blob: 60d4ba2751966952041b9fa4f928af50afc36c1e [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2007 - 2011 Realtek Corporation. */
#include "../include/odm_precomp.h"
/*---------------------------Define Local Constant---------------------------*/
/* 2010/04/25 MH Define the max tx power tracking tx agc power. */
#define ODM_TXPWRTRACK_MAX_IDX_88E 6
/*---------------------------Define Local Constant---------------------------*/
/* 3============================================================ */
/* 3 Tx Power Tracking */
/* 3============================================================ */
/*-----------------------------------------------------------------------------
* Function: ODM_TxPwrTrackAdjust88E()
*
* Overview: 88E we can not write 0xc80/c94/c4c/ 0xa2x. Instead of write TX agc.
* No matter OFDM & CCK use the same method.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 04/23/2012 MHC Create Version 0.
* 04/23/2012 MHC Adjust TX agc directly not throughput BB digital.
*
*---------------------------------------------------------------------------*/
void ODM_TxPwrTrackAdjust88E(struct odm_dm_struct *dm_odm, u8 Type,/* 0 = OFDM, 1 = CCK */
u8 *pDirection, /* 1 = +(increase) 2 = -(decrease) */
u32 *pOutWriteVal /* Tx tracking CCK/OFDM BB swing index adjust */
)
{
u8 pwr_value = 0;
/* Tx power tracking BB swing table. */
/* The base index = 12. +((12-n)/2)dB 13~?? = decrease tx pwr by -((n-12)/2)dB */
if (Type == 0) { /* For OFDM afjust */
if (dm_odm->BbSwingIdxOfdm <= dm_odm->BbSwingIdxOfdmBase) {
*pDirection = 1;
pwr_value = (dm_odm->BbSwingIdxOfdmBase - dm_odm->BbSwingIdxOfdm);
} else {
*pDirection = 2;
pwr_value = (dm_odm->BbSwingIdxOfdm - dm_odm->BbSwingIdxOfdmBase);
}
} else if (Type == 1) { /* For CCK adjust. */
if (dm_odm->BbSwingIdxCck <= dm_odm->BbSwingIdxCckBase) {
*pDirection = 1;
pwr_value = (dm_odm->BbSwingIdxCckBase - dm_odm->BbSwingIdxCck);
} else {
*pDirection = 2;
pwr_value = (dm_odm->BbSwingIdxCck - dm_odm->BbSwingIdxCckBase);
}
}
/* */
/* 2012/04/25 MH According to Ed/Luke.Lees estimate for EVM the max tx power tracking */
/* need to be less than 6 power index for 88E. */
/* */
if (pwr_value >= ODM_TXPWRTRACK_MAX_IDX_88E && *pDirection == 1)
pwr_value = ODM_TXPWRTRACK_MAX_IDX_88E;
*pOutWriteVal = pwr_value | (pwr_value << 8) | (pwr_value << 16) | (pwr_value << 24);
} /* ODM_TxPwrTrackAdjust88E */
/*-----------------------------------------------------------------------------
* Function: odm_TxPwrTrackSetPwr88E()
*
* Overview: 88E change all channel tx power accordign to flag.
* OFDM & CCK are all different.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 04/23/2012 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
static void odm_TxPwrTrackSetPwr88E(struct odm_dm_struct *dm_odm)
{
if (dm_odm->BbSwingFlagOfdm || dm_odm->BbSwingFlagCck) {
PHY_SetTxPowerLevel8188E(dm_odm->Adapter, *dm_odm->pChannel);
dm_odm->BbSwingFlagOfdm = false;
dm_odm->BbSwingFlagCck = false;
}
} /* odm_TxPwrTrackSetPwr88E */
/* 091212 chiyokolin */
void
odm_TXPowerTrackingCallback_ThermalMeter_8188E(
struct adapter *Adapter
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
u8 ThermalValue = 0, delta, delta_LCK, delta_IQK, offset;
u8 ThermalValue_AVG_count = 0;
u32 ThermalValue_AVG = 0;
s32 ele_A = 0, ele_D, TempCCk, X, value32;
s32 Y, ele_C = 0;
s8 OFDM_index[2], CCK_index = 0;
s8 OFDM_index_old[2] = {0, 0}, CCK_index_old = 0;
u32 i = 0, j = 0;
bool is2t = false;
u8 OFDM_min_index = 6, rf; /* OFDM BB Swing should be less than +3.0dB, which is required by Arthur */
s8 OFDM_index_mapping[2][index_mapping_NUM_88E] = {
{0, 0, 2, 3, 4, 4, /* 2.4G, decrease power */
5, 6, 7, 7, 8, 9,
10, 10, 11}, /* For lower temperature, 20120220 updated on 20120220. */
{0, 0, -1, -2, -3, -4, /* 2.4G, increase power */
-4, -4, -4, -5, -7, -8,
-9, -9, -10},
};
u8 Thermal_mapping[2][index_mapping_NUM_88E] = {
{0, 2, 4, 6, 8, 10, /* 2.4G, decrease power */
12, 14, 16, 18, 20, 22,
24, 26, 27},
{0, 2, 4, 6, 8, 10, /* 2.4G,, increase power */
12, 14, 16, 18, 20, 22,
25, 25, 25},
};
