| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| */ |
| |
| #include <linux/gfp.h> |
| #include <linux/init.h> |
| #include <linux/ratelimit.h> |
| #include <linux/usb.h> |
| #include <linux/usb/audio.h> |
| #include <linux/slab.h> |
| |
| #include <sound/core.h> |
| #include <sound/pcm.h> |
| #include <sound/pcm_params.h> |
| |
| #include "usbaudio.h" |
| #include "helper.h" |
| #include "card.h" |
| #include "endpoint.h" |
| #include "pcm.h" |
| #include "clock.h" |
| #include "quirks.h" |
| |
| enum { |
| EP_STATE_STOPPED, |
| EP_STATE_RUNNING, |
| EP_STATE_STOPPING, |
| }; |
| |
| /* interface refcounting */ |
| struct snd_usb_iface_ref { |
| unsigned char iface; |
| bool need_setup; |
| int opened; |
| struct list_head list; |
| }; |
| |
| /* |
| * snd_usb_endpoint is a model that abstracts everything related to an |
| * USB endpoint and its streaming. |
| * |
| * There are functions to activate and deactivate the streaming URBs and |
| * optional callbacks to let the pcm logic handle the actual content of the |
| * packets for playback and record. Thus, the bus streaming and the audio |
| * handlers are fully decoupled. |
| * |
| * There are two different types of endpoints in audio applications. |
| * |
| * SND_USB_ENDPOINT_TYPE_DATA handles full audio data payload for both |
| * inbound and outbound traffic. |
| * |
| * SND_USB_ENDPOINT_TYPE_SYNC endpoints are for inbound traffic only and |
| * expect the payload to carry Q10.14 / Q16.16 formatted sync information |
| * (3 or 4 bytes). |
| * |
| * Each endpoint has to be configured prior to being used by calling |
| * snd_usb_endpoint_set_params(). |
| * |
| * The model incorporates a reference counting, so that multiple users |
| * can call snd_usb_endpoint_start() and snd_usb_endpoint_stop(), and |
| * only the first user will effectively start the URBs, and only the last |
| * one to stop it will tear the URBs down again. |
| */ |
| |
| /* |
| * convert a sampling rate into our full speed format (fs/1000 in Q16.16) |
| * this will overflow at approx 524 kHz |
| */ |
| static inline unsigned get_usb_full_speed_rate(unsigned int rate) |
| { |
| return ((rate << 13) + 62) / 125; |
| } |
| |
| /* |
| * convert a sampling rate into USB high speed format (fs/8000 in Q16.16) |
| * this will overflow at approx 4 MHz |
| */ |
| static inline unsigned get_usb_high_speed_rate(unsigned int rate) |
| { |
| return ((rate << 10) + 62) / 125; |
| } |
| |
| /* |
| * release a urb data |
| */ |
| static void release_urb_ctx(struct snd_urb_ctx *u) |
| { |
| if (u->buffer_size) |
| usb_free_coherent(u->ep->chip->dev, u->buffer_size, |
| u->urb->transfer_buffer, |
| u->urb->transfer_dma); |
| usb_free_urb(u->urb); |
| u->urb = NULL; |
| } |
| |
| static const char *usb_error_string(int err) |
| { |
| switch (err) { |
| case -ENODEV: |
| return "no device"; |
| case -ENOENT: |
| return "endpoint not enabled"; |
| case -EPIPE: |
| return "endpoint stalled"; |
| case -ENOSPC: |
| return "not enough bandwidth"; |
| case -ESHUTDOWN: |
| return "device disabled"; |
| case -EHOSTUNREACH: |
| return "device suspended"; |
| case -EINVAL: |
| case -EAGAIN: |
| case -EFBIG: |
| case -EMSGSIZE: |
| return "internal error"; |
| default: |
| return "unknown error"; |
| } |
| } |
| |
| static inline bool ep_state_running(struct snd_usb_endpoint *ep) |
| { |
| return atomic_read(&ep->state) == EP_STATE_RUNNING; |
| } |
| |
| static inline bool ep_state_update(struct snd_usb_endpoint *ep, int old, int new) |
| { |
| return atomic_cmpxchg(&ep->state, old, new) == old; |
| } |
| |
| /** |
| * snd_usb_endpoint_implicit_feedback_sink: Report endpoint usage type |
| * |
| * @ep: The snd_usb_endpoint |
| * |
| * Determine whether an endpoint is driven by an implicit feedback |
| * data endpoint source. |
| */ |
| int snd_usb_endpoint_implicit_feedback_sink(struct snd_usb_endpoint *ep) |
| { |
| return ep->implicit_fb_sync && usb_pipeout(ep->pipe); |
| } |
| |
| /* |
| * Return the number of samples to be sent in the next packet |
| * for streaming based on information derived from sync endpoints |
| * |
| * This won't be used for implicit feedback which takes the packet size |
| * returned from the sync source |
| */ |
| static int slave_next_packet_size(struct snd_usb_endpoint *ep, |
| unsigned int avail) |
| { |
| unsigned long flags; |
| unsigned int phase; |
| int ret; |
| |
| if (ep->fill_max) |
| return ep->maxframesize; |
| |
| spin_lock_irqsave(&ep->lock, flags); |
| phase = (ep->phase & 0xffff) + (ep->freqm << ep->datainterval); |
| ret = min(phase >> 16, ep->maxframesize); |
| if (avail && ret >= avail) |
| ret = -EAGAIN; |
| else |
| ep->phase = phase; |
| spin_unlock_irqrestore(&ep->lock, flags); |
| |
| return ret; |
| } |
| |
| /* |
| * Return the number of samples to be sent in the next packet |
| * for adaptive and synchronous endpoints |
| */ |
| static int next_packet_size(struct snd_usb_endpoint *ep, unsigned int avail) |
| { |
| unsigned int sample_accum; |
| int ret; |
| |
| if (ep->fill_max) |
| return ep->maxframesize; |
| |
| sample_accum = ep->sample_accum + ep->sample_rem; |
| if (sample_accum >= ep->pps) { |
| sample_accum -= ep->pps; |
| ret = ep->packsize[1]; |
| } else { |
| ret = ep->packsize[0]; |
| } |
| if (avail && ret >= avail) |
| ret = -EAGAIN; |
| else |
| ep->sample_accum = sample_accum; |
| |
| return ret; |
| } |
| |
| /* |
| * snd_usb_endpoint_next_packet_size: Return the number of samples to be sent |
| * in the next packet |
| * |
| * If the size is equal or exceeds @avail, don't proceed but return -EAGAIN |
| * Exception: @avail = 0 for skipping the check. |
| */ |
| int snd_usb_endpoint_next_packet_size(struct snd_usb_endpoint *ep, |
| struct snd_urb_ctx *ctx, int idx, |
| unsigned int avail) |
| { |
| unsigned int packet; |
| |
| packet = ctx->packet_size[idx]; |
| if (packet) { |
| if (avail && packet >= avail) |
| return -EAGAIN; |
| return packet; |
| } |
| |
| if (ep->sync_source) |
| return slave_next_packet_size(ep, avail); |
| else |
| return next_packet_size(ep, avail); |
| } |
| |
| static void call_retire_callback(struct snd_usb_endpoint *ep, |
| struct urb *urb) |
| { |
| struct snd_usb_substream *data_subs; |
| |
| data_subs = READ_ONCE(ep->data_subs); |
| if (data_subs && ep->retire_data_urb) |
| ep->retire_data_urb(data_subs, urb); |
| } |
| |
