blob: 4bc5d5fce9bfa77fc1cb411a945b941758767161 [file] [log] [blame]
/*
* QLogic QLA41xx NIC HBA Driver
* Copyright (c) 2003-2006 QLogic Corporation
*
* See LICENSE.qlge for copyright and licensing details.
*/
#ifndef _QLGE_H_
#define _QLGE_H_
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/rtnetlink.h>
#include <linux/if_vlan.h>
/*
* General definitions...
*/
#define DRV_NAME "qlge"
#define DRV_STRING "QLogic 10 Gigabit PCI-E Ethernet Driver "
#define DRV_VERSION "1.00.00.35"
#define WQ_ADDR_ALIGN 0x3 /* 4 byte alignment */
#define QLGE_VENDOR_ID 0x1077
#define QLGE_DEVICE_ID_8012 0x8012
#define QLGE_DEVICE_ID_8000 0x8000
#define QLGE_MEZZ_SSYS_ID_068 0x0068
#define QLGE_MEZZ_SSYS_ID_180 0x0180
#define MAX_CPUS 8
#define MAX_TX_RINGS MAX_CPUS
#define MAX_RX_RINGS ((MAX_CPUS * 2) + 1)
#define NUM_TX_RING_ENTRIES 256
#define NUM_RX_RING_ENTRIES 256
/* Use the same len for sbq and lbq. Note that it seems like the device might
* support different sizes.
*/
#define QLGE_BQ_SHIFT 9
#define QLGE_BQ_LEN BIT(QLGE_BQ_SHIFT)
#define QLGE_BQ_SIZE (QLGE_BQ_LEN * sizeof(__le64))
#define DB_PAGE_SIZE 4096
/* Calculate the number of (4k) pages required to
* contain a buffer queue of the given length.
*/
#define MAX_DB_PAGES_PER_BQ(x) \
(((x * sizeof(u64)) / DB_PAGE_SIZE) + \
(((x * sizeof(u64)) % DB_PAGE_SIZE) ? 1 : 0))
#define RX_RING_SHADOW_SPACE (sizeof(u64) + \
MAX_DB_PAGES_PER_BQ(QLGE_BQ_LEN) * sizeof(u64) + \
MAX_DB_PAGES_PER_BQ(QLGE_BQ_LEN) * sizeof(u64))
#define LARGE_BUFFER_MAX_SIZE 8192
#define LARGE_BUFFER_MIN_SIZE 2048
#define MAX_CQ 128
#define DFLT_COALESCE_WAIT 100 /* 100 usec wait for coalescing */
#define MAX_INTER_FRAME_WAIT 10 /* 10 usec max interframe-wait for coalescing */
#define DFLT_INTER_FRAME_WAIT (MAX_INTER_FRAME_WAIT/2)
#define UDELAY_COUNT 3
#define UDELAY_DELAY 100
#define TX_DESC_PER_IOCB 8
#if ((MAX_SKB_FRAGS - TX_DESC_PER_IOCB) + 2) > 0
#define TX_DESC_PER_OAL ((MAX_SKB_FRAGS - TX_DESC_PER_IOCB) + 2)
#else /* all other page sizes */
#define TX_DESC_PER_OAL 0
#endif
/* Word shifting for converting 64-bit
* address to a series of 16-bit words.
* This is used for some MPI firmware
* mailbox commands.
*/
#define LSW(x) ((u16)(x))
#define MSW(x) ((u16)((u32)(x) >> 16))
#define LSD(x) ((u32)((u64)(x)))
#define MSD(x) ((u32)((((u64)(x)) >> 32)))
/* In some cases, the device interprets a value of 0x0000 as 65536. These
* cases are marked using the following macro.
*/
#define QLGE_FIT16(value) ((u16)(value))
/* MPI test register definitions. This register
* is used for determining alternate NIC function's
* PCI->func number.
*/
enum {
MPI_TEST_FUNC_PORT_CFG = 0x1002,
MPI_TEST_FUNC_PRB_CTL = 0x100e,
MPI_TEST_FUNC_PRB_EN = 0x18a20000,
MPI_TEST_FUNC_RST_STS = 0x100a,
MPI_TEST_FUNC_RST_FRC = 0x00000003,
MPI_TEST_NIC_FUNC_MASK = 0x00000007,
MPI_TEST_NIC1_FUNCTION_ENABLE = (1 << 0),
MPI_TEST_NIC1_FUNCTION_MASK = 0x0000000e,
MPI_TEST_NIC1_FUNC_SHIFT = 1,
MPI_TEST_NIC2_FUNCTION_ENABLE = (1 << 4),
MPI_TEST_NIC2_FUNCTION_MASK = 0x000000e0,
MPI_TEST_NIC2_FUNC_SHIFT = 5,
MPI_TEST_FC1_FUNCTION_ENABLE = (1 << 8),
MPI_TEST_FC1_FUNCTION_MASK = 0x00000e00,
MPI_TEST_FC1_FUNCTION_SHIFT = 9,
MPI_TEST_FC2_FUNCTION_ENABLE = (1 << 12),
MPI_TEST_FC2_FUNCTION_MASK = 0x0000e000,
MPI_TEST_FC2_FUNCTION_SHIFT = 13,
MPI_NIC_READ = 0x00000000,
MPI_NIC_REG_BLOCK = 0x00020000,
MPI_NIC_FUNCTION_SHIFT = 6,
};
/*
* Processor Address Register (PROC_ADDR) bit definitions.