struct odm_dm_struct *dm_odm = &pHalData->odmpriv;
/* 2012/04/25 MH Add for tx power tracking to set tx power in tx agc for 88E. */
odm_TxPwrTrackSetPwr88E(dm_odm);
dm_odm->RFCalibrateInfo.TXPowerTrackingCallbackCnt++; /* cosa add for debug */
dm_odm->RFCalibrateInfo.bTXPowerTrackingInit = true;
/* <Kordan> RFCalibrateInfo.RegA24 will be initialized when ODM HW configuring, but MP configures with para files. */
dm_odm->RFCalibrateInfo.RegA24 = 0x090e1317;
ThermalValue = (u8)ODM_GetRFReg(dm_odm, RF_PATH_A, RF_T_METER_88E, 0xfc00); /* 0x42: RF Reg[15:10] 88E */
if (is2t)
rf = 2;
else
rf = 1;
if (ThermalValue) {
/* Query OFDM path A default setting */
ele_D = ODM_GetBBReg(dm_odm, rOFDM0_XATxIQImbalance, bMaskDWord) & bMaskOFDM_D;
for (i = 0; i < OFDM_TABLE_SIZE_92D; i++) { /* find the index */
if (ele_D == (OFDMSwingTable[i] & bMaskOFDM_D)) {
OFDM_index_old[0] = (u8)i;
dm_odm->BbSwingIdxOfdmBase = (u8)i;
break;
}
}
/* Query OFDM path B default setting */
if (is2t) {
ele_D = ODM_GetBBReg(dm_odm, rOFDM0_XBTxIQImbalance, bMaskDWord) & bMaskOFDM_D;
for (i = 0; i < OFDM_TABLE_SIZE_92D; i++) { /* find the index */
if (ele_D == (OFDMSwingTable[i] & bMaskOFDM_D)) {
OFDM_index_old[1] = (u8)i;
break;
}
}
}
/* Query CCK default setting From 0xa24 */
TempCCk = dm_odm->RFCalibrateInfo.RegA24;
for (i = 0; i < CCK_TABLE_SIZE; i++) {
if (dm_odm->RFCalibrateInfo.bCCKinCH14) {
if (ODM_CompareMemory(dm_odm, (void *)&TempCCk, (void *)&CCKSwingTable_Ch14[i][2], 4) == 0) {
CCK_index_old = (u8)i;
dm_odm->BbSwingIdxCckBase = (u8)i;
break;
}
} else {
if (ODM_CompareMemory(dm_odm, (void *)&TempCCk, (void *)&CCKSwingTable_Ch1_Ch13[i][2], 4) == 0) {
CCK_index_old = (u8)i;
dm_odm->BbSwingIdxCckBase = (u8)i;
break;
}
}
}
if (!dm_odm->RFCalibrateInfo.ThermalValue) {
dm_odm->RFCalibrateInfo.ThermalValue = pHalData->EEPROMThermalMeter;
dm_odm->RFCalibrateInfo.ThermalValue_LCK = ThermalValue;
dm_odm->RFCalibrateInfo.ThermalValue_IQK = ThermalValue;
for (i = 0; i < rf; i++)
dm_odm->RFCalibrateInfo.OFDM_index[i] = OFDM_index_old[i];
dm_odm->RFCalibrateInfo.CCK_index = CCK_index_old;
}
/* calculate average thermal meter */
dm_odm->RFCalibrateInfo.ThermalValue_AVG[dm_odm->RFCalibrateInfo.ThermalValue_AVG_index] = ThermalValue;
dm_odm->RFCalibrateInfo.ThermalValue_AVG_index++;
if (dm_odm->RFCalibrateInfo.ThermalValue_AVG_index == AVG_THERMAL_NUM_88E)
dm_odm->RFCalibrateInfo.ThermalValue_AVG_index = 0;
for (i = 0; i < AVG_THERMAL_NUM_88E; i++) {
if (dm_odm->RFCalibrateInfo.ThermalValue_AVG[i]) {
ThermalValue_AVG += dm_odm->RFCalibrateInfo.ThermalValue_AVG[i];
ThermalValue_AVG_count++;
}
}
if (ThermalValue_AVG_count)
ThermalValue = (u8)(ThermalValue_AVG / ThermalValue_AVG_count);
if (dm_odm->RFCalibrateInfo.bReloadtxpowerindex) {
delta = ThermalValue > pHalData->EEPROMThermalMeter ?
(ThermalValue - pHalData->EEPROMThermalMeter) :
(pHalData->EEPROMThermalMeter - ThermalValue);
dm_odm->RFCalibrateInfo.bReloadtxpowerindex = false;
dm_odm->RFCalibrateInfo.bDoneTxpower = false;
} else if (dm_odm->RFCalibrateInfo.bDoneTxpower) {
delta = (ThermalValue > dm_odm->RFCalibrateInfo.ThermalValue) ?
(ThermalValue - dm_odm->RFCalibrateInfo.ThermalValue) :
(dm_odm->RFCalibrateInfo.ThermalValue - ThermalValue);
} else {
delta = ThermalValue > pHalData->EEPROMThermalMeter ?
(ThermalValue - pHalData->EEPROMThermalMeter) :
(pHalData->EEPROMThermalMeter - ThermalValue);
}
delta_LCK = (ThermalValue > dm_odm->RFCalibrateInfo.ThermalValue_LCK) ?
(ThermalValue - dm_odm->RFCalibrateInfo.ThermalValue_LCK) :
(dm_odm->RFCalibrateInfo.ThermalValue_LCK - ThermalValue);
delta_IQK = (ThermalValue > dm_odm->RFCalibrateInfo.ThermalValue_IQK) ?
(ThermalValue - dm_odm->RFCalibrateInfo.ThermalValue_IQK) :
(dm_odm->RFCalibrateInfo.ThermalValue_IQK - ThermalValue);
if ((delta_LCK >= 8)) { /* Delta temperature is equal to or larger than 20 centigrade. */
dm_odm->RFCalibrateInfo.ThermalValue_LCK = ThermalValue;
PHY_LCCalibrate_8188E(Adapter);
}
if (delta > 0 && dm_odm->RFCalibrateInfo.TxPowerTrackControl) {
delta = ThermalValue > pHalData->EEPROMThermalMeter ?