| static void retire_outbound_urb(struct snd_usb_endpoint *ep, |
| struct snd_urb_ctx *urb_ctx) |
| { |
| call_retire_callback(ep, urb_ctx->urb); |
| } |
| |
| static void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep, |
| struct snd_usb_endpoint *sender, |
| const struct urb *urb); |
| |
| static void retire_inbound_urb(struct snd_usb_endpoint *ep, |
| struct snd_urb_ctx *urb_ctx) |
| { |
| struct urb *urb = urb_ctx->urb; |
| struct snd_usb_endpoint *sync_sink; |
| |
| if (unlikely(ep->skip_packets > 0)) { |
| ep->skip_packets--; |
| return; |
| } |
| |
| sync_sink = READ_ONCE(ep->sync_sink); |
| if (sync_sink) |
| snd_usb_handle_sync_urb(sync_sink, ep, urb); |
| |
| call_retire_callback(ep, urb); |
| } |
| |
| static inline bool has_tx_length_quirk(struct snd_usb_audio *chip) |
| { |
| return chip->quirk_flags & QUIRK_FLAG_TX_LENGTH; |
| } |
| |
| static void prepare_silent_urb(struct snd_usb_endpoint *ep, |
| struct snd_urb_ctx *ctx) |
| { |
| struct urb *urb = ctx->urb; |
| unsigned int offs = 0; |
| unsigned int extra = 0; |
| __le32 packet_length; |
| int i; |
| |
| /* For tx_length_quirk, put packet length at start of packet */ |
| if (has_tx_length_quirk(ep->chip)) |
| extra = sizeof(packet_length); |
| |
| for (i = 0; i < ctx->packets; ++i) { |
| unsigned int offset; |
| unsigned int length; |
| int counts; |
| |
| counts = snd_usb_endpoint_next_packet_size(ep, ctx, i, 0); |
| length = counts * ep->stride; /* number of silent bytes */ |
| offset = offs * ep->stride + extra * i; |
| urb->iso_frame_desc[i].offset = offset; |
| urb->iso_frame_desc[i].length = length + extra; |
| if (extra) { |
| packet_length = cpu_to_le32(length); |
| memcpy(urb->transfer_buffer + offset, |
| &packet_length, sizeof(packet_length)); |
| } |
| memset(urb->transfer_buffer + offset + extra, |
| ep->silence_value, length); |
| offs += counts; |
| } |
| |
| urb->number_of_packets = ctx->packets; |
| urb->transfer_buffer_length = offs * ep->stride + ctx->packets * extra; |
| ctx->queued = 0; |
| } |
| |
| /* |
| * Prepare a PLAYBACK urb for submission to the bus. |
| */ |
| static int prepare_outbound_urb(struct snd_usb_endpoint *ep, |
| struct snd_urb_ctx *ctx, |
| bool in_stream_lock) |
| { |
| struct urb *urb = ctx->urb; |
| unsigned char *cp = urb->transfer_buffer; |
| struct snd_usb_substream *data_subs; |
| |
| urb->dev = ep->chip->dev; /* we need to set this at each time */ |
| |
| switch (ep->type) { |
| case SND_USB_ENDPOINT_TYPE_DATA: |
| data_subs = READ_ONCE(ep->data_subs); |
| if (data_subs && ep->prepare_data_urb) |
| return ep->prepare_data_urb(data_subs, urb, in_stream_lock); |
| /* no data provider, so send silence */ |
| prepare_silent_urb(ep, ctx); |
| break; |
| |
| case SND_USB_ENDPOINT_TYPE_SYNC: |
| if (snd_usb_get_speed(ep->chip->dev) >= USB_SPEED_HIGH) { |
| /* |
| * fill the length and offset of each urb descriptor. |
| * the fixed 12.13 frequency is passed as 16.16 through the pipe. |
| */ |
| urb->iso_frame_desc[0].length = 4; |
| urb->iso_frame_desc[0].offset = 0; |
| cp[0] = ep->freqn; |
| cp[1] = ep->freqn >> 8; |
| cp[2] = ep->freqn >> 16; |
| cp[3] = ep->freqn >> 24; |
| } else { |
| /* |
| * fill the length and offset of each urb descriptor. |
| * the fixed 10.14 frequency is passed through the pipe. |
| */ |
| urb->iso_frame_desc[0].length = 3; |
| urb->iso_frame_desc[0].offset = 0; |
| cp[0] = ep->freqn >> 2; |
| cp[1] = ep->freqn >> 10; |
| cp[2] = ep->freqn >> 18; |
| } |
| |
| break; |
| } |
| return 0; |
| } |
| |
| /* |
| * Prepare a CAPTURE or SYNC urb for submission to the bus. |
| */ |
| static int prepare_inbound_urb(struct snd_usb_endpoint *ep, |
| struct snd_urb_ctx *urb_ctx) |
| { |
| int i, offs; |
| struct urb *urb = urb_ctx->urb; |
| |
| urb->dev = ep->chip->dev; /* we need to set this at each time */ |
| |
| switch (ep->type) { |
| case SND_USB_ENDPOINT_TYPE_DATA: |
| offs = 0; |
| for (i = 0; i < urb_ctx->packets; i++) { |
| urb->iso_frame_desc[i].offset = offs; |
| urb->iso_frame_desc[i].length = ep->curpacksize; |
| offs += ep->curpacksize; |
| } |
| |
| urb->transfer_buffer_length = offs; |
| urb->number_of_packets = urb_ctx->packets; |
| break; |
| |
| case SND_USB_ENDPOINT_TYPE_SYNC: |
| urb->iso_frame_desc[0].length = min(4u, ep->syncmaxsize); |
| urb->iso_frame_desc[0].offset = 0; |
| break; |
| } |
| return 0; |
| } |
| |
| /* notify an error as XRUN to the assigned PCM data substream */ |
| static void notify_xrun(struct snd_usb_endpoint *ep) |
| { |
| struct snd_usb_substream *data_subs; |
| |
| data_subs = READ_ONCE(ep->data_subs); |
| if (data_subs && data_subs->pcm_substream) |
| snd_pcm_stop_xrun(data_subs->pcm_substream); |
| } |
| |
| static struct snd_usb_packet_info * |
| next_packet_fifo_enqueue(struct snd_usb_endpoint *ep) |
| { |
| struct snd_usb_packet_info *p; |
| |
| p = ep->next_packet + (ep->next_packet_head + ep->next_packet_queued) % |
| ARRAY_SIZE(ep->next_packet); |
| ep->next_packet_queued++; |
| return p; |
| } |
| |
| static struct snd_usb_packet_info * |
| next_packet_fifo_dequeue(struct snd_usb_endpoint *ep) |
| { |
| struct snd_usb_packet_info *p; |
| |
| p = ep->next_packet + ep->next_packet_head; |
| ep->next_packet_head++; |
| ep->next_packet_head %= ARRAY_SIZE(ep->next_packet); |
| ep->next_packet_queued--; |
| return p; |
| } |
| |
| static void push_back_to_ready_list(struct snd_usb_endpoint *ep, |
| struct snd_urb_ctx *ctx) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ep->lock, flags); |
| list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs); |
| spin_unlock_irqrestore(&ep->lock, flags); |
| } |
| |
| /* |
| * Send output urbs that have been prepared previously. URBs are dequeued |
| * from ep->ready_playback_urbs and in case there aren't any available |
| * or there are no packets that have been prepared, this function does |
| * nothing. |
| * |
| * The reason why the functionality of sending and preparing URBs is separated |
| * is that host controllers don't guarantee the order in which they return |
| * inbound and outbound packets to their submitters. |
| * |
| * This function is used both for implicit feedback endpoints and in low- |
| * latency playback mode. |
| */ |
| void snd_usb_queue_pending_output_urbs(struct snd_usb_endpoint *ep, |
| bool in_stream_lock) |
| { |
| bool implicit_fb = snd_usb_endpoint_implicit_feedback_sink(ep); |
| |
| while (ep_state_running(ep)) { |
| |
