_PINEVIEW(dev_priv)) |
| pnv_gmbus_clock_gating(dev_priv, false); |
| |
| set_data(bus, 1); |
| set_clock(bus, 1); |
| udelay(I2C_RISEFALL_TIME); |
| return 0; |
| } |
| |
| static void |
| intel_gpio_post_xfer(struct i2c_adapter *adapter) |
| { |
| struct intel_gmbus *bus = container_of(adapter, |
| struct intel_gmbus, |
| adapter); |
| struct drm_i915_private *dev_priv = bus->dev_priv; |
| |
| set_data(bus, 1); |
| set_clock(bus, 1); |
| |
| if (IS_PINEVIEW(dev_priv)) |
| pnv_gmbus_clock_gating(dev_priv, true); |
| } |
| |
| static void |
| intel_gpio_setup(struct intel_gmbus *bus, unsigned int pin) |
| { |
| struct drm_i915_private *dev_priv = bus->dev_priv; |
| struct i2c_algo_bit_data *algo; |
| |
| algo = &bus->bit_algo; |
| |
| bus->gpio_reg = GPIO(get_gmbus_pin(dev_priv, pin)->gpio); |
| bus->adapter.algo_data = algo; |
| algo->setsda = set_data; |
| algo->setscl = set_clock; |
| algo->getsda = get_data; |
| algo->getscl = get_clock; |
| algo->pre_xfer = intel_gpio_pre_xfer; |
| algo->post_xfer = intel_gpio_post_xfer; |
| algo->udelay = I2C_RISEFALL_TIME; |
| algo->timeout = usecs_to_jiffies(2200); |
| algo->data = bus; |
| } |
| |
| static int gmbus_wait(struct drm_i915_private *dev_priv, u32 status, u32 irq_en) |
| { |
| DEFINE_WAIT(wait); |
| u32 gmbus2; |
| int ret; |
| |
| /* Important: The hw handles only the first bit, so set only one! Since |
| * we also need to check for NAKs besides the hw ready/idle signal, we |
| * need to wake up periodically and check that ourselves. |
| */ |
| if (!HAS_GMBUS_IRQ(dev_priv)) |
| irq_en = 0; |
| |
| add_wait_queue(&dev_priv->gmbus_wait_queue, &wait); |
| intel_de_write_fw(dev_priv, GMBUS4, irq_en); |
| |
| status |= GMBUS_SATOER; |
| ret = wait_for_us((gmbus2 = intel_de_read_fw(dev_priv, GMBUS2)) & status, |
| 2); |
| if (ret) |
| ret = wait_for((gmbus2 = intel_de_read_fw(dev_priv, GMBUS2)) & status, |
| 50); |
| |
| intel_de_write_fw(dev_priv, GMBUS4, 0); |
| remove_wait_queue(&dev_priv->gmbus_wait_queue, &wait); |
| |
| if (gmbus2 & GMBUS_SATOER) |
| return -ENXIO; |
| |
| return ret; |
| } |
| |
| static int |
| gmbus_wait_idle(struct drm_i915_private *dev_priv) |
| { |
| DEFINE_WAIT(wait); |
| u32 irq_enable; |
| int ret; |
| |
| /* Important: The hw handles only the first bit, so set only one! */ |
| irq_enable = 0; |
| if (HAS_GMBUS_IRQ(dev_priv)) |
| irq_enable = GMBUS_IDLE_EN; |
| |
| add_wait_queue(&dev_priv->gmbus_wait_queue, &wait); |
| intel_de_write_fw(dev_priv, GMBUS4, irq_enable); |
| |
| ret = intel_wait_for_register_fw(&dev_priv->uncore, |
| GMBUS2, GMBUS_ACTIVE, 0, |
| 10); |
| |
| intel_de_write_fw(dev_priv, GMBUS4, 0); |
| remove_wait_queue(&dev_priv->gmbus_wait_queue, &wait); |
| |
| return ret; |
| } |
| |
| static unsigned int gmbus_max_xfer_size(struct drm_i915_private *dev_priv) |
| { |
| return DISPLAY_VER(dev_priv) >= 9 ? GEN9_GMBUS_BYTE_COUNT_MAX : |
| GMBUS_BYTE_COUNT_MAX; |
| } |
| |
| static int |
| gmbus_xfer_read_chunk(struct drm_i915_private *dev_priv, |
| unsigned short addr, u8 *buf, unsigned int len, |
| u32 gmbus0_reg, u32 gmbus1_index) |
| { |
| unsigned int size = len; |
| bool burst_read = len > gmbus_max_xfer_size(dev_priv); |