(ThermalValue - pHalData->EEPROMThermalMeter) :
(pHalData->EEPROMThermalMeter - ThermalValue);
/* calculate new OFDM / CCK offset */
if (ThermalValue > pHalData->EEPROMThermalMeter)
j = 1;
else
j = 0;
for (offset = 0; offset < index_mapping_NUM_88E; offset++) {
if (delta < Thermal_mapping[j][offset]) {
if (offset != 0)
offset--;
break;
}
}
if (offset >= index_mapping_NUM_88E)
offset = index_mapping_NUM_88E - 1;
for (i = 0; i < rf; i++)
OFDM_index[i] = dm_odm->RFCalibrateInfo.OFDM_index[i] + OFDM_index_mapping[j][offset];
CCK_index = dm_odm->RFCalibrateInfo.CCK_index + OFDM_index_mapping[j][offset];
for (i = 0; i < rf; i++) {
if (OFDM_index[i] > OFDM_TABLE_SIZE_92D - 1)
OFDM_index[i] = OFDM_TABLE_SIZE_92D - 1;
else if (OFDM_index[i] < OFDM_min_index)
OFDM_index[i] = OFDM_min_index;
}
if (CCK_index > CCK_TABLE_SIZE - 1)
CCK_index = CCK_TABLE_SIZE - 1;
else if (CCK_index < 0)
CCK_index = 0;
/* 2 temporarily remove bNOPG */
/* Config by SwingTable */
if (dm_odm->RFCalibrateInfo.TxPowerTrackControl) {
dm_odm->RFCalibrateInfo.bDoneTxpower = true;
/* Adujst OFDM Ant_A according to IQK result */
ele_D = (OFDMSwingTable[(u8)OFDM_index[0]] & 0xFFC00000) >> 22;
X = dm_odm->RFCalibrateInfo.IQKMatrixRegSetting.Value[0][0];
Y = dm_odm->RFCalibrateInfo.IQKMatrixRegSetting.Value[0][1];
/* Revse TX power table. */
dm_odm->BbSwingIdxOfdm = (u8)OFDM_index[0];
dm_odm->BbSwingIdxCck = (u8)CCK_index;
if (dm_odm->BbSwingIdxOfdmCurrent != dm_odm->BbSwingIdxOfdm) {
dm_odm->BbSwingIdxOfdmCurrent = dm_odm->BbSwingIdxOfdm;
dm_odm->BbSwingFlagOfdm = true;
}
if (dm_odm->BbSwingIdxCckCurrent != dm_odm->BbSwingIdxCck) {
dm_odm->BbSwingIdxCckCurrent = dm_odm->BbSwingIdxCck;
dm_odm->BbSwingFlagCck = true;
}
if (X != 0) {
if ((X & 0x00000200) != 0)
X = X | 0xFFFFFC00;
ele_A = ((X * ele_D) >> 8) & 0x000003FF;
/* new element C = element D x Y */
if ((Y & 0x00000200) != 0)
Y = Y | 0xFFFFFC00;
ele_C = ((Y * ele_D) >> 8) & 0x000003FF;
/* 2012/04/23 MH According to Luke's suggestion, we can not write BB digital */
/* to increase TX power. Otherwise, EVM will be bad. */
}
if (is2t) {
ele_D = (OFDMSwingTable[(u8)OFDM_index[1]] & 0xFFC00000) >> 22;
/* new element A = element D x X */
X = dm_odm->RFCalibrateInfo.IQKMatrixRegSetting.Value[0][4];
Y = dm_odm->RFCalibrateInfo.IQKMatrixRegSetting.Value[0][5];
if (X != 0) {
if ((X & 0x00000200) != 0) /* consider minus */
X = X | 0xFFFFFC00;
ele_A = ((X * ele_D) >> 8) & 0x000003FF;
/* new element C = element D x Y */
if ((Y & 0x00000200) != 0)
Y = Y | 0xFFFFFC00;
ele_C = ((Y * ele_D) >> 8) & 0x00003FF;
/* wtite new elements A, C, D to regC88 and regC9C, element B is always 0 */
value32 = (ele_D << 22) | ((ele_C & 0x3F) << 16) | ele_A;
ODM_SetBBReg(dm_odm, rOFDM0_XBTxIQImbalance, bMaskDWord, value32);
value32 = (ele_C & 0x000003C0) >> 6;
ODM_SetBBReg(dm_odm, rOFDM0_XDTxAFE, bMaskH4Bits, value32);
value32 = ((X * ele_D) >> 7) & 0x01;
ODM_SetBBReg(dm_odm, rOFDM0_ECCAThreshold, BIT(28), value32);
} else {
ODM_SetBBReg(dm_odm, rOFDM0_XBTxIQImbalance, bMaskDWord, OFDMSwingTable[(u8)OFDM_index[1]]);
ODM_SetBBReg(dm_odm, rOFDM0_XDTxAFE, bMaskH4Bits, 0x00);
ODM_SetBBReg(dm_odm, rOFDM0_ECCAThreshold, BIT(28), 0x00);
}
}
}
}
if (delta_IQK >= 8) { /* Delta temperature is equal to or larger than 20 centigrade. */
dm_odm->RFCalibrateInfo.ThermalValue_IQK = ThermalValue;
PHY_IQCalibrate_8188E(Adapter, false);
}
/* update thermal meter value */
if (dm_odm->RFCalibrateInfo.TxPowerTrackControl)
dm_odm->RFCalibrateInfo.ThermalValue = ThermalValue;
}
dm_odm->RFCalibrateInfo.TXPowercount = 0;
}
/* 1 7. IQK */
#define MAX_TOLERANCE 5
#define IQK_DELAY_TIME 1 /* ms */
static u8 /* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */
phy_PathA_IQK_8188E(struct adapter *adapt, bool configPathB)
{
u32 regeac, regE94, regE9C;
u8 result = 0x00;
struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt);
struct odm_dm_struct *dm_odm = &pHalData->odmpriv;
/* 1 Tx IQK */
/* path-A IQK setting */
ODM_SetBBReg(dm_odm, rTx_IQK_Tone_A, bMaskDWord, 0x10008c1c);
ODM_SetBBReg(dm_odm, rRx_IQK_Tone_A, bMaskDWord, 0x30008c1c);
ODM_SetBBReg(dm_odm, rTx_IQK_PI_A, bMaskDWord, 0x8214032a);
ODM_SetBBReg(dm_odm, rRx_IQK_PI_A, bMaskDWord, 0x28160000);
/* LO calibration setting */
ODM_SetBBReg(dm_odm, rIQK_AGC_Rsp, bMaskDWord, 0x00462911);
/* One shot, path A LOK & IQK */
ODM_SetBBReg(dm_odm, rIQK_AGC_Pts, bMaskDWord, 0xf9000000);