| unsigned long flags; |
| struct snd_usb_packet_info *packet; |
| struct snd_urb_ctx *ctx = NULL; |
| int err, i; |
| |
| spin_lock_irqsave(&ep->lock, flags); |
| if ((!implicit_fb || ep->next_packet_queued > 0) && |
| !list_empty(&ep->ready_playback_urbs)) { |
| /* take URB out of FIFO */ |
| ctx = list_first_entry(&ep->ready_playback_urbs, |
| struct snd_urb_ctx, ready_list); |
| list_del_init(&ctx->ready_list); |
| if (implicit_fb) |
| packet = next_packet_fifo_dequeue(ep); |
| } |
| spin_unlock_irqrestore(&ep->lock, flags); |
| |
| if (ctx == NULL) |
| return; |
| |
| /* copy over the length information */ |
| if (implicit_fb) { |
| for (i = 0; i < packet->packets; i++) |
| ctx->packet_size[i] = packet->packet_size[i]; |
| } |
| |
| /* call the data handler to fill in playback data */ |
| err = prepare_outbound_urb(ep, ctx, in_stream_lock); |
| /* can be stopped during prepare callback */ |
| if (unlikely(!ep_state_running(ep))) |
| break; |
| if (err < 0) { |
| /* push back to ready list again for -EAGAIN */ |
| if (err == -EAGAIN) |
| push_back_to_ready_list(ep, ctx); |
| else |
| notify_xrun(ep); |
| return; |
| } |
| |
| err = usb_submit_urb(ctx->urb, GFP_ATOMIC); |
| if (err < 0) { |
| usb_audio_err(ep->chip, |
| "Unable to submit urb #%d: %d at %s\n", |
| ctx->index, err, __func__); |
| notify_xrun(ep); |
| return; |
| } |
| |
| set_bit(ctx->index, &ep->active_mask); |
| atomic_inc(&ep->submitted_urbs); |
| } |
| } |
| |
| /* |
| * complete callback for urbs |
| */ |
| static void snd_complete_urb(struct urb *urb) |
| { |
| struct snd_urb_ctx *ctx = urb->context; |
| struct snd_usb_endpoint *ep = ctx->ep; |
| int err; |
| |
| if (unlikely(urb->status == -ENOENT || /* unlinked */ |
| urb->status == -ENODEV || /* device removed */ |
| urb->status == -ECONNRESET || /* unlinked */ |
| urb->status == -ESHUTDOWN)) /* device disabled */ |
| goto exit_clear; |
| /* device disconnected */ |
| if (unlikely(atomic_read(&ep->chip->shutdown))) |
| goto exit_clear; |
| |
| if (unlikely(!ep_state_running(ep))) |
| goto exit_clear; |
| |
| if (usb_pipeout(ep->pipe)) { |
| retire_outbound_urb(ep, ctx); |
| /* can be stopped during retire callback */ |
| if (unlikely(!ep_state_running(ep))) |
| goto exit_clear; |
| |
| /* in low-latency and implicit-feedback modes, push back the |
| * URB to ready list at first, then process as much as possible |
| */ |
| if (ep->lowlatency_playback || |
| snd_usb_endpoint_implicit_feedback_sink(ep)) { |
| push_back_to_ready_list(ep, ctx); |
| clear_bit(ctx->index, &ep->active_mask); |
| snd_usb_queue_pending_output_urbs(ep, false); |
| atomic_dec(&ep->submitted_urbs); /* decrement at last */ |
| return; |
| } |
| |
| /* in non-lowlatency mode, no error handling for prepare */ |
| prepare_outbound_urb(ep, ctx, false); |
| /* can be stopped during prepare callback */ |
| if (unlikely(!ep_state_running(ep))) |
| goto exit_clear; |
| } else { |
| retire_inbound_urb(ep, ctx); |
| /* can be stopped during retire callback */ |
| if (unlikely(!ep_state_running(ep))) |
| goto exit_clear; |
| |
| prepare_inbound_urb(ep, ctx); |
| } |
| |
| err = usb_submit_urb(urb, GFP_ATOMIC); |
| if (err == 0) |
| return; |
| |
| usb_audio_err(ep->chip, "cannot submit urb (err = %d)\n", err); |
| notify_xrun(ep); |
| |
| exit_clear: |
| clear_bit(ctx->index, &ep->active_mask); |
| atomic_dec(&ep->submitted_urbs); |
| } |
| |
| /* |
| * Find or create a refcount object for the given interface |
| * |
| * The objects are released altogether in snd_usb_endpoint_free_all() |
| */ |
| static struct snd_usb_iface_ref * |
| iface_ref_find(struct snd_usb_audio *chip, int iface) |
| { |
| struct snd_usb_iface_ref *ip; |
| |
| list_for_each_entry(ip, &chip->iface_ref_list, list) |
| if (ip->iface == iface) |
| return ip; |
| |
| ip = kzalloc(sizeof(*ip), GFP_KERNEL); |
| if (!ip) |
| return NULL; |
| ip->iface = iface; |
| list_add_tail(&ip->list, &chip->iface_ref_list); |
| return ip; |
| } |
| |
| /* |
| * Get the existing endpoint object corresponding EP |
| * Returns NULL if not present. |
| */ |
| struct snd_usb_endpoint * |
| snd_usb_get_endpoint(struct snd_usb_audio *chip, int ep_num) |
| { |
| struct snd_usb_endpoint *ep; |
| |
| list_for_each_entry(ep, &chip->ep_list, list) { |
| if (ep->ep_num == ep_num) |
| return ep; |
| } |
| |
| return NULL; |
| } |
| |
| #define ep_type_name(type) \ |
| (type == SND_USB_ENDPOINT_TYPE_DATA ? "data" : "sync") |
| |
| /** |
| * snd_usb_add_endpoint: Add an endpoint to an USB audio chip |
| * |
| * @chip: The chip |
| * @ep_num: The number of the endpoint to use |
| * @type: SND_USB_ENDPOINT_TYPE_DATA or SND_USB_ENDPOINT_TYPE_SYNC |
| * |
| * If the requested endpoint has not been added to the given chip before, |
| * a new instance is created. |
| * |
| * Returns zero on success or a negative error code. |
| * |
| * New endpoints will be added to chip->ep_list and freed by |
| * calling snd_usb_endpoint_free_all(). |
| * |
| * For SND_USB_ENDPOINT_TYPE_SYNC, the caller needs to guarantee that |
| * bNumEndpoints > 1 beforehand. |
| */ |
| int snd_usb_add_endpoint(struct snd_usb_audio *chip, int ep_num, int type) |
| { |
| struct snd_usb_endpoint *ep; |
| bool is_playback; |
| |
| ep = snd_usb_get_endpoint(chip, ep_num); |
| if (ep) |
| return 0; |
| |
| usb_audio_dbg(chip, "Creating new %s endpoint #%x\n", |
| ep_type_name(type), |
| ep_num); |
| ep = kzalloc(sizeof(*ep), GFP_KERNEL); |
| if (!ep) |
| return -ENOMEM; |
| |
| ep->chip = chip; |
| spin_lock_init(&ep->lock); |
| ep->type = type; |
| ep->ep_num = ep_num; |
| INIT_LIST_HEAD(&ep->ready_playback_urbs); |
| atomic_set(&ep->submitted_urbs, 0); |
| |
| is_playback = ((ep_num & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT); |
| ep_num &= USB_ENDPOINT_NUMBER_MASK; |
| if (is_playback) |
| ep->pipe = usb_sndisocpipe(chip->dev, ep_num); |
| else |
| ep->pipe = usb_rcvisocpipe(chip->dev, ep_num); |
| |
| list_add_tail(&ep->list, &chip->ep_list); |
| return 0; |
| } |
| |
| /* Set up syncinterval and maxsyncsize for a sync EP */ |
| static void endpoint_set_syncinterval(struct snd_usb_audio *chip, |
| struct snd_usb_endpoint *ep) |
| { |
| struct usb_host_interface *alts; |
| struct usb_endpoint_descriptor *desc; |
| |
| alts = snd_usb_get_host_interface(chip, ep->iface, ep->altsetting); |
| if (!alts) |
| return; |
| |
| desc = get_endpoint(alts, ep->ep_idx); |