| bool extra_byte_added = false; |
| |
| if (burst_read) { |
| /* |
| * As per HW Spec, for 512Bytes need to read extra Byte and |
| * Ignore the extra byte read. |
| */ |
| if (len == 512) { |
| extra_byte_added = true; |
| len++; |
| } |
| size = len % 256 + 256; |
| intel_de_write_fw(dev_priv, GMBUS0, |
| gmbus0_reg | GMBUS_BYTE_CNT_OVERRIDE); |
| } |
| |
| intel_de_write_fw(dev_priv, GMBUS1, |
| gmbus1_index | GMBUS_CYCLE_WAIT | (size << GMBUS_BYTE_COUNT_SHIFT) | (addr << GMBUS_SLAVE_ADDR_SHIFT) | GMBUS_SLAVE_READ | GMBUS_SW_RDY); |
| while (len) { |
| int ret; |
| u32 val, loop = 0; |
| |
| ret = gmbus_wait(dev_priv, GMBUS_HW_RDY, GMBUS_HW_RDY_EN); |
| if (ret) |
| return ret; |
| |
| val = intel_de_read_fw(dev_priv, GMBUS3); |
| do { |
| if (extra_byte_added && len == 1) |
| break; |
| |
| *buf++ = val & 0xff; |
| val >>= 8; |
| } while (--len && ++loop < 4); |
| |
| if (burst_read && len == size - 4) |
| /* Reset the override bit */ |
| intel_de_write_fw(dev_priv, GMBUS0, gmbus0_reg); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * HW spec says that 512Bytes in Burst read need special treatment. |
| * But it doesn't talk about other multiple of 256Bytes. And couldn't locate |
| * an I2C slave, which supports such a lengthy burst read too for experiments. |
| * |
| * So until things get clarified on HW support, to avoid the burst read length |
| * in fold of 256Bytes except 512, max burst read length is fixed at 767Bytes. |
| */ |
| #define INTEL_GMBUS_BURST_READ_MAX_LEN 767U |
| |
| static int |
| gmbus_xfer_read(struct drm_i915_private *dev_priv, struct i2c_msg *msg, |
| u32 gmbus0_reg, u32 gmbus1_index) |
| { |
| u8 *buf = msg->buf; |
| unsigned int rx_size = msg->len; |
| unsigned int len; |
| int ret; |
| |
| do { |
| if (HAS_GMBUS_BURST_READ(dev_priv)) |
| len = min(rx_size, INTEL_GMBUS_BURST_READ_MAX_LEN); |
| else |
| len = min(rx_size, gmbus_max_xfer_size(dev_priv)); |
| |
| ret = gmbus_xfer_read_chunk(dev_priv, msg->addr, buf, len, |
| gmbus0_reg, gmbus1_index); |
| if (ret) |
| return ret; |
| |
| rx_size -= len; |
| buf += len; |
| } while (rx_size != 0); |
| |
| return 0; |
| } |
| |
| static int |
| gmbus_xfer_write_chunk(struct drm_i915_private *dev_priv, |
| unsigned short addr, u8 *buf, unsigned int len, |
| u32 gmbus1_index) |
| { |
| unsigned int chunk_size = len; |
| u32 val, loop; |
| |
| val = loop = 0; |
| while (len && loop < 4) { |
| val |= *buf++ << (8 * loop++); |
| len -= 1; |
| } |
| |
| intel_de_write_fw(dev_priv, GMBUS3, val); |
| intel_de_write_fw(dev_priv, GMBUS1, |
| gmbus1_index | GMBUS_CYCLE_WAIT | (chunk_size << GMBUS_BYTE_COUNT_SHIFT) | (addr << GMBUS_SLAVE_ADDR_SHIFT) | GMBUS_SLAVE_WRITE | GMBUS_SW_RDY); |
| while (len) { |
| int ret; |
| |
| val = loop = 0; |
| do { |
| val |= *buf++ << (8 * loop); |
| } while (--len && ++loop < 4); |
| |
| intel_de_write_fw(dev_priv, GMBUS3, val); |
| |
| ret = gmbus_wait(dev_priv, GMBUS_HW_RDY, GMBUS_HW_RDY_EN); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| gmbus_xfer_write(struct drm_i915_private *dev_priv, struct i2c_msg *msg, |
| u32 gmbus1_index) |
| { |
| u8 *buf = msg->buf; |
| unsigned int tx_size = msg->len; |