*/
enum {
/* Misc. stuff */
MAILBOX_COUNT = 16,
MAILBOX_TIMEOUT = 5,
PROC_ADDR_RDY = (1 << 31),
PROC_ADDR_R = (1 << 30),
PROC_ADDR_ERR = (1 << 29),
PROC_ADDR_DA = (1 << 28),
PROC_ADDR_FUNC0_MBI = 0x00001180,
PROC_ADDR_FUNC0_MBO = (PROC_ADDR_FUNC0_MBI + MAILBOX_COUNT),
PROC_ADDR_FUNC0_CTL = 0x000011a1,
PROC_ADDR_FUNC2_MBI = 0x00001280,
PROC_ADDR_FUNC2_MBO = (PROC_ADDR_FUNC2_MBI + MAILBOX_COUNT),
PROC_ADDR_FUNC2_CTL = 0x000012a1,
PROC_ADDR_MPI_RISC = 0x00000000,
PROC_ADDR_MDE = 0x00010000,
PROC_ADDR_REGBLOCK = 0x00020000,
PROC_ADDR_RISC_REG = 0x00030000,
};
/*
* System Register (SYS) bit definitions.
*/
enum {
SYS_EFE = (1 << 0),
SYS_FAE = (1 << 1),
SYS_MDC = (1 << 2),
SYS_DST = (1 << 3),
SYS_DWC = (1 << 4),
SYS_EVW = (1 << 5),
SYS_OMP_DLY_MASK = 0x3f000000,
/*
* There are no values defined as of edit #15.
*/
SYS_ODI = (1 << 14),
};
/*
* Reset/Failover Register (RST_FO) bit definitions.
*/
enum {
RST_FO_TFO = (1 << 0),
RST_FO_RR_MASK = 0x00060000,
RST_FO_RR_CQ_CAM = 0x00000000,
RST_FO_RR_DROP = 0x00000002,
RST_FO_RR_DQ = 0x00000004,
RST_FO_RR_RCV_FUNC_CQ = 0x00000006,
RST_FO_FRB = (1 << 12),
RST_FO_MOP = (1 << 13),
RST_FO_REG = (1 << 14),
RST_FO_FR = (1 << 15),
};
/*
* Function Specific Control Register (FSC) bit definitions.
*/
enum {
FSC_DBRST_MASK = 0x00070000,
FSC_DBRST_256 = 0x00000000,
FSC_DBRST_512 = 0x00000001,
FSC_DBRST_768 = 0x00000002,
FSC_DBRST_1024 = 0x00000003,
FSC_DBL_MASK = 0x00180000,
FSC_DBL_DBRST = 0x00000000,
FSC_DBL_MAX_PLD = 0x00000008,
FSC_DBL_MAX_BRST = 0x00000010,
FSC_DBL_128_BYTES = 0x00000018,
FSC_EC = (1 << 5),
FSC_EPC_MASK = 0x00c00000,
FSC_EPC_INBOUND = (1 << 6),
FSC_EPC_OUTBOUND = (1 << 7),
FSC_VM_PAGESIZE_MASK = 0x07000000,
FSC_VM_PAGE_2K = 0x00000100,
FSC_VM_PAGE_4K = 0x00000200,
FSC_VM_PAGE_8K = 0x00000300,
FSC_VM_PAGE_64K = 0x00000600,
FSC_SH = (1 << 11),
FSC_DSB = (1 << 12),
FSC_STE = (1 << 13),
FSC_FE = (1 << 15),
};
/*
* Host Command Status Register (CSR) bit definitions.
*/
enum {
CSR_ERR_STS_MASK = 0x0000003f,
/*
* There are no valued defined as of edit #15.
*/
CSR_RR = (1 << 8),
CSR_HRI = (1 << 9),
CSR_RP = (1 << 10),
CSR_CMD_PARM_SHIFT = 22,
CSR_CMD_NOP = 0x00000000,
CSR_CMD_SET_RST = 0x10000000,
CSR_CMD_CLR_RST = 0x20000000,
CSR_CMD_SET_PAUSE = 0x30000000,
CSR_CMD_CLR_PAUSE = 0x40000000,
CSR_CMD_SET_H2R_INT = 0x50000000,
CSR_CMD_CLR_H2R_INT = 0x60000000,
CSR_CMD_PAR_EN = 0x70000000,
CSR_CMD_SET_BAD_PAR = 0x80000000,
CSR_CMD_CLR_BAD_PAR = 0x90000000,
CSR_CMD_CLR_R2PCI_INT = 0xa0000000,
};
/*
* Configuration Register (CFG) bit definitions.