| if (desc->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE && |
| desc->bRefresh >= 1 && desc->bRefresh <= 9) |
| ep->syncinterval = desc->bRefresh; |
| else if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL) |
| ep->syncinterval = 1; |
| else if (desc->bInterval >= 1 && desc->bInterval <= 16) |
| ep->syncinterval = desc->bInterval - 1; |
| else |
| ep->syncinterval = 3; |
| |
| ep->syncmaxsize = le16_to_cpu(desc->wMaxPacketSize); |
| } |
| |
| static bool endpoint_compatible(struct snd_usb_endpoint *ep, |
| const struct audioformat *fp, |
| const struct snd_pcm_hw_params *params) |
| { |
| if (!ep->opened) |
| return false; |
| if (ep->cur_audiofmt != fp) |
| return false; |
| if (ep->cur_rate != params_rate(params) || |
| ep->cur_format != params_format(params) || |
| ep->cur_period_frames != params_period_size(params) || |
| ep->cur_buffer_periods != params_periods(params)) |
| return false; |
| return true; |
| } |
| |
| /* |
| * Check whether the given fp and hw params are compatible with the current |
| * setup of the target EP for implicit feedback sync |
| */ |
| bool snd_usb_endpoint_compatible(struct snd_usb_audio *chip, |
| struct snd_usb_endpoint *ep, |
| const struct audioformat *fp, |
| const struct snd_pcm_hw_params *params) |
| { |
| bool ret; |
| |
| mutex_lock(&chip->mutex); |
| ret = endpoint_compatible(ep, fp, params); |
| mutex_unlock(&chip->mutex); |
| return ret; |
| } |
| |
| /* |
| * snd_usb_endpoint_open: Open the endpoint |
| * |
| * Called from hw_params to assign the endpoint to the substream. |
| * It's reference-counted, and only the first opener is allowed to set up |
| * arbitrary parameters. The later opener must be compatible with the |
| * former opened parameters. |
| * The endpoint needs to be closed via snd_usb_endpoint_close() later. |
| * |
| * Note that this function doesn't configure the endpoint. The substream |
| * needs to set it up later via snd_usb_endpoint_configure(). |
| */ |
| struct snd_usb_endpoint * |
| snd_usb_endpoint_open(struct snd_usb_audio *chip, |
| const struct audioformat *fp, |
| const struct snd_pcm_hw_params *params, |
| bool is_sync_ep) |
| { |
| struct snd_usb_endpoint *ep; |
| int ep_num = is_sync_ep ? fp->sync_ep : fp->endpoint; |
| |
| mutex_lock(&chip->mutex); |
| ep = snd_usb_get_endpoint(chip, ep_num); |
| if (!ep) { |
| usb_audio_err(chip, "Cannot find EP 0x%x to open\n", ep_num); |
| goto unlock; |
| } |
| |
| if (!ep->opened) { |
| if (is_sync_ep) { |
| ep->iface = fp->sync_iface; |
| ep->altsetting = fp->sync_altsetting; |
| ep->ep_idx = fp->sync_ep_idx; |
| } else { |
| ep->iface = fp->iface; |
| ep->altsetting = fp->altsetting; |
| ep->ep_idx = fp->ep_idx; |
| } |
| usb_audio_dbg(chip, "Open EP 0x%x, iface=%d:%d, idx=%d\n", |
| ep_num, ep->iface, ep->altsetting, ep->ep_idx); |
| |
| ep->iface_ref = iface_ref_find(chip, ep->iface); |
| if (!ep->iface_ref) { |
| ep = NULL; |
| goto unlock; |
| } |
| |
| ep->cur_audiofmt = fp; |
| ep->cur_channels = fp->channels; |
| ep->cur_rate = params_rate(params); |
| ep->cur_format = params_format(params); |
| ep->cur_frame_bytes = snd_pcm_format_physical_width(ep->cur_format) * |
| ep->cur_channels / 8; |
| ep->cur_period_frames = params_period_size(params); |
| ep->cur_period_bytes = ep->cur_period_frames * ep->cur_frame_bytes; |
| ep->cur_buffer_periods = params_periods(params); |
| ep->cur_clock = fp->clock; |
| |
| if (ep->type == SND_USB_ENDPOINT_TYPE_SYNC) |
| endpoint_set_syncinterval(chip, ep); |
| |
| ep->implicit_fb_sync = fp->implicit_fb; |
| ep->need_setup = true; |
| |
| usb_audio_dbg(chip, " channels=%d, rate=%d, format=%s, period_bytes=%d, periods=%d, implicit_fb=%d\n", |
| ep->cur_channels, ep->cur_rate, |
| snd_pcm_format_name(ep->cur_format), |
| ep->cur_period_bytes, ep->cur_buffer_periods, |
| ep->implicit_fb_sync); |
| |
| } else { |
| if (WARN_ON(!ep->iface_ref)) { |
| ep = NULL; |
| goto unlock; |
| } |
| |
| if (!endpoint_compatible(ep, fp, params)) { |
| usb_audio_err(chip, "Incompatible EP setup for 0x%x\n", |
| ep_num); |
| ep = NULL; |
| goto unlock; |
| } |
| |
| usb_audio_dbg(chip, "Reopened EP 0x%x (count %d)\n", |
| ep_num, ep->opened); |
| } |
| |
| if (!ep->iface_ref->opened++) |
| ep->iface_ref->need_setup = true; |
| |
| ep->opened++; |
| |
| unlock: |
| mutex_unlock(&chip->mutex); |
| return ep; |
| } |
| |
| /* |
| * snd_usb_endpoint_set_sync: Link data and sync endpoints |
| * |
| * Pass NULL to sync_ep to unlink again |
| */ |
| void snd_usb_endpoint_set_sync(struct snd_usb_audio *chip, |
| struct snd_usb_endpoint *data_ep, |
| struct snd_usb_endpoint *sync_ep) |
| { |
| data_ep->sync_source = sync_ep; |
| } |
| |
| /* |
| * Set data endpoint callbacks and the assigned data stream |
| * |
| * Called at PCM trigger and cleanups. |
| * Pass NULL to deactivate each callback. |
| */ |
| void snd_usb_endpoint_set_callback(struct snd_usb_endpoint *ep, |
| int (*prepare)(struct snd_usb_substream *subs, |
| struct urb *urb, |
| bool in_stream_lock), |
| void (*retire)(struct snd_usb_substream *subs, |
| struct urb *urb), |
| struct snd_usb_substream *data_subs) |
| { |
| ep->prepare_data_urb = prepare; |
| ep->retire_data_urb = retire; |
| if (data_subs) |
| ep->lowlatency_playback = data_subs->lowlatency_playback; |
| else |
| ep->lowlatency_playback = false; |
| WRITE_ONCE(ep->data_subs, data_subs); |
| } |
| |
| static int endpoint_set_interface(struct snd_usb_audio *chip, |
| struct snd_usb_endpoint *ep, |
| bool set) |
| { |
| int altset = set ? ep->altsetting : 0; |
| int err; |
| |
| usb_audio_dbg(chip, "Setting usb interface %d:%d for EP 0x%x\n", |
| ep->iface, altset, ep->ep_num); |
| err = usb_set_interface(chip->dev, ep->iface, altset); |
| if (err < 0) { |
| usb_audio_err(chip, "%d:%d: usb_set_interface failed (%d)\n", |
| ep->iface, altset, err); |
| return err; |
| } |
| |
| if (chip->quirk_flags & QUIRK_FLAG_IFACE_DELAY) |
| msleep(50); |
| return 0; |
| } |
| |
| /* |
| * snd_usb_endpoint_close: Close the endpoint |
| * |
| * Unreference the already opened endpoint via snd_usb_endpoint_open(). |
| */ |
| void snd_usb_endpoint_close(struct snd_usb_audio *chip, |
| struct snd_usb_endpoint *ep) |
| { |
| mutex_lock(&chip->mutex); |
| usb_audio_dbg(chip, "Closing EP 0x%x (count %d)\n", |
| ep->ep_num, ep->opened); |
| |
| if (!--ep->iface_ref->opened) |
| endpoint_set_interface(chip, ep, false); |