| unsigned int len; |
| int ret; |
| |
| do { |
| len = min(tx_size, gmbus_max_xfer_size(dev_priv)); |
| |
| ret = gmbus_xfer_write_chunk(dev_priv, msg->addr, buf, len, |
| gmbus1_index); |
| if (ret) |
| return ret; |
| |
| buf += len; |
| tx_size -= len; |
| } while (tx_size != 0); |
| |
| return 0; |
| } |
| |
| /* |
| * The gmbus controller can combine a 1 or 2 byte write with another read/write |
| * that immediately follows it by using an "INDEX" cycle. |
| */ |
| static bool |
| gmbus_is_index_xfer(struct i2c_msg *msgs, int i, int num) |
| { |
| return (i + 1 < num && |
| msgs[i].addr == msgs[i + 1].addr && |
| !(msgs[i].flags & I2C_M_RD) && |
| (msgs[i].len == 1 || msgs[i].len == 2) && |
| msgs[i + 1].len > 0); |
| } |
| |
| static int |
| gmbus_index_xfer(struct drm_i915_private *dev_priv, struct i2c_msg *msgs, |
| u32 gmbus0_reg) |
| { |
| u32 gmbus1_index = 0; |
| u32 gmbus5 = 0; |
| int ret; |
| |
| if (msgs[0].len == 2) |
| gmbus5 = GMBUS_2BYTE_INDEX_EN | |
| msgs[0].buf[1] | (msgs[0].buf[0] << 8); |
| if (msgs[0].len == 1) |
| gmbus1_index = GMBUS_CYCLE_INDEX | |
| (msgs[0].buf[0] << GMBUS_SLAVE_INDEX_SHIFT); |
| |
| /* GMBUS5 holds 16-bit index */ |
| if (gmbus5) |
| intel_de_write_fw(dev_priv, GMBUS5, gmbus5); |
| |
| if (msgs[1].flags & I2C_M_RD) |
| ret = gmbus_xfer_read(dev_priv, &msgs[1], gmbus0_reg, |
| gmbus1_index); |
| else |
| ret = gmbus_xfer_write(dev_priv, &msgs[1], gmbus1_index); |
| |
| /* Clear GMBUS5 after each index transfer */ |
| if (gmbus5) |
| intel_de_write_fw(dev_priv, GMBUS5, 0); |
| |
| return ret; |
| } |
| |
| static int |
| do_gmbus_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs, int num, |
| u32 gmbus0_source) |
| { |
| struct intel_gmbus *bus = container_of(adapter, |
| struct intel_gmbus, |
| adapter); |
| struct drm_i915_private *dev_priv = bus->dev_priv; |
| int i = 0, inc, try = 0; |
| int ret = 0; |
| |
| /* Display WA #0868: skl,bxt,kbl,cfl,glk */ |
| if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) |
| bxt_gmbus_clock_gating(dev_priv, false); |
| else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_CNP(dev_priv)) |
| pch_gmbus_clock_gating(dev_priv, false); |
| |
| retry: |
| intel_de_write_fw(dev_priv, GMBUS0, gmbus0_source | bus->reg0); |
| |
| for (; i < num; i += inc) { |
| inc = 1; |
| if (gmbus_is_index_xfer(msgs, i, num)) { |
| ret = gmbus_index_xfer(dev_priv, &msgs[i], |
| gmbus0_source | bus->reg0); |
| inc = 2; /* an index transmission is two msgs */ |
| } else if (msgs[i].flags & I2C_M_RD) { |
| ret = gmbus_xfer_read(dev_priv, &msgs[i], |
| gmbus0_source | bus->reg0, 0); |
| } else { |
| ret = gmbus_xfer_write(dev_priv, &msgs[i], 0); |
| } |
| |
| if (!ret) |
| ret = gmbus_wait(dev_priv, |
| GMBUS_HW_WAIT_PHASE, GMBUS_HW_WAIT_EN); |
| if (ret == -ETIMEDOUT) |
| goto timeout; |
| else if (ret) |
| goto clear_err; |
| } |
| |
| /* Generate a STOP condition on the bus. Note that gmbus can't generata |
| * a STOP on the very first cycle. To simplify the code we |
| * unconditionally generate the STOP condition with an additional gmbus |
| * cycle. */ |
| intel_de_write_fw(dev_priv, GMBUS1, GMBUS_CYCLE_STOP | GMBUS_SW_RDY); |
| |