ODM_SetBBReg(dm_odm, rIQK_AGC_Pts, bMaskDWord, 0xf8000000);
/* delay x ms */
/* PlatformStallExecution(IQK_DELAY_TIME_88E*1000); */
ODM_delay_ms(IQK_DELAY_TIME_88E);
/* Check failed */
regeac = ODM_GetBBReg(dm_odm, rRx_Power_After_IQK_A_2, bMaskDWord);
regE94 = ODM_GetBBReg(dm_odm, rTx_Power_Before_IQK_A, bMaskDWord);
regE9C = ODM_GetBBReg(dm_odm, rTx_Power_After_IQK_A, bMaskDWord);
if (!(regeac & BIT(28)) &&
(((regE94 & 0x03FF0000) >> 16) != 0x142) &&
(((regE9C & 0x03FF0000) >> 16) != 0x42))
result |= 0x01;
return result;
}
static u8 /* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */
phy_PathA_RxIQK(struct adapter *adapt, bool configPathB)
{
u32 regeac, regE94, regE9C, regEA4, u4tmp;
u8 result = 0x00;
struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt);
struct odm_dm_struct *dm_odm = &pHalData->odmpriv;
/* 1 Get TXIMR setting */
/* modify RXIQK mode table */
ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0x00000000);
ODM_SetRFReg(dm_odm, RF_PATH_A, RF_WE_LUT, bRFRegOffsetMask, 0x800a0);
ODM_SetRFReg(dm_odm, RF_PATH_A, RF_RCK_OS, bRFRegOffsetMask, 0x30000);
ODM_SetRFReg(dm_odm, RF_PATH_A, RF_TXPA_G1, bRFRegOffsetMask, 0x0000f);
ODM_SetRFReg(dm_odm, RF_PATH_A, RF_TXPA_G2, bRFRegOffsetMask, 0xf117B);
/* PA,PAD off */
ODM_SetRFReg(dm_odm, RF_PATH_A, 0xdf, bRFRegOffsetMask, 0x980);
ODM_SetRFReg(dm_odm, RF_PATH_A, 0x56, bRFRegOffsetMask, 0x51000);
ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0x80800000);
/* IQK setting */
ODM_SetBBReg(dm_odm, rTx_IQK, bMaskDWord, 0x01007c00);
ODM_SetBBReg(dm_odm, rRx_IQK, bMaskDWord, 0x81004800);
/* path-A IQK setting */
ODM_SetBBReg(dm_odm, rTx_IQK_Tone_A, bMaskDWord, 0x10008c1c);
ODM_SetBBReg(dm_odm, rRx_IQK_Tone_A, bMaskDWord, 0x30008c1c);
ODM_SetBBReg(dm_odm, rTx_IQK_PI_A, bMaskDWord, 0x82160c1f);
ODM_SetBBReg(dm_odm, rRx_IQK_PI_A, bMaskDWord, 0x28160000);
/* LO calibration setting */
ODM_SetBBReg(dm_odm, rIQK_AGC_Rsp, bMaskDWord, 0x0046a911);
/* One shot, path A LOK & IQK */
ODM_SetBBReg(dm_odm, rIQK_AGC_Pts, bMaskDWord, 0xf9000000);
ODM_SetBBReg(dm_odm, rIQK_AGC_Pts, bMaskDWord, 0xf8000000);
/* delay x ms */
ODM_delay_ms(IQK_DELAY_TIME_88E);
/* Check failed */
regeac = ODM_GetBBReg(dm_odm, rRx_Power_After_IQK_A_2, bMaskDWord);
regE94 = ODM_GetBBReg(dm_odm, rTx_Power_Before_IQK_A, bMaskDWord);
regE9C = ODM_GetBBReg(dm_odm, rTx_Power_After_IQK_A, bMaskDWord);
if (!(regeac & BIT(28)) &&
(((regE94 & 0x03FF0000) >> 16) != 0x142) &&
(((regE9C & 0x03FF0000) >> 16) != 0x42))
result |= 0x01;
else /* if Tx not OK, ignore Rx */
return result;
u4tmp = 0x80007C00 | (regE94 & 0x3FF0000) | ((regE9C & 0x3FF0000) >> 16);
ODM_SetBBReg(dm_odm, rTx_IQK, bMaskDWord, u4tmp);
/* 1 RX IQK */
/* modify RXIQK mode table */
ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0x00000000);
ODM_SetRFReg(dm_odm, RF_PATH_A, RF_WE_LUT, bRFRegOffsetMask, 0x800a0);
ODM_SetRFReg(dm_odm, RF_PATH_A, RF_RCK_OS, bRFRegOffsetMask, 0x30000);
ODM_SetRFReg(dm_odm, RF_PATH_A, RF_TXPA_G1, bRFRegOffsetMask, 0x0000f);
ODM_SetRFReg(dm_odm, RF_PATH_A, RF_TXPA_G2, bRFRegOffsetMask, 0xf7ffa);
ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0x80800000);
/* IQK setting */
ODM_SetBBReg(dm_odm, rRx_IQK, bMaskDWord, 0x01004800);
/* path-A IQK setting */
ODM_SetBBReg(dm_odm, rTx_IQK_Tone_A, bMaskDWord, 0x38008c1c);
ODM_SetBBReg(dm_odm, rRx_IQK_Tone_A, bMaskDWord, 0x18008c1c);
ODM_SetBBReg(dm_odm, rTx_IQK_PI_A, bMaskDWord, 0x82160c05);
ODM_SetBBReg(dm_odm, rRx_IQK_PI_A, bMaskDWord, 0x28160c1f);
/* LO calibration setting */
ODM_SetBBReg(dm_odm, rIQK_AGC_Rsp, bMaskDWord, 0x0046a911);
/* One shot, path A LOK & IQK */
ODM_SetBBReg(dm_odm, rIQK_AGC_Pts, bMaskDWord, 0xf9000000);
ODM_SetBBReg(dm_odm, rIQK_AGC_Pts, bMaskDWord, 0xf8000000);
/* delay x ms */
/* PlatformStallExecution(IQK_DELAY_TIME_88E*1000); */
ODM_delay_ms(IQK_DELAY_TIME_88E);
/* Check failed */
regeac = ODM_GetBBReg(dm_odm, rRx_Power_After_IQK_A_2, bMaskDWord);
regE94 = ODM_GetBBReg(dm_odm, rTx_Power_Before_IQK_A, bMaskDWord);
regE9C = ODM_GetBBReg(dm_odm, rTx_Power_After_IQK_A, bMaskDWord);
regEA4 = ODM_GetBBReg(dm_odm, rRx_Power_Before_IQK_A_2, bMaskDWord);
/* reload RF 0xdf */
ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0x00000000);
ODM_SetRFReg(dm_odm, RF_PATH_A, 0xdf, bRFRegOffsetMask, 0x180);
if (!(regeac & BIT(27)) && /* if Tx is OK, check whether Rx is OK */
(((regEA4 & 0x03FF0000) >> 16) != 0x132) &&