| |
| if (!--ep->opened) { |
| ep->iface = 0; |
| ep->altsetting = 0; |
| ep->cur_audiofmt = NULL; |
| ep->cur_rate = 0; |
| ep->cur_clock = 0; |
| ep->iface_ref = NULL; |
| usb_audio_dbg(chip, "EP 0x%x closed\n", ep->ep_num); |
| } |
| mutex_unlock(&chip->mutex); |
| } |
| |
| /* Prepare for suspening EP, called from the main suspend handler */ |
| void snd_usb_endpoint_suspend(struct snd_usb_endpoint *ep) |
| { |
| ep->need_setup = true; |
| if (ep->iface_ref) |
| ep->iface_ref->need_setup = true; |
| } |
| |
| /* |
| * wait until all urbs are processed. |
| */ |
| static int wait_clear_urbs(struct snd_usb_endpoint *ep) |
| { |
| unsigned long end_time = jiffies + msecs_to_jiffies(1000); |
| int alive; |
| |
| if (atomic_read(&ep->state) != EP_STATE_STOPPING) |
| return 0; |
| |
| do { |
| alive = atomic_read(&ep->submitted_urbs); |
| if (!alive) |
| break; |
| |
| schedule_timeout_uninterruptible(1); |
| } while (time_before(jiffies, end_time)); |
| |
| if (alive) |
| usb_audio_err(ep->chip, |
| "timeout: still %d active urbs on EP #%x\n", |
| alive, ep->ep_num); |
| |
| if (ep_state_update(ep, EP_STATE_STOPPING, EP_STATE_STOPPED)) { |
| ep->sync_sink = NULL; |
| snd_usb_endpoint_set_callback(ep, NULL, NULL, NULL); |
| } |
| |
| return 0; |
| } |
| |
| /* sync the pending stop operation; |
| * this function itself doesn't trigger the stop operation |
| */ |
| void snd_usb_endpoint_sync_pending_stop(struct snd_usb_endpoint *ep) |
| { |
| if (ep) |
| wait_clear_urbs(ep); |
| } |
| |
| /* |
| * Stop active urbs |
| * |
| * This function moves the EP to STOPPING state if it's being RUNNING. |
| */ |
| static int stop_urbs(struct snd_usb_endpoint *ep, bool force, bool keep_pending) |
| { |
| unsigned int i; |
| unsigned long flags; |
| |
| if (!force && atomic_read(&ep->running)) |
| return -EBUSY; |
| |
| if (!ep_state_update(ep, EP_STATE_RUNNING, EP_STATE_STOPPING)) |
| return 0; |
| |
| spin_lock_irqsave(&ep->lock, flags); |
| INIT_LIST_HEAD(&ep->ready_playback_urbs); |
| ep->next_packet_head = 0; |
| ep->next_packet_queued = 0; |
| spin_unlock_irqrestore(&ep->lock, flags); |
| |
| if (keep_pending) |
| return 0; |
| |
| for (i = 0; i < ep->nurbs; i++) { |
| if (test_bit(i, &ep->active_mask)) { |
| if (!test_and_set_bit(i, &ep->unlink_mask)) { |
| struct urb *u = ep->urb[i].urb; |
| usb_unlink_urb(u); |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * release an endpoint's urbs |
| */ |
| static int release_urbs(struct snd_usb_endpoint *ep, bool force) |
| { |
| int i, err; |
| |
| /* route incoming urbs to nirvana */ |
| snd_usb_endpoint_set_callback(ep, NULL, NULL, NULL); |
| |
| /* stop and unlink urbs */ |
| err = stop_urbs(ep, force, false); |
| if (err) |
| return err; |
| |
| wait_clear_urbs(ep); |
| |
| for (i = 0; i < ep->nurbs; i++) |
| release_urb_ctx(&ep->urb[i]); |
| |
| usb_free_coherent(ep->chip->dev, SYNC_URBS * 4, |
| ep->syncbuf, ep->sync_dma); |
| |
| ep->syncbuf = NULL; |
| ep->nurbs = 0; |
| return 0; |
| } |
| |
| /* |
| * configure a data endpoint |
| */ |
| static int data_ep_set_params(struct snd_usb_endpoint *ep) |
| { |
| struct snd_usb_audio *chip = ep->chip; |
| unsigned int maxsize, minsize, packs_per_ms, max_packs_per_urb; |
| unsigned int max_packs_per_period, urbs_per_period, urb_packs; |
| unsigned int max_urbs, i; |
| const struct audioformat *fmt = ep->cur_audiofmt; |
| int frame_bits = ep->cur_frame_bytes * 8; |
| int tx_length_quirk = (has_tx_length_quirk(chip) && |
| usb_pipeout(ep->pipe)); |
| |
| usb_audio_dbg(chip, "Setting params for data EP 0x%x, pipe 0x%x\n", |
| ep->ep_num, ep->pipe); |
| |
| if (ep->cur_format == SNDRV_PCM_FORMAT_DSD_U16_LE && fmt->dsd_dop) { |
| /* |
| * When operating in DSD DOP mode, the size of a sample frame |
| * in hardware differs from the actual physical format width |
| * because we need to make room for the DOP markers. |
| */ |
| frame_bits += ep->cur_channels << 3; |
| } |
| |
| ep->datainterval = fmt->datainterval; |
| ep->stride = frame_bits >> 3; |
| |
| switch (ep->cur_format) { |
| case SNDRV_PCM_FORMAT_U8: |
| ep->silence_value = 0x80; |
| break; |
| case SNDRV_PCM_FORMAT_DSD_U8: |
| case SNDRV_PCM_FORMAT_DSD_U16_LE: |
| case SNDRV_PCM_FORMAT_DSD_U32_LE: |
| case SNDRV_PCM_FORMAT_DSD_U16_BE: |
| case SNDRV_PCM_FORMAT_DSD_U32_BE: |
| ep->silence_value = 0x69; |
| break; |
| default: |
| ep->silence_value = 0; |
| } |
| |
| /* assume max. frequency is 50% higher than nominal */ |
| ep->freqmax = ep->freqn + (ep->freqn >> 1); |
| /* Round up freqmax to nearest integer in order to calculate maximum |
| * packet size, which must represent a whole number of frames. |
| * This is accomplished by adding 0x0.ffff before converting the |
| * Q16.16 format into integer. |
| * In order to accurately calculate the maximum packet size when |
| * the data interval is more than 1 (i.e. ep->datainterval > 0), |
| * multiply by the data interval prior to rounding. For instance, |
| * a freqmax of 41 kHz will result in a max packet size of 6 (5.125) |
| * frames with a data interval of 1, but 11 (10.25) frames with a |
| * data interval of 2. |
| * (ep->freqmax << ep->datainterval overflows at 8.192 MHz for the |
| * maximum datainterval value of 3, at USB full speed, higher for |
| * USB high speed, noting that ep->freqmax is in units of |
| * frames per packet in Q16.16 format.) |
| */ |
| maxsize = (((ep->freqmax << ep->datainterval) + 0xffff) >> 16) * |
| (frame_bits >> 3); |
| if (tx_length_quirk) |
| maxsize += sizeof(__le32); /* Space for length descriptor */ |
| /* but wMaxPacketSize might reduce this */ |
| if (ep->maxpacksize && ep->maxpacksize < maxsize) { |
| /* whatever fits into a max. size packet */ |
| unsigned int data_maxsize = maxsize = ep->maxpacksize; |
| |
| if (tx_length_quirk) |
| /* Need to remove the length descriptor to calc freq */ |
| data_maxsize -= sizeof(__le32); |
| ep->freqmax = (data_maxsize / (frame_bits >> 3)) |
| << (16 - ep->datainterval); |
| } |
| |
| if (ep->fill_max) |
| ep->curpacksize = ep->maxpacksize; |
| else |
| ep->curpacksize = maxsize; |
| |
| if (snd_usb_get_speed(chip->dev) != USB_SPEED_FULL) { |
| packs_per_ms = 8 >> ep->datainterval; |
| max_packs_per_urb = MAX_PACKS_HS; |
| } else { |
| packs_per_ms = 1; |
| max_packs_per_urb = MAX_PACKS; |
| } |
| if (ep->sync_source && !ep->implicit_fb_sync) |