| /* Mark the GMBUS interface as disabled after waiting for idle. |
| * We will re-enable it at the start of the next xfer, |
| * till then let it sleep. |
| */ |
| if (gmbus_wait_idle(dev_priv)) { |
| drm_dbg_kms(&dev_priv->drm, |
| "GMBUS [%s] timed out waiting for idle\n", |
| adapter->name); |
| ret = -ETIMEDOUT; |
| } |
| intel_de_write_fw(dev_priv, GMBUS0, 0); |
| ret = ret ?: i; |
| goto out; |
| |
| clear_err: |
| /* |
| * Wait for bus to IDLE before clearing NAK. |
| * If we clear the NAK while bus is still active, then it will stay |
| * active and the next transaction may fail. |
| * |
| * If no ACK is received during the address phase of a transaction, the |
| * adapter must report -ENXIO. It is not clear what to return if no ACK |
| * is received at other times. But we have to be careful to not return |
| * spurious -ENXIO because that will prevent i2c and drm edid functions |
| * from retrying. So return -ENXIO only when gmbus properly quiescents - |
| * timing out seems to happen when there _is_ a ddc chip present, but |
| * it's slow responding and only answers on the 2nd retry. |
| */ |
| ret = -ENXIO; |
| if (gmbus_wait_idle(dev_priv)) { |
| drm_dbg_kms(&dev_priv->drm, |
| "GMBUS [%s] timed out after NAK\n", |
| adapter->name); |
| ret = -ETIMEDOUT; |
| } |
| |
| /* Toggle the Software Clear Interrupt bit. This has the effect |
| * of resetting the GMBUS controller and so clearing the |
| * BUS_ERROR raised by the slave's NAK. |
| */ |
| intel_de_write_fw(dev_priv, GMBUS1, GMBUS_SW_CLR_INT); |
| intel_de_write_fw(dev_priv, GMBUS1, 0); |
| intel_de_write_fw(dev_priv, GMBUS0, 0); |
| |
| drm_dbg_kms(&dev_priv->drm, "GMBUS [%s] NAK for addr: %04x %c(%d)\n", |
| adapter->name, msgs[i].addr, |
| (msgs[i].flags & I2C_M_RD) ? 'r' : 'w', msgs[i].len); |
| |
| /* |
| * Passive adapters sometimes NAK the first probe. Retry the first |
| * message once on -ENXIO for GMBUS transfers; the bit banging algorithm |
| * has retries internally. See also the retry loop in |
| * drm_do_probe_ddc_edid, which bails out on the first -ENXIO. |
| */ |
| if (ret == -ENXIO && i == 0 && try++ == 0) { |
| drm_dbg_kms(&dev_priv->drm, |
| "GMBUS [%s] NAK on first message, retry\n", |
| adapter->name); |
| goto retry; |
| } |
| |
| goto out; |
| |
| timeout: |
| drm_dbg_kms(&dev_priv->drm, |
| "GMBUS [%s] timed out, falling back to bit banging on pin %d\n", |
| bus->adapter.name, bus->reg0 & 0xff); |
| intel_de_write_fw(dev_priv, GMBUS0, 0); |
| |
| /* |
| * Hardware may not support GMBUS over these pins? Try GPIO bitbanging |
| * instead. Use EAGAIN to have i2c core retry. |
| */ |
| ret = -EAGAIN; |
| |
| out: |
| /* Display WA #0868: skl,bxt,kbl,cfl,glk */ |
| if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) |
| bxt_gmbus_clock_gating(dev_priv, true); |
| else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_CNP(dev_priv)) |
| pch_gmbus_clock_gating(dev_priv, true); |
| |
| return ret; |
| } |
| |
| static int |
| gmbus_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs, int num) |
| { |
| struct intel_gmbus *bus = |
| container_of(adapter, struct intel_gmbus, adapter); |
| struct drm_i915_private *dev_priv = bus->dev_priv; |
