blob: 4ef2944a68bc906ebec5167d1e17e281ea67be61 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 */
* Copyright (C) 2015-2019 Jason A. Donenfeld <>. All Rights Reserved.
#ifndef _WG_QUEUEING_H
#define _WG_QUEUEING_H
#include "peer.h"
#include <linux/types.h>
#include <linux/skbuff.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <net/ip_tunnels.h>
struct wg_device;
struct wg_peer;
struct multicore_worker;
struct crypt_queue;
struct prev_queue;
struct sk_buff;
/* queueing.c APIs: */
int wg_packet_queue_init(struct crypt_queue *queue, work_func_t function,
unsigned int len);
void wg_packet_queue_free(struct crypt_queue *queue);
struct multicore_worker __percpu *
wg_packet_percpu_multicore_worker_alloc(work_func_t function, void *ptr);
/* receive.c APIs: */
void wg_packet_receive(struct wg_device *wg, struct sk_buff *skb);
void wg_packet_handshake_receive_worker(struct work_struct *work);
/* NAPI poll function: */
int wg_packet_rx_poll(struct napi_struct *napi, int budget);
/* Workqueue worker: */
void wg_packet_decrypt_worker(struct work_struct *work);
/* send.c APIs: */
void wg_packet_send_queued_handshake_initiation(struct wg_peer *peer,
bool is_retry);
void wg_packet_send_handshake_response(struct wg_peer *peer);
void wg_packet_send_handshake_cookie(struct wg_device *wg,
struct sk_buff *initiating_skb,
__le32 sender_index);
void wg_packet_send_keepalive(struct wg_peer *peer);
void wg_packet_purge_staged_packets(struct wg_peer *peer);
void wg_packet_send_staged_packets(struct wg_peer *peer);
/* Workqueue workers: */
void wg_packet_handshake_send_worker(struct work_struct *work);
void wg_packet_tx_worker(struct work_struct *work);
void wg_packet_encrypt_worker(struct work_struct *work);
enum packet_state {
struct packet_cb {
u64 nonce;
struct noise_keypair *keypair;
atomic_t state;
u32 mtu;
u8 ds;
#define PACKET_CB(skb) ((struct packet_cb *)((skb)->cb))
#define PACKET_PEER(skb) (PACKET_CB(skb)->keypair->entry.peer)
static inline bool wg_check_packet_protocol(struct sk_buff *skb)
__be16 real_protocol = ip_tunnel_parse_protocol(skb);
return real_protocol && skb->protocol == real_protocol;
static inline void wg_reset_packet(struct sk_buff *skb, bool encapsulating)
u8 l4_hash = skb->l4_hash;
u8 sw_hash = skb->sw_hash;
u32 hash = skb->hash;
skb_scrub_packet(skb, true);
memset(&skb->headers_start, 0,
offsetof(struct sk_buff, headers_end) -
offsetof(struct sk_buff, headers_start));
if (encapsulating) {
skb->l4_hash = l4_hash;
skb->sw_hash = sw_hash;
skb->hash = hash;
skb->queue_mapping = 0;
skb->nohdr = 0;
skb->peeked = 0;
skb->mac_len = 0;
skb->dev = NULL;
skb->tc_index = 0;
skb->hdr_len = skb_headroom(skb);
static inline int wg_cpumask_choose_online(int *stored_cpu, unsigned int id)
unsigned int cpu = *stored_cpu, cpu_index, i;
if (unlikely(cpu == nr_cpumask_bits ||
!cpumask_test_cpu(cpu, cpu_online_mask))) {
cpu_index = id % cpumask_weight(cpu_online_mask);
cpu = cpumask_first(cpu_online_mask);
for (i = 0; i < cpu_index; ++i)
cpu = cpumask_next(cpu, cpu_online_mask);
*stored_cpu = cpu;
return cpu;
/* This function is racy, in the sense that next is unlocked, so it could return
* the same CPU twice. A race-free version of this would be to instead store an
* atomic sequence number, do an increment-and-return, and then iterate through
* every possible CPU until we get to that index -- choose_cpu. However that's
* a bit slower, and it doesn't seem like this potential race actually
* introduces any performance loss, so we live with it.
static inline int wg_cpumask_next_online(int *next)
int cpu = *next;
while (unlikely(!cpumask_test_cpu(cpu, cpu_online_mask)))
cpu = cpumask_next(cpu, cpu_online_mask) % nr_cpumask_bits;
*next = cpumask_next(cpu, cpu_online_mask) % nr_cpumask_bits;
return cpu;
void wg_prev_queue_init(struct prev_queue *queue);
/* Multi producer */
bool wg_prev_queue_enqueue(struct prev_queue *queue, struct sk_buff *skb);
/* Single consumer */
struct sk_buff *wg_prev_queue_dequeue(struct prev_queue *queue);
/* Single consumer */
static inline struct sk_buff *wg_prev_queue_peek(struct prev_queue *queue)
if (queue->peeked)
return queue->peeked;
queue->peeked = wg_prev_queue_dequeue(queue);
return queue->peeked;
/* Single consumer */
static inline void wg_prev_queue_drop_peeked(struct prev_queue *queue)
queue->peeked = NULL;
static inline int wg_queue_enqueue_per_device_and_peer(
struct crypt_queue *device_queue, struct prev_queue *peer_queue,
struct sk_buff *skb, struct workqueue_struct *wq, int *next_cpu)
int cpu;
atomic_set_release(&PACKET_CB(skb)->state, PACKET_STATE_UNCRYPTED);
/* We first queue this up for the peer ingestion, but the consumer
* will wait for the state to change to CRYPTED or DEAD before.
if (unlikely(!wg_prev_queue_enqueue(peer_queue, skb)))
return -ENOSPC;
/* Then we queue it up in the device queue, which consumes the
* packet as soon as it can.
cpu = wg_cpumask_next_online(next_cpu);
if (unlikely(ptr_ring_produce_bh(&device_queue->ring, skb)))
return -EPIPE;
queue_work_on(cpu, wq, &per_cpu_ptr(device_queue->worker, cpu)->work);
return 0;
static inline void wg_queue_enqueue_per_peer_tx(struct sk_buff *skb, enum packet_state state)
/* We take a reference, because as soon as we call atomic_set, the
* peer can be freed from below us.
struct wg_peer *peer = wg_peer_get(PACKET_PEER(skb));
atomic_set_release(&PACKET_CB(skb)->state, state);
queue_work_on(wg_cpumask_choose_online(&peer->serial_work_cpu, peer->internal_id),
peer->device->packet_crypt_wq, &peer->transmit_packet_work);
static inline void wg_queue_enqueue_per_peer_rx(struct sk_buff *skb, enum packet_state state)
/* We take a reference, because as soon as we call atomic_set, the
* peer can be freed from below us.
struct wg_peer *peer = wg_peer_get(PACKET_PEER(skb));
atomic_set_release(&PACKET_CB(skb)->state, state);
#ifdef DEBUG
bool wg_packet_counter_selftest(void);
#endif /* _WG_QUEUEING_H */