| max_packs_per_urb = min(max_packs_per_urb, |
| 1U << ep->sync_source->syncinterval); |
| max_packs_per_urb = max(1u, max_packs_per_urb >> ep->datainterval); |
| |
| /* |
| * Capture endpoints need to use small URBs because there's no way |
| * to tell in advance where the next period will end, and we don't |
| * want the next URB to complete much after the period ends. |
| * |
| * Playback endpoints with implicit sync much use the same parameters |
| * as their corresponding capture endpoint. |
| */ |
| if (usb_pipein(ep->pipe) || ep->implicit_fb_sync) { |
| |
| urb_packs = packs_per_ms; |
| /* |
| * Wireless devices can poll at a max rate of once per 4ms. |
| * For dataintervals less than 5, increase the packet count to |
| * allow the host controller to use bursting to fill in the |
| * gaps. |
| */ |
| if (snd_usb_get_speed(chip->dev) == USB_SPEED_WIRELESS) { |
| int interval = ep->datainterval; |
| while (interval < 5) { |
| urb_packs <<= 1; |
| ++interval; |
| } |
| } |
| /* make capture URBs <= 1 ms and smaller than a period */ |
| urb_packs = min(max_packs_per_urb, urb_packs); |
| while (urb_packs > 1 && urb_packs * maxsize >= ep->cur_period_bytes) |
| urb_packs >>= 1; |
| ep->nurbs = MAX_URBS; |
| |
| /* |
| * Playback endpoints without implicit sync are adjusted so that |
| * a period fits as evenly as possible in the smallest number of |
| * URBs. The total number of URBs is adjusted to the size of the |
| * ALSA buffer, subject to the MAX_URBS and MAX_QUEUE limits. |
| */ |
| } else { |
| /* determine how small a packet can be */ |
| minsize = (ep->freqn >> (16 - ep->datainterval)) * |
| (frame_bits >> 3); |
| /* with sync from device, assume it can be 12% lower */ |
| if (ep->sync_source) |
| minsize -= minsize >> 3; |
| minsize = max(minsize, 1u); |
| |
| /* how many packets will contain an entire ALSA period? */ |
| max_packs_per_period = DIV_ROUND_UP(ep->cur_period_bytes, minsize); |
| |
| /* how many URBs will contain a period? */ |
| urbs_per_period = DIV_ROUND_UP(max_packs_per_period, |
| max_packs_per_urb); |
| /* how many packets are needed in each URB? */ |
| urb_packs = DIV_ROUND_UP(max_packs_per_period, urbs_per_period); |
| |
| /* limit the number of frames in a single URB */ |
| ep->max_urb_frames = DIV_ROUND_UP(ep->cur_period_frames, |
| urbs_per_period); |
| |
| /* try to use enough URBs to contain an entire ALSA buffer */ |
| max_urbs = min((unsigned) MAX_URBS, |
| MAX_QUEUE * packs_per_ms / urb_packs); |
| ep->nurbs = min(max_urbs, urbs_per_period * ep->cur_buffer_periods); |
| } |
| |
| /* allocate and initialize data urbs */ |
| for (i = 0; i < ep->nurbs; i++) { |
| struct snd_urb_ctx *u = &ep->urb[i]; |
| u->index = i; |
| u->ep = ep; |
| u->packets = urb_packs; |
| u->buffer_size = maxsize * u->packets; |
| |
| if (fmt->fmt_type == UAC_FORMAT_TYPE_II) |
| u->packets++; /* for transfer delimiter */ |
| u->urb = usb_alloc_urb(u->packets, GFP_KERNEL); |
| if (!u->urb) |
| goto out_of_memory; |
| |
| u->urb->transfer_buffer = |
| usb_alloc_coherent(chip->dev, u->buffer_size, |
| GFP_KERNEL, &u->urb->transfer_dma); |
| if (!u->urb->transfer_buffer) |
| goto out_of_memory; |
| u->urb->pipe = ep->pipe; |
| u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; |
| u->urb->interval = 1 << ep->datainterval; |
| u->urb->context = u; |
| u->urb->complete = snd_complete_urb; |
| INIT_LIST_HEAD(&u->ready_list); |
| } |
| |
| return 0; |
| |
| out_of_memory: |
| release_urbs(ep, false); |
| return -ENOMEM; |
| } |
| |
| /* |
| * configure a sync endpoint |
| */ |
| static int sync_ep_set_params(struct snd_usb_endpoint *ep) |
| { |
| struct snd_usb_audio *chip = ep->chip; |
| int i; |
| |
| usb_audio_dbg(chip, "Setting params for sync EP 0x%x, pipe 0x%x\n", |
| ep->ep_num, ep->pipe); |
| |
| ep->syncbuf = usb_alloc_coherent(chip->dev, SYNC_URBS * 4, |
| GFP_KERNEL, &ep->sync_dma); |
| if (!ep->syncbuf) |
| return -ENOMEM; |
| |
| for (i = 0; i < SYNC_URBS; i++) { |
| struct snd_urb_ctx *u = &ep->urb[i]; |
| u->index = i; |
| u->ep = ep; |
| u->packets = 1; |
| u->urb = usb_alloc_urb(1, GFP_KERNEL); |
| if (!u->urb) |
| goto out_of_memory; |
| u->urb->transfer_buffer = ep->syncbuf + i * 4; |
| u->urb->transfer_dma = ep->sync_dma + i * 4; |
| u->urb->transfer_buffer_length = 4; |
| u->urb->pipe = ep->pipe; |
| u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; |
| u->urb->number_of_packets = 1; |
| u->urb->interval = 1 << ep->syncinterval; |
| u->urb->context = u; |
| u->urb->complete = snd_complete_urb; |
| } |
| |
| ep->nurbs = SYNC_URBS; |
| |
| return 0; |
| |
| out_of_memory: |
| release_urbs(ep, false); |
| return -ENOMEM; |
| } |
| |
| /* |
| * snd_usb_endpoint_set_params: configure an snd_usb_endpoint |
| * |
| * Determine the number of URBs to be used on this endpoint. |
| * An endpoint must be configured before it can be started. |
| * An endpoint that is already running can not be reconfigured. |
| */ |
| static int snd_usb_endpoint_set_params(struct snd_usb_audio *chip, |
| struct snd_usb_endpoint *ep) |
| { |
| const struct audioformat *fmt = ep->cur_audiofmt; |
| int err; |
| |
| /* release old buffers, if any */ |
| err = release_urbs(ep, false); |
| if (err < 0) |
| return err; |
| |
| ep->datainterval = fmt->datainterval; |
| ep->maxpacksize = fmt->maxpacksize; |
| ep->fill_max = !!(fmt->attributes & UAC_EP_CS_ATTR_FILL_MAX); |
| |
| if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL) { |
| ep->freqn = get_usb_full_speed_rate(ep->cur_rate); |
| ep->pps = 1000 >> ep->datainterval; |
| } else { |
| ep->freqn = get_usb_high_speed_rate(ep->cur_rate); |
| ep->pps = 8000 >> ep->datainterval; |
| } |
| |
| ep->sample_rem = ep->cur_rate % ep->pps; |
| ep->packsize[0] = ep->cur_rate / ep->pps; |
| ep->packsize[1] = (ep->cur_rate + (ep->pps - 1)) / ep->pps; |
| |
| /* calculate the frequency in 16.16 format */ |
| ep->freqm = ep->freqn; |
| ep->freqshift = INT_MIN; |
| |
| ep->phase = 0; |
| |
| switch (ep->type) { |
| case SND_USB_ENDPOINT_TYPE_DATA: |
| err = data_ep_set_params(ep); |
| break; |
| case SND_USB_ENDPOINT_TYPE_SYNC: |
| err = sync_ep_set_params(ep); |
| break; |
| default: |
| err = -EINVAL; |
| } |
| |
| usb_audio_dbg(chip, "Set up %d URBS, ret=%d\n", ep->nurbs, err); |
| |
| if (err < 0) |
| return err; |
| |
| /* some unit conversions in runtime */ |
| ep->maxframesize = ep->maxpacksize / ep->cur_frame_bytes; |