(((regeac & 0x03FF0000) >> 16) != 0x36))
result |= 0x02;
return result;
}
static u8 /* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */
phy_PathB_IQK_8188E(struct adapter *adapt)
{
u32 regeac, regeb4, regebc, regec4, regecc;
u8 result = 0x00;
struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt);
struct odm_dm_struct *dm_odm = &pHalData->odmpriv;
/* One shot, path B LOK & IQK */
ODM_SetBBReg(dm_odm, rIQK_AGC_Cont, bMaskDWord, 0x00000002);
ODM_SetBBReg(dm_odm, rIQK_AGC_Cont, bMaskDWord, 0x00000000);
/* delay x ms */
ODM_delay_ms(IQK_DELAY_TIME_88E);
/* Check failed */
regeac = ODM_GetBBReg(dm_odm, rRx_Power_After_IQK_A_2, bMaskDWord);
regeb4 = ODM_GetBBReg(dm_odm, rTx_Power_Before_IQK_B, bMaskDWord);
regebc = ODM_GetBBReg(dm_odm, rTx_Power_After_IQK_B, bMaskDWord);
regec4 = ODM_GetBBReg(dm_odm, rRx_Power_Before_IQK_B_2, bMaskDWord);
regecc = ODM_GetBBReg(dm_odm, rRx_Power_After_IQK_B_2, bMaskDWord);
if (!(regeac & BIT(31)) &&
(((regeb4 & 0x03FF0000) >> 16) != 0x142) &&
(((regebc & 0x03FF0000) >> 16) != 0x42))
result |= 0x01;
else
return result;
if (!(regeac & BIT(30)) &&
(((regec4 & 0x03FF0000) >> 16) != 0x132) &&
(((regecc & 0x03FF0000) >> 16) != 0x36))
result |= 0x02;
return result;
}
static void patha_fill_iqk(struct adapter *adapt, bool iqkok, s32 result[][8], u8 final_candidate, bool txonly)
{
u32 Oldval_0, X, TX0_A, reg;
s32 Y, TX0_C;
struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt);
struct odm_dm_struct *dm_odm = &pHalData->odmpriv;
if (final_candidate == 0xFF) {
return;
} else if (iqkok) {
Oldval_0 = (ODM_GetBBReg(dm_odm, rOFDM0_XATxIQImbalance, bMaskDWord) >> 22) & 0x3FF;
X = result[final_candidate][0];
if ((X & 0x00000200) != 0)
X = X | 0xFFFFFC00;
TX0_A = (X * Oldval_0) >> 8;
ODM_SetBBReg(dm_odm, rOFDM0_XATxIQImbalance, 0x3FF, TX0_A);
ODM_SetBBReg(dm_odm, rOFDM0_ECCAThreshold, BIT(31), ((X * Oldval_0 >> 7) & 0x1));
Y = result[final_candidate][1];
if ((Y & 0x00000200) != 0)
Y = Y | 0xFFFFFC00;
TX0_C = (Y * Oldval_0) >> 8;
ODM_SetBBReg(dm_odm, rOFDM0_XCTxAFE, 0xF0000000, ((TX0_C & 0x3C0) >> 6));
ODM_SetBBReg(dm_odm, rOFDM0_XATxIQImbalance, 0x003F0000, (TX0_C & 0x3F));
ODM_SetBBReg(dm_odm, rOFDM0_ECCAThreshold, BIT(29), ((Y * Oldval_0 >> 7) & 0x1));
if (txonly)
return;
reg = result[final_candidate][2];
ODM_SetBBReg(dm_odm, rOFDM0_XARxIQImbalance, 0x3FF, reg);
reg = result[final_candidate][3] & 0x3F;
ODM_SetBBReg(dm_odm, rOFDM0_XARxIQImbalance, 0xFC00, reg);
reg = (result[final_candidate][3] >> 6) & 0xF;
ODM_SetBBReg(dm_odm, rOFDM0_RxIQExtAnta, 0xF0000000, reg);
}
}
void _PHY_SaveADDARegisters(struct adapter *adapt, u32 *ADDAReg, u32 *ADDABackup, u32 RegisterNum)
{
u32 i;
struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt);
struct odm_dm_struct *dm_odm = &pHalData->odmpriv;
for (i = 0; i < RegisterNum; i++) {
ADDABackup[i] = ODM_GetBBReg(dm_odm, ADDAReg[i], bMaskDWord);
}
}
static void _PHY_SaveMACRegisters(
struct adapter *adapt,
u32 *MACReg,
u32 *MACBackup
)
{
u32 i;
struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt);
struct odm_dm_struct *dm_odm = &pHalData->odmpriv;
for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++) {
MACBackup[i] = ODM_Read1Byte(dm_odm, MACReg[i]);
}
MACBackup[i] = ODM_Read4Byte(dm_odm, MACReg[i]);
}
static void reload_adda_reg(struct adapter *adapt, u32 *ADDAReg, u32 *ADDABackup, u32 RegiesterNum)
{
u32 i;
struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt);
struct odm_dm_struct *dm_odm = &pHalData->odmpriv;
for (i = 0; i < RegiesterNum; i++)
ODM_SetBBReg(dm_odm, ADDAReg[i], bMaskDWord, ADDABackup[i]);
}
static void
_PHY_ReloadMACRegisters(
struct adapter *adapt,
u32 *MACReg,
u32 *MACBackup
)
{
u32 i;
struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt);
struct odm_dm_struct *dm_odm = &pHalData->odmpriv;
for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++) {
ODM_Write1Byte(dm_odm, MACReg[i], (u8)MACBackup[i]);
}
ODM_Write4Byte(dm_odm, MACReg[i], MACBackup[i]);
}
void
_PHY_PathADDAOn(
struct adapter *adapt,
u32 *ADDAReg,
bool isPathAOn,
bool is2t
)
{
u32 pathOn;
u32 i;
struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt);
struct odm_dm_struct *dm_odm = &pHalData->odmpriv;
pathOn = isPathAOn ? 0x04db25a4 : 0x0b1b25a4;
if (!is2t) {
pathOn = 0x0bdb25a0;
ODM_SetBBReg(dm_odm, ADDAReg[0], bMaskDWord, 0x0b1b25a0);
} else {
ODM_SetBBReg(dm_odm, ADDAReg[0], bMaskDWord, pathOn);
}
for (i = 1; i < IQK_ADDA_REG_NUM; i++)