| intel_wakeref_t wakeref; |
| int ret; |
| |
| wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS); |
| |
| if (bus->force_bit) { |
| ret = i2c_bit_algo.master_xfer(adapter, msgs, num); |
| if (ret < 0) |
| bus->force_bit &= ~GMBUS_FORCE_BIT_RETRY; |
| } else { |
| ret = do_gmbus_xfer(adapter, msgs, num, 0); |
| if (ret == -EAGAIN) |
| bus->force_bit |= GMBUS_FORCE_BIT_RETRY; |
| } |
| |
| intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref); |
| |
| return ret; |
| } |
| |
| int intel_gmbus_output_aksv(struct i2c_adapter *adapter) |
| { |
| struct intel_gmbus *bus = |
| container_of(adapter, struct intel_gmbus, adapter); |
| struct drm_i915_private *dev_priv = bus->dev_priv; |
| u8 cmd = DRM_HDCP_DDC_AKSV; |
| u8 buf[DRM_HDCP_KSV_LEN] = { 0 }; |
| struct i2c_msg msgs[] = { |
| { |
| .addr = DRM_HDCP_DDC_ADDR, |
| .flags = 0, |
| .len = sizeof(cmd), |
| .buf = &cmd, |
| }, |
| { |
| .addr = DRM_HDCP_DDC_ADDR, |
| .flags = 0, |
| .len = sizeof(buf), |
| .buf = buf, |
| } |
| }; |
| intel_wakeref_t wakeref; |
| int ret; |
| |
| wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS); |
| mutex_lock(&dev_priv->gmbus_mutex); |
| |
| /* |
| * In order to output Aksv to the receiver, use an indexed write to |
| * pass the i2c command, and tell GMBUS to use the HW-provided value |
| * instead of sourcing GMBUS3 for the data. |
| */ |
| ret = do_gmbus_xfer(adapter, msgs, ARRAY_SIZE(msgs), GMBUS_AKSV_SELECT); |
| |
| mutex_unlock(&dev_priv->gmbus_mutex); |
| intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref); |
| |
| return ret; |
| } |
| |
| static u32 gmbus_func(struct i2c_adapter *adapter) |
| { |
| return i2c_bit_algo.functionality(adapter) & |
| (I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | |
| /* I2C_FUNC_10BIT_ADDR | */ |
| I2C_FUNC_SMBUS_READ_BLOCK_DATA | |
| I2C_FUNC_SMBUS_BLOCK_PROC_CALL); |
| } |
| |
| static const struct i2c_algorithm gmbus_algorithm = { |
| .master_xfer = gmbus_xfer, |
| .functionality = gmbus_func |
| }; |
| |
| static void gmbus_lock_bus(struct i2c_adapter *adapter, |
| unsigned int flags) |
| { |
| struct intel_gmbus *bus = to_intel_gmbus(adapter); |
| struct drm_i915_private *dev_priv = bus->dev_priv; |
| |
| mutex_lock(&dev_priv->gmbus_mutex); |
| } |
| |
| static int gmbus_trylock_bus(struct i2c_adapter *adapter, |
| unsigned int flags) |
| { |
| struct intel_gmbus *bus = to_intel_gmbus(adapter); |
| struct drm_i915_private *dev_priv = bus->dev_priv; |
| |
| return mutex_trylock(&dev_priv->gmbus_mutex); |
| } |
| |
| static void gmbus_unlock_bus(struct i2c_adapter *adapter, |
| unsigned int flags) |
| { |
| struct intel_gmbus *bus = to_intel_gmbus(adapter); |
| struct drm_i915_private *dev_priv = bus->dev_priv; |
| |
| mutex_unlock(&dev_priv->gmbus_mutex); |
| } |
| |
| static const struct i2c_lock_operations gmbus_lock_ops = { |
| .lock_bus = gmbus_lock_bus, |
| .trylock_bus = gmbus_trylock_bus, |
| .unlock_bus = gmbus_unlock_bus, |
| }; |
| |
| /** |
| * intel_gmbus_setup - instantiate all Intel i2c GMBuses |
| * @dev_priv: i915 device private |
| */ |
| int intel_gmbus_setup(struct drm_i915_private *dev_priv) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev); |