| ep->curframesize = ep->curpacksize / ep->cur_frame_bytes; |
| |
| return 0; |
| } |
| |
| /* |
| * snd_usb_endpoint_configure: Configure the endpoint |
| * |
| * This function sets up the EP to be fully usable state. |
| * It's called either from hw_params or prepare callback. |
| * The function checks need_setup flag, and performs nothing unless needed, |
| * so it's safe to call this multiple times. |
| * |
| * This returns zero if unchanged, 1 if the configuration has changed, |
| * or a negative error code. |
| */ |
| int snd_usb_endpoint_configure(struct snd_usb_audio *chip, |
| struct snd_usb_endpoint *ep) |
| { |
| bool iface_first; |
| int err = 0; |
| |
| mutex_lock(&chip->mutex); |
| if (WARN_ON(!ep->iface_ref)) |
| goto unlock; |
| if (!ep->need_setup) |
| goto unlock; |
| |
| /* If the interface has been already set up, just set EP parameters */ |
| if (!ep->iface_ref->need_setup) { |
| /* sample rate setup of UAC1 is per endpoint, and we need |
| * to update at each EP configuration |
| */ |
| if (ep->cur_audiofmt->protocol == UAC_VERSION_1) { |
| err = snd_usb_init_sample_rate(chip, ep->cur_audiofmt, |
| ep->cur_rate); |
| if (err < 0) |
| goto unlock; |
| } |
| err = snd_usb_endpoint_set_params(chip, ep); |
| if (err < 0) |
| goto unlock; |
| goto done; |
| } |
| |
| /* Need to deselect altsetting at first */ |
| endpoint_set_interface(chip, ep, false); |
| |
| /* Some UAC1 devices (e.g. Yamaha THR10) need the host interface |
| * to be set up before parameter setups |
| */ |
| iface_first = ep->cur_audiofmt->protocol == UAC_VERSION_1; |
| /* Workaround for devices that require the interface setup at first like UAC1 */ |
| if (chip->quirk_flags & QUIRK_FLAG_SET_IFACE_FIRST) |
| iface_first = true; |
| if (iface_first) { |
| err = endpoint_set_interface(chip, ep, true); |
| if (err < 0) |
| goto unlock; |
| } |
| |
| err = snd_usb_init_pitch(chip, ep->cur_audiofmt); |
| if (err < 0) |
| goto unlock; |
| |
| err = snd_usb_init_sample_rate(chip, ep->cur_audiofmt, ep->cur_rate); |
| if (err < 0) |
| goto unlock; |
| |
| err = snd_usb_endpoint_set_params(chip, ep); |
| if (err < 0) |
| goto unlock; |
| |
| err = snd_usb_select_mode_quirk(chip, ep->cur_audiofmt); |
| if (err < 0) |
| goto unlock; |
| |
| /* for UAC2/3, enable the interface altset here at last */ |
| if (!iface_first) { |
| err = endpoint_set_interface(chip, ep, true); |
| if (err < 0) |
| goto unlock; |
| } |
| |
| ep->iface_ref->need_setup = false; |
| |
| done: |
| ep->need_setup = false; |
| err = 1; |
| |
| unlock: |
| mutex_unlock(&chip->mutex); |
| return err; |
| } |
| |
| /* get the current rate set to the given clock by any endpoint */ |
| int snd_usb_endpoint_get_clock_rate(struct snd_usb_audio *chip, int clock) |
| { |
| struct snd_usb_endpoint *ep; |
| int rate = 0; |
| |
| if (!clock) |
| return 0; |
| mutex_lock(&chip->mutex); |
| list_for_each_entry(ep, &chip->ep_list, list) { |
| if (ep->cur_clock == clock && ep->cur_rate) { |
| rate = ep->cur_rate; |
| break; |
| } |
| } |
| mutex_unlock(&chip->mutex); |
| return rate; |
| } |
| |
| /** |
| * snd_usb_endpoint_start: start an snd_usb_endpoint |
| * |
| * @ep: the endpoint to start |
| * |
| * A call to this function will increment the running count of the endpoint. |
| * In case it is not already running, the URBs for this endpoint will be |
| * submitted. Otherwise, this function does nothing. |
| * |
| * Must be balanced to calls of snd_usb_endpoint_stop(). |
| * |
| * Returns an error if the URB submission failed, 0 in all other cases. |
| */ |
| int snd_usb_endpoint_start(struct snd_usb_endpoint *ep) |
| { |
| bool is_playback = usb_pipeout(ep->pipe); |
| int err; |
| unsigned int i; |
| |
| if (atomic_read(&ep->chip->shutdown)) |
| return -EBADFD; |
| |
| if (ep->sync_source) |
| WRITE_ONCE(ep->sync_source->sync_sink, ep); |
| |
| usb_audio_dbg(ep->chip, "Starting %s EP 0x%x (running %d)\n", |
| ep_type_name(ep->type), ep->ep_num, |
| atomic_read(&ep->running)); |
| |
| /* already running? */ |
| if (atomic_inc_return(&ep->running) != 1) |
| return 0; |
| |
| ep->active_mask = 0; |
| ep->unlink_mask = 0; |
| ep->phase = 0; |
| ep->sample_accum = 0; |
| |
| snd_usb_endpoint_start_quirk(ep); |
| |
| /* |
| * If this endpoint has a data endpoint as implicit feedback source, |
| * don't start the urbs here. Instead, mark them all as available, |
| * wait for the record urbs to return and queue the playback urbs |
| * from that context. |
| */ |
| |
| if (!ep_state_update(ep, EP_STATE_STOPPED, EP_STATE_RUNNING)) |
| goto __error; |
| |
| if (snd_usb_endpoint_implicit_feedback_sink(ep) && |
| !(ep->chip->quirk_flags & QUIRK_FLAG_PLAYBACK_FIRST)) { |
| usb_audio_dbg(ep->chip, "No URB submission due to implicit fb sync\n"); |
| i = 0; |
| goto fill_rest; |
| } |
| |
| for (i = 0; i < ep->nurbs; i++) { |
| struct urb *urb = ep->urb[i].urb; |
| |
| if (snd_BUG_ON(!urb)) |
| goto __error; |
| |
| if (is_playback) |
| err = prepare_outbound_urb(ep, urb->context, true); |
| else |
| err = prepare_inbound_urb(ep, urb->context); |
| if (err < 0) { |
| /* stop filling at applptr */ |
| if (err == -EAGAIN) |
| break; |
| usb_audio_dbg(ep->chip, |
| "EP 0x%x: failed to prepare urb: %d\n", |
| ep->ep_num, err); |
| goto __error; |
| } |
| |
| err = usb_submit_urb(urb, GFP_ATOMIC); |
| if (err < 0) { |
| usb_audio_err(ep->chip, |
| "cannot submit urb %d, error %d: %s\n", |
| i, err, usb_error_string(err)); |
| goto __error; |
| } |
| set_bit(i, &ep->active_mask); |
| atomic_inc(&ep->submitted_urbs); |
| } |
| |
| if (!i) { |
| usb_audio_dbg(ep->chip, "XRUN at starting EP 0x%x\n", |
| ep->ep_num); |
| goto __error; |
| } |
| |
| usb_audio_dbg(ep->chip, "%d URBs submitted for EP 0x%x\n", |
| i, ep->ep_num); |
| |
| fill_rest: |
| /* put the remaining URBs to ready list */ |
| if (is_playback) { |
| for (; i < ep->nurbs; i++) |
| push_back_to_ready_list(ep, ep->urb + i); |
| } |
| |
| return 0; |
| |
| __error: |
| snd_usb_endpoint_stop(ep, false); |
| return -EPIPE; |
| } |
| |
| /** |
| * snd_usb_endpoint_stop: stop an snd_usb_endpoint |
| * |
| * @ep: the endpoint to stop (may be NULL) |
| * @keep_pending: keep in-flight URBs |
| * |
| * A call to this function will decrement the running count of the endpoint. |
| * In case the last user has requested the endpoint stop, the URBs will |
| * actually be deactivated. |
| * |