ODM_SetBBReg(dm_odm, ADDAReg[i], bMaskDWord, pathOn);
}
void
_PHY_MACSettingCalibration(
struct adapter *adapt,
u32 *MACReg,
u32 *MACBackup
)
{
u32 i = 0;
struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt);
struct odm_dm_struct *dm_odm = &pHalData->odmpriv;
ODM_Write1Byte(dm_odm, MACReg[i], 0x3F);
for (i = 1; i < (IQK_MAC_REG_NUM - 1); i++) {
ODM_Write1Byte(dm_odm, MACReg[i], (u8)(MACBackup[i] & (~BIT(3))));
}
ODM_Write1Byte(dm_odm, MACReg[i], (u8)(MACBackup[i] & (~BIT(5))));
}
void
_PHY_PathAStandBy(
struct adapter *adapt
)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt);
struct odm_dm_struct *dm_odm = &pHalData->odmpriv;
ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0x0);
ODM_SetBBReg(dm_odm, 0x840, bMaskDWord, 0x00010000);
ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0x80800000);
}
static void _PHY_PIModeSwitch(
struct adapter *adapt,
bool PIMode
)
{
u32 mode;
struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt);
struct odm_dm_struct *dm_odm = &pHalData->odmpriv;
mode = PIMode ? 0x01000100 : 0x01000000;
ODM_SetBBReg(dm_odm, rFPGA0_XA_HSSIParameter1, bMaskDWord, mode);
ODM_SetBBReg(dm_odm, rFPGA0_XB_HSSIParameter1, bMaskDWord, mode);
}
static bool phy_SimularityCompare_8188E(
struct adapter *adapt,
s32 resulta[][8],
u8 c1,
u8 c2
)
{
u32 i, j, diff, sim_bitmap, bound = 0;
u8 final_candidate[2] = {0xFF, 0xFF}; /* for path A and path B */
bool result = true;
s32 tmp1 = 0, tmp2 = 0;
bound = 4;
sim_bitmap = 0;
for (i = 0; i < bound; i++) {
if ((i == 1) || (i == 3) || (i == 5) || (i == 7)) {
if ((resulta[c1][i] & 0x00000200) != 0)
tmp1 = resulta[c1][i] | 0xFFFFFC00;
else
tmp1 = resulta[c1][i];
if ((resulta[c2][i] & 0x00000200) != 0)
tmp2 = resulta[c2][i] | 0xFFFFFC00;
else
tmp2 = resulta[c2][i];
} else {
tmp1 = resulta[c1][i];
tmp2 = resulta[c2][i];
}
diff = (tmp1 > tmp2) ? (tmp1 - tmp2) : (tmp2 - tmp1);
if (diff > MAX_TOLERANCE) {
if ((i == 2 || i == 6) && !sim_bitmap) {
if (resulta[c1][i] + resulta[c1][i + 1] == 0)
final_candidate[(i / 4)] = c2;
else if (resulta[c2][i] + resulta[c2][i + 1] == 0)
final_candidate[(i / 4)] = c1;
else
sim_bitmap = sim_bitmap | (1 << i);
} else {
sim_bitmap = sim_bitmap | (1 << i);
}
}
}
if (sim_bitmap == 0) {
for (i = 0; i < (bound / 4); i++) {
if (final_candidate[i] != 0xFF) {
for (j = i * 4; j < (i + 1) * 4 - 2; j++)
resulta[3][j] = resulta[final_candidate[i]][j];
result = false;
}
}
return result;
} else {
if (!(sim_bitmap & 0x03)) { /* path A TX OK */
for (i = 0; i < 2; i++)
resulta[3][i] = resulta[c1][i];
}
if (!(sim_bitmap & 0x0c)) { /* path A RX OK */
for (i = 2; i < 4; i++)
resulta[3][i] = resulta[c1][i];
}
if (!(sim_bitmap & 0x30)) { /* path B TX OK */
for (i = 4; i < 6; i++)
resulta[3][i] = resulta[c1][i];
}
if (!(sim_bitmap & 0xc0)) { /* path B RX OK */
for (i = 6; i < 8; i++)
resulta[3][i] = resulta[c1][i];
}
return false;
}
}
static void phy_IQCalibrate_8188E(struct adapter *adapt, s32 result[][8], u8 t, bool is2t)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt);
struct odm_dm_struct *dm_odm = &pHalData->odmpriv;
u32 i;
u8 PathAOK, PathBOK;
u32 ADDA_REG[IQK_ADDA_REG_NUM] = {
rFPGA0_XCD_SwitchControl, rBlue_Tooth,
rRx_Wait_CCA, rTx_CCK_RFON,
rTx_CCK_BBON, rTx_OFDM_RFON,
rTx_OFDM_BBON, rTx_To_Rx,
rTx_To_Tx, rRx_CCK,
rRx_OFDM, rRx_Wait_RIFS,
rRx_TO_Rx, rStandby,
rSleep, rPMPD_ANAEN };
u32 IQK_MAC_REG[IQK_MAC_REG_NUM] = {
REG_TXPAUSE, REG_BCN_CTRL,
REG_BCN_CTRL_1, REG_GPIO_MUXCFG};
/* since 92C & 92D have the different define in IQK_BB_REG */
u32 IQK_BB_REG_92C[IQK_BB_REG_NUM] = {
rOFDM0_TRxPathEnable, rOFDM0_TRMuxPar,
rFPGA0_XCD_RFInterfaceSW, rConfig_AntA, rConfig_AntB,
rFPGA0_XAB_RFInterfaceSW, rFPGA0_XA_RFInterfaceOE,
rFPGA0_XB_RFInterfaceOE, rFPGA0_RFMOD
};
u32 retryCount = 2;
/* Note: IQ calibration must be performed after loading */
/* PHY_REG.txt , and radio_a, radio_b.txt */
if (t == 0) {
/* Save ADDA parameters, turn Path A ADDA on */
_PHY_SaveADDARegisters(adapt, ADDA_REG, dm_odm->RFCalibrateInfo.ADDA_backup, IQK_ADDA_REG_NUM);
_PHY_SaveMACRegisters(adapt, IQK_MAC_REG, dm_odm->RFCalibrateInfo.IQK_MAC_backup);
_PHY_SaveADDARegisters(adapt, IQK_BB_REG_92C, dm_odm->RFCalibrateInfo.IQK_BB_backup, IQK_BB_REG_NUM);
}
_PHY_PathADDAOn(adapt, ADDA_REG, true, is2t);
if (t == 0)
dm_odm->RFCalibrateInfo.bRfPiEnable = (u8)ODM_GetBBReg(dm_odm, rFPGA0_XA_HSSIParameter1, BIT(8));
if (!dm_odm->RFCalibrateInfo.bRfPiEnable) {