| struct intel_gmbus *bus; |
| unsigned int pin; |
| int ret; |
| |
| if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) |
| dev_priv->gpio_mmio_base = VLV_DISPLAY_BASE; |
| else if (!HAS_GMCH(dev_priv)) |
| /* |
| * Broxton uses the same PCH offsets for South Display Engine, |
| * even though it doesn't have a PCH. |
| */ |
| dev_priv->gpio_mmio_base = PCH_DISPLAY_BASE; |
| |
| mutex_init(&dev_priv->gmbus_mutex); |
| init_waitqueue_head(&dev_priv->gmbus_wait_queue); |
| |
| for (pin = 0; pin < ARRAY_SIZE(dev_priv->gmbus); pin++) { |
| if (!intel_gmbus_is_valid_pin(dev_priv, pin)) |
| continue; |
| |
| bus = &dev_priv->gmbus[pin]; |
| |
| bus->adapter.owner = THIS_MODULE; |
| bus->adapter.class = I2C_CLASS_DDC; |
| snprintf(bus->adapter.name, |
| sizeof(bus->adapter.name), |
| "i915 gmbus %s", |
| get_gmbus_pin(dev_priv, pin)->name); |
| |
| bus->adapter.dev.parent = &pdev->dev; |
| bus->dev_priv = dev_priv; |
| |
| bus->adapter.algo = &gmbus_algorithm; |
| bus->adapter.lock_ops = &gmbus_lock_ops; |
| |
| /* |
| * We wish to retry with bit banging |
| * after a timed out GMBUS attempt. |
| */ |
| bus->adapter.retries = 1; |
| |
| /* By default use a conservative clock rate */ |
| bus->reg0 = pin | GMBUS_RATE_100KHZ; |
| |
| /* gmbus seems to be broken on i830 */ |
| if (IS_I830(dev_priv)) |
| bus->force_bit = 1; |
| |
| intel_gpio_setup(bus, pin); |
| |
| ret = i2c_add_adapter(&bus->adapter); |
| if (ret) |
| goto err; |
| } |
| |
| intel_gmbus_reset(dev_priv); |
| |
| return 0; |
| |
| err: |
| while (pin--) { |
| if (!intel_gmbus_is_valid_pin(dev_priv, pin)) |
| continue; |
| |
| bus = &dev_priv->gmbus[pin]; |
| i2c_del_adapter(&bus->adapter); |
| } |
| return ret; |
| } |
| |
| struct i2c_adapter *intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, |
| unsigned int pin) |
| { |
| if (drm_WARN_ON(&dev_priv->drm, |
| !intel_gmbus_is_valid_pin(dev_priv, pin))) |
| return NULL; |
| |
| return &dev_priv->gmbus[pin].adapter; |
| } |
| |
| void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed) |
| { |
| struct intel_gmbus *bus = to_intel_gmbus(adapter); |
| |
| bus->reg0 = (bus->reg0 & ~(0x3 << 8)) | speed; |
| } |
| |
| void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit) |
| { |
| struct intel_gmbus *bus = to_intel_gmbus(adapter); |
| struct drm_i915_private *dev_priv = bus->dev_priv; |
| |
| mutex_lock(&dev_priv->gmbus_mutex); |
| |
| bus->force_bit += force_bit ? 1 : -1; |
| drm_dbg_kms(&dev_priv->drm, |
| "%sabling bit-banging on %s. force bit now %d\n", |
| force_bit ? "en" : "dis", adapter->name, |
| bus->force_bit); |
| |
| mutex_unlock(&dev_priv->gmbus_mutex); |
| } |
| |
| bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter) |
| { |
| struct intel_gmbus *bus = to_intel_gmbus(adapter); |
| |
| return bus->force_bit; |
| } |
| |
| void intel_gmbus_teardown(struct drm_i915_private *dev_priv) |
| { |
| struct intel_gmbus *bus; |
| unsigned int pin; |
| |
| for (pin = 0; pin < ARRAY_SIZE(dev_priv->gmbus); pin++) { |
| if (!intel_gmbus_is_valid_pin(dev_priv, pin)) |
| continue; |
| |
| bus = &dev_priv->gmbus[pin]; |
| i2c_del_adapter(&bus->adapter); |
| } |
| } |