| * Must be balanced to calls of snd_usb_endpoint_start(). |
| * |
| * The caller needs to synchronize the pending stop operation via |
| * snd_usb_endpoint_sync_pending_stop(). |
| */ |
| void snd_usb_endpoint_stop(struct snd_usb_endpoint *ep, bool keep_pending) |
| { |
| if (!ep) |
| return; |
| |
| usb_audio_dbg(ep->chip, "Stopping %s EP 0x%x (running %d)\n", |
| ep_type_name(ep->type), ep->ep_num, |
| atomic_read(&ep->running)); |
| |
| if (snd_BUG_ON(!atomic_read(&ep->running))) |
| return; |
| |
| if (!atomic_dec_return(&ep->running)) { |
| if (ep->sync_source) |
| WRITE_ONCE(ep->sync_source->sync_sink, NULL); |
| stop_urbs(ep, false, keep_pending); |
| } |
| } |
| |
| /** |
| * snd_usb_endpoint_release: Tear down an snd_usb_endpoint |
| * |
| * @ep: the endpoint to release |
| * |
| * This function does not care for the endpoint's running count but will tear |
| * down all the streaming URBs immediately. |
| */ |
| void snd_usb_endpoint_release(struct snd_usb_endpoint *ep) |
| { |
| release_urbs(ep, true); |
| } |
| |
| /** |
| * snd_usb_endpoint_free_all: Free the resources of an snd_usb_endpoint |
| * @chip: The chip |
| * |
| * This free all endpoints and those resources |
| */ |
| void snd_usb_endpoint_free_all(struct snd_usb_audio *chip) |
| { |
| struct snd_usb_endpoint *ep, *en; |
| struct snd_usb_iface_ref *ip, *in; |
| |
| list_for_each_entry_safe(ep, en, &chip->ep_list, list) |
| kfree(ep); |
| |
| list_for_each_entry_safe(ip, in, &chip->iface_ref_list, list) |
| kfree(ip); |
| } |
| |
| /* |
| * snd_usb_handle_sync_urb: parse an USB sync packet |
| * |
| * @ep: the endpoint to handle the packet |
| * @sender: the sending endpoint |
| * @urb: the received packet |
| * |
| * This function is called from the context of an endpoint that received |
| * the packet and is used to let another endpoint object handle the payload. |
| */ |
| static void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep, |
| struct snd_usb_endpoint *sender, |
| const struct urb *urb) |
| { |
| int shift; |
| unsigned int f; |
| unsigned long flags; |
| |
| snd_BUG_ON(ep == sender); |
| |
| /* |
| * In case the endpoint is operating in implicit feedback mode, prepare |
| * a new outbound URB that has the same layout as the received packet |
| * and add it to the list of pending urbs. queue_pending_output_urbs() |
| * will take care of them later. |
| */ |
| if (snd_usb_endpoint_implicit_feedback_sink(ep) && |
| atomic_read(&ep->running)) { |
| |
| /* implicit feedback case */ |
| int i, bytes = 0; |
| struct snd_urb_ctx *in_ctx; |
| struct snd_usb_packet_info *out_packet; |
| |
| in_ctx = urb->context; |
| |
| /* Count overall packet size */ |
| for (i = 0; i < in_ctx->packets; i++) |
| if (urb->iso_frame_desc[i].status == 0) |
| bytes += urb->iso_frame_desc[i].actual_length; |
| |
| /* |
| * skip empty packets. At least M-Audio's Fast Track Ultra stops |
| * streaming once it received a 0-byte OUT URB |
| */ |
| if (bytes == 0) |
| return; |
| |
| spin_lock_irqsave(&ep->lock, flags); |
| if (ep->next_packet_queued >= ARRAY_SIZE(ep->next_packet)) { |
| spin_unlock_irqrestore(&ep->lock, flags); |
| usb_audio_err(ep->chip, |
| "next package FIFO overflow EP 0x%x\n", |
| ep->ep_num); |
| notify_xrun(ep); |
| return; |
| } |
| |
| out_packet = next_packet_fifo_enqueue(ep); |
| |
| /* |
| * Iterate through the inbound packet and prepare the lengths |
| * for the output packet. The OUT packet we are about to send |
| * will have the same amount of payload bytes per stride as the |
| * IN packet we just received. Since the actual size is scaled |
| * by the stride, use the sender stride to calculate the length |
| * in case the number of channels differ between the implicitly |
| * fed-back endpoint and the synchronizing endpoint. |
| */ |
| |
| out_packet->packets = in_ctx->packets; |
| for (i = 0; i < in_ctx->packets; i++) { |
| if (urb->iso_frame_desc[i].status == 0) |
| out_packet->packet_size[i] = |
| urb->iso_frame_desc[i].actual_length / sender->stride; |
| else |
| out_packet->packet_size[i] = 0; |
| } |
| |
| spin_unlock_irqrestore(&ep->lock, flags); |
| snd_usb_queue_pending_output_urbs(ep, false); |
| |
| return; |
| } |
| |
| /* |
| * process after playback sync complete |
| * |
| * Full speed devices report feedback values in 10.14 format as samples |
| * per frame, high speed devices in 16.16 format as samples per |
| * microframe. |
| * |
| * Because the Audio Class 1 spec was written before USB 2.0, many high |
| * speed devices use a wrong interpretation, some others use an |
| * entirely different format. |
| * |
| * Therefore, we cannot predict what format any particular device uses |
| * and must detect it automatically. |
| */ |
| |
| if (urb->iso_frame_desc[0].status != 0 || |
| urb->iso_frame_desc[0].actual_length < 3) |
| return; |
| |
| f = le32_to_cpup(urb->transfer_buffer); |
| if (urb->iso_frame_desc[0].actual_length == 3) |
| f &= 0x00ffffff; |
| else |
| f &= 0x0fffffff; |
| |
| if (f == 0) |
| return; |
| |
| if (unlikely(sender->tenor_fb_quirk)) { |
| /* |
| * Devices based on Tenor 8802 chipsets (TEAC UD-H01 |
| * and others) sometimes change the feedback value |
| * by +/- 0x1.0000. |
| */ |
| if (f < ep->freqn - 0x8000) |
| f += 0xf000; |
| else if (f > ep->freqn + 0x8000) |
| f -= 0xf000; |
| } else if (unlikely(ep->freqshift == INT_MIN)) { |
| /* |
| * The first time we see a feedback value, determine its format |
| * by shifting it left or right until it matches the nominal |
| * frequency value. This assumes that the feedback does not |
| * differ from the nominal value more than +50% or -25%. |
| */ |
| shift = 0; |
| while (f < ep->freqn - ep->freqn / 4) { |
| f <<= 1; |
| shift++; |
| } |
| while (f > ep->freqn + ep->freqn / 2) { |
| f >>= 1; |
| shift--; |
| } |
| ep->freqshift = shift; |
| } else if (ep->freqshift >= 0) |
| f <<= ep->freqshift; |
| else |
| f >>= -ep->freqshift; |
| |
| if (likely(f >= ep->freqn - ep->freqn / 8 && f <= ep->freqmax)) { |
| /* |
| * If the frequency looks valid, set it. |
| * This value is referred to in prepare_playback_urb(). |
| */ |
| spin_lock_irqsave(&ep->lock, flags); |
| ep->freqm = f; |
| spin_unlock_irqrestore(&ep->lock, flags); |
| } else { |
| /* |
| * Out of range; maybe the shift value is wrong. |
| * Reset it so that we autodetect again the next time. |
| */ |
| ep->freqshift = INT_MIN; |
| } |
| } |
| |