/* Switch BB to PI mode to do IQ Calibration. */
_PHY_PIModeSwitch(adapt, true);
}
/* BB setting */
ODM_SetBBReg(dm_odm, rFPGA0_RFMOD, BIT(24), 0x00);
ODM_SetBBReg(dm_odm, rOFDM0_TRxPathEnable, bMaskDWord, 0x03a05600);
ODM_SetBBReg(dm_odm, rOFDM0_TRMuxPar, bMaskDWord, 0x000800e4);
ODM_SetBBReg(dm_odm, rFPGA0_XCD_RFInterfaceSW, bMaskDWord, 0x22204000);
ODM_SetBBReg(dm_odm, rFPGA0_XAB_RFInterfaceSW, BIT(10), 0x01);
ODM_SetBBReg(dm_odm, rFPGA0_XAB_RFInterfaceSW, BIT(26), 0x01);
ODM_SetBBReg(dm_odm, rFPGA0_XA_RFInterfaceOE, BIT(10), 0x00);
ODM_SetBBReg(dm_odm, rFPGA0_XB_RFInterfaceOE, BIT(10), 0x00);
if (is2t) {
ODM_SetBBReg(dm_odm, rFPGA0_XA_LSSIParameter, bMaskDWord, 0x00010000);
ODM_SetBBReg(dm_odm, rFPGA0_XB_LSSIParameter, bMaskDWord, 0x00010000);
}
/* MAC settings */
_PHY_MACSettingCalibration(adapt, IQK_MAC_REG, dm_odm->RFCalibrateInfo.IQK_MAC_backup);
/* Page B init */
/* AP or IQK */
ODM_SetBBReg(dm_odm, rConfig_AntA, bMaskDWord, 0x0f600000);
if (is2t)
ODM_SetBBReg(dm_odm, rConfig_AntB, bMaskDWord, 0x0f600000);
/* IQ calibration setting */
ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0x80800000);
ODM_SetBBReg(dm_odm, rTx_IQK, bMaskDWord, 0x01007c00);
ODM_SetBBReg(dm_odm, rRx_IQK, bMaskDWord, 0x81004800);
for (i = 0; i < retryCount; i++) {
PathAOK = phy_PathA_IQK_8188E(adapt, is2t);
if (PathAOK == 0x01) {
result[t][0] = (ODM_GetBBReg(dm_odm, rTx_Power_Before_IQK_A, bMaskDWord) & 0x3FF0000) >> 16;
result[t][1] = (ODM_GetBBReg(dm_odm, rTx_Power_After_IQK_A, bMaskDWord) & 0x3FF0000) >> 16;
break;
}
}
for (i = 0; i < retryCount; i++) {
PathAOK = phy_PathA_RxIQK(adapt, is2t);
if (PathAOK == 0x03) {
result[t][2] = (ODM_GetBBReg(dm_odm, rRx_Power_Before_IQK_A_2, bMaskDWord) & 0x3FF0000) >> 16;
result[t][3] = (ODM_GetBBReg(dm_odm, rRx_Power_After_IQK_A_2, bMaskDWord) & 0x3FF0000) >> 16;
break;
}
}
if (is2t) {
_PHY_PathAStandBy(adapt);
/* Turn Path B ADDA on */
_PHY_PathADDAOn(adapt, ADDA_REG, false, is2t);
for (i = 0; i < retryCount; i++) {
PathBOK = phy_PathB_IQK_8188E(adapt);
if (PathBOK == 0x03) {
result[t][4] = (ODM_GetBBReg(dm_odm, rTx_Power_Before_IQK_B, bMaskDWord) & 0x3FF0000) >> 16;
result[t][5] = (ODM_GetBBReg(dm_odm, rTx_Power_After_IQK_B, bMaskDWord) & 0x3FF0000) >> 16;
result[t][6] = (ODM_GetBBReg(dm_odm, rRx_Power_Before_IQK_B_2, bMaskDWord) & 0x3FF0000) >> 16;
result[t][7] = (ODM_GetBBReg(dm_odm, rRx_Power_After_IQK_B_2, bMaskDWord) & 0x3FF0000) >> 16;
break;
} else if (i == (retryCount - 1) && PathBOK == 0x01) { /* Tx IQK OK */
result[t][4] = (ODM_GetBBReg(dm_odm, rTx_Power_Before_IQK_B, bMaskDWord) & 0x3FF0000) >> 16;
result[t][5] = (ODM_GetBBReg(dm_odm, rTx_Power_After_IQK_B, bMaskDWord) & 0x3FF0000) >> 16;
}
}
}
/* Back to BB mode, load original value */
ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0);
if (t != 0) {
if (!dm_odm->RFCalibrateInfo.bRfPiEnable) {
/* Switch back BB to SI mode after finish IQ Calibration. */
_PHY_PIModeSwitch(adapt, false);
}
/* Reload ADDA power saving parameters */
reload_adda_reg(adapt, ADDA_REG, dm_odm->RFCalibrateInfo.ADDA_backup, IQK_ADDA_REG_NUM);
/* Reload MAC parameters */
_PHY_ReloadMACRegisters(adapt, IQK_MAC_REG, dm_odm->RFCalibrateInfo.IQK_MAC_backup);
reload_adda_reg(adapt, IQK_BB_REG_92C, dm_odm->RFCalibrateInfo.IQK_BB_backup, IQK_BB_REG_NUM);
/* Restore RX initial gain */
ODM_SetBBReg(dm_odm, rFPGA0_XA_LSSIParameter, bMaskDWord, 0x00032ed3);
if (is2t)
ODM_SetBBReg(dm_odm, rFPGA0_XB_LSSIParameter, bMaskDWord, 0x00032ed3);
/* load 0xe30 IQC default value */
ODM_SetBBReg(dm_odm, rTx_IQK_Tone_A, bMaskDWord, 0x01008c00);
ODM_SetBBReg(dm_odm, rRx_IQK_Tone_A, bMaskDWord, 0x01008c00);
}
}
static void phy_LCCalibrate_8188E(struct adapter *adapt, bool is2t)
{
u8 tmpreg;
u32 RF_Amode = 0, RF_Bmode = 0, LC_Cal;
struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt);
struct odm_dm_struct *dm_odm = &pHalData->odmpriv;
/* Check continuous TX and Packet TX */
tmpreg = ODM_Read1Byte(dm_odm, 0xd03);
if ((tmpreg & 0x70) != 0) /* Deal with contisuous TX case */
ODM_Write1Byte(dm_odm, 0xd03, tmpreg & 0x8F); /* disable all continuous TX */
else /* Deal with Packet TX case */
ODM_Write1Byte(dm_odm, REG_TXPAUSE, 0xFF); /* block all queues */
if ((tmpreg & 0x70) != 0) {
/* 1. Read original RF mode */
/* Path-A */
RF_Amode = PHY_QueryRFReg(adapt, RF_PATH_A, RF_AC, bMask12Bits);
/* Path-B */
if (is2t)
RF_Bmode = PHY_QueryRFReg(adapt, RF_PATH_B, RF_AC, bMask12Bits);
/* 2. Set RF mode = standby mode */
/* Path-A */
ODM_SetRFReg(dm_odm, RF_PATH_A, RF_AC, bMask12Bits, (RF_Amode & 0x8FFFF) | 0x10000);
/* Path-B */
if (is2t)
ODM_SetRFReg(dm_odm, RF_PATH_B, RF_AC, bMask12Bits, (RF_Bmode & 0x8FFFF) | 0x10000);
}
/* 3. Read RF reg18 */
LC_Cal = PHY_QueryRFReg(adapt, RF_PATH_A, RF_CHNLBW, bMask12Bits);
/* 4. Set LC calibration begin bit15 */
ODM_SetRFReg(dm_odm, RF_PATH_A, RF_CHNLBW, bMask12Bits, LC_Cal | 0x08000);
ODM_sleep_ms(100);
/* Restore original situation */
if ((tmpreg & 0x70) != 0) {
/* Deal with continuous TX case */
/* Path-A */
ODM_Write1Byte(dm_odm, 0xd03, tmpreg);
ODM_SetRFReg(dm_odm, RF_PATH_A, RF_AC, bMask12Bits, RF_Amode);
/* Path-B */
if (is2t)
ODM_SetRFReg(dm_odm, RF_PATH_B, RF_AC, bMask12Bits, RF_Bmode);
} else {
/* Deal with Packet TX case */
ODM_Write1Byte(dm_odm, REG_TXPAUSE, 0x00);
}
}
void PHY_IQCalibrate_8188E(struct adapter *adapt, bool recovery)
{
struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt);
struct odm_dm_struct *dm_odm = &pHalData->odmpriv;
s32 result[4][8]; /* last is final result */
u8 i, final_candidate;
bool pathaok;
s32 RegE94, RegE9C, RegEA4, RegEB4, RegEBC;
bool is12simular, is13simular, is23simular;
bool singletone = false, carrier_sup = false;
u32 IQK_BB_REG_92C[IQK_BB_REG_NUM] = {
rOFDM0_XARxIQImbalance, rOFDM0_XBRxIQImbalance,
rOFDM0_ECCAThreshold, rOFDM0_AGCRSSITable,
rOFDM0_XATxIQImbalance, rOFDM0_XBTxIQImbalance,
rOFDM0_XCTxAFE, rOFDM0_XDTxAFE,
rOFDM0_RxIQExtAnta};
if (!(dm_odm->SupportAbility & ODM_RF_CALIBRATION))
return;
/* 20120213<Kordan> Turn on when continuous Tx to pass lab testing. (required by Edlu) */
if (singletone || carrier_sup)
return;
if (recovery) {
reload_adda_reg(adapt, IQK_BB_REG_92C, dm_odm->RFCalibrateInfo.IQK_BB_backup_recover, 9);
return;
}
for (i = 0; i < 8; i++) {
result[0][i] = 0;
result[1][i] = 0;
result[2][i] = 0;
if ((i == 0) || (i == 2) || (i == 4) || (i == 6))
result[3][i] = 0x100;
else
result[3][i] = 0;
}
final_candidate = 0xff;
pathaok = false;
is12simular = false;
is23simular = false;
is13simular = false;
for (i = 0; i < 3; i++) {
phy_IQCalibrate_8188E(adapt, result, i, false);
if (i == 1) {
is12simular = phy_SimularityCompare_8188E(adapt, result, 0, 1);
if (is12simular) {
final_candidate = 0;
break;
}
}
if (i == 2) {
is13simular = phy_SimularityCompare_8188E(adapt, result, 0, 2);
if (is13simular) {
final_candidate = 0;
break;
}
is23simular = phy_SimularityCompare_8188E(adapt, result, 1, 2);
if (is23simular) {
final_candidate = 1;
} else {
final_candidate = 3;
}
}
}
for (i = 0; i < 4; i++) {
RegE94 = result[i][0];
RegE9C = result[i][1];
RegEA4 = result[i][2];
RegEB4 = result[i][4];
RegEBC = result[i][5];
}
if (final_candidate != 0xff) {
RegE94 = result[final_candidate][0];
RegE9C = result[final_candidate][1];
RegEA4 = result[final_candidate][2];
RegEB4 = result[final_candidate][4];
RegEBC = result[final_candidate][5];
dm_odm->RFCalibrateInfo.RegE94 = RegE94;
dm_odm->RFCalibrateInfo.RegE9C = RegE9C;
dm_odm->RFCalibrateInfo.RegEB4 = RegEB4;
dm_odm->RFCalibrateInfo.RegEBC = RegEBC;
pathaok = true;
} else {
dm_odm->RFCalibrateInfo.RegE94 = 0x100;
dm_odm->RFCalibrateInfo.RegEB4 = 0x100; /* X default value */
dm_odm->RFCalibrateInfo.RegE9C = 0x0;
dm_odm->RFCalibrateInfo.RegEBC = 0x0; /* Y default value */
}
if (RegE94 != 0)
patha_fill_iqk(adapt, pathaok, result, final_candidate, (RegEA4 == 0));
/* To Fix BSOD when final_candidate is 0xff */
/* by sherry 20120321 */
if (final_candidate < 4) {
for (i = 0; i < IQK_Matrix_REG_NUM; i++)
dm_odm->RFCalibrateInfo.IQKMatrixRegSetting.Value[0][i] = result[final_candidate][i];
dm_odm->RFCalibrateInfo.IQKMatrixRegSetting.bIQKDone = true;
}
_PHY_SaveADDARegisters(adapt, IQK_BB_REG_92C, dm_odm->RFCalibrateInfo.IQK_BB_backup_recover, 9);
}
void PHY_LCCalibrate_8188E(struct adapter *adapt)
{
bool singletone = false, carrier_sup = false;
u32 timeout = 2000, timecount = 0;
struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt);
struct odm_dm_struct *dm_odm = &pHalData->odmpriv;
if (!(dm_odm->SupportAbility & ODM_RF_CALIBRATION))
return;
/* 20120213<Kordan> Turn on when continuous Tx to pass lab testing. (required by Edlu) */
if (singletone || carrier_sup)
return;
while (*dm_odm->pbScanInProcess && timecount < timeout) {
ODM_delay_ms(50);
timecount += 50;
}
phy_LCCalibrate_8188E(adapt, false);
}