*/
enum {
CFG_LRQ = (1 << 0),
CFG_DRQ = (1 << 1),
CFG_LR = (1 << 2),
CFG_DR = (1 << 3),
CFG_LE = (1 << 5),
CFG_LCQ = (1 << 6),
CFG_DCQ = (1 << 7),
CFG_Q_SHIFT = 8,
CFG_Q_MASK = 0x7f000000,
};
/*
* Status Register (STS) bit definitions.
*/
enum {
STS_FE = (1 << 0),
STS_PI = (1 << 1),
STS_PL0 = (1 << 2),
STS_PL1 = (1 << 3),
STS_PI0 = (1 << 4),
STS_PI1 = (1 << 5),
STS_FUNC_ID_MASK = 0x000000c0,
STS_FUNC_ID_SHIFT = 6,
STS_F0E = (1 << 8),
STS_F1E = (1 << 9),
STS_F2E = (1 << 10),
STS_F3E = (1 << 11),
STS_NFE = (1 << 12),
};
/*
* Interrupt Enable Register (INTR_EN) bit definitions.
*/
enum {
INTR_EN_INTR_MASK = 0x007f0000,
INTR_EN_TYPE_MASK = 0x03000000,
INTR_EN_TYPE_ENABLE = 0x00000100,
INTR_EN_TYPE_DISABLE = 0x00000200,
INTR_EN_TYPE_READ = 0x00000300,
INTR_EN_IHD = (1 << 13),
INTR_EN_IHD_MASK = (INTR_EN_IHD << 16),
INTR_EN_EI = (1 << 14),
INTR_EN_EN = (1 << 15),
};
/*
* Interrupt Mask Register (INTR_MASK) bit definitions.
*/
enum {
INTR_MASK_PI = (1 << 0),
INTR_MASK_HL0 = (1 << 1),
INTR_MASK_LH0 = (1 << 2),
INTR_MASK_HL1 = (1 << 3),
INTR_MASK_LH1 = (1 << 4),
INTR_MASK_SE = (1 << 5),
INTR_MASK_LSC = (1 << 6),
INTR_MASK_MC = (1 << 7),
INTR_MASK_LINK_IRQS = INTR_MASK_LSC | INTR_MASK_SE | INTR_MASK_MC,
};
/*
* Register (REV_ID) bit definitions.
*/
enum {
REV_ID_MASK = 0x0000000f,
REV_ID_NICROLL_SHIFT = 0,
REV_ID_NICREV_SHIFT = 4,
REV_ID_XGROLL_SHIFT = 8,
REV_ID_XGREV_SHIFT = 12,
REV_ID_CHIPREV_SHIFT = 28,
};
/*
* Force ECC Error Register (FRC_ECC_ERR) bit definitions.
*/
enum {
FRC_ECC_ERR_VW = (1 << 12),
FRC_ECC_ERR_VB = (1 << 13),
FRC_ECC_ERR_NI = (1 << 14),
FRC_ECC_ERR_NO = (1 << 15),
FRC_ECC_PFE_SHIFT = 16,
FRC_ECC_ERR_DO = (1 << 18),
FRC_ECC_P14 = (1 << 19),
};
/*
* Error Status Register (ERR_STS) bit definitions.
*/
enum {
ERR_STS_NOF = (1 << 0),
ERR_STS_NIF = (1 << 1),
ERR_STS_DRP = (1 << 2),
ERR_STS_XGP = (1 << 3),
ERR_STS_FOU = (1 << 4),
ERR_STS_FOC = (1 << 5),
ERR_STS_FOF = (1 << 6),
ERR_STS_FIU = (1 << 7),
ERR_STS_FIC = (1 << 8),
ERR_STS_FIF = (1 << 9),
ERR_STS_MOF = (1 << 10),
ERR_STS_TA = (1 << 11),
ERR_STS_MA = (1 << 12),
ERR_STS_MPE = (1 << 13),
ERR_STS_SCE = (1 << 14),
ERR_STS_STE = (1 << 15),
ERR_STS_FOW = (1 << 16),
ERR_STS_UE = (1 << 17),
ERR_STS_MCH = (1 << 26),
ERR_STS_LOC_SHIFT = 27,
};
/*
* RAM Debug Address Register (RAM_DBG_ADDR) bit definitions.
*/
enum {
RAM_DBG_ADDR_FW = (1 << 30),
RAM_DBG_ADDR_FR = (1 << 31),
};
/*
* Semaphore Register (SEM) bit definitions.
*/
enum {
/*
* Example:
* reg = SEM_XGMAC0_MASK | (SEM_SET << SEM_XGMAC0_SHIFT)
*/
SEM_CLEAR = 0,
SEM_SET = 1,
SEM_FORCE = 3,
SEM_XGMAC0_SHIFT = 0,
SEM_XGMAC1_SHIFT = 2,
SEM_ICB_SHIFT = 4,
SEM_MAC_ADDR_SHIFT = 6,
SEM_FLASH_SHIFT = 8,
SEM_PROBE_SHIFT = 10,
SEM_RT_IDX_SHIFT = 12,
SEM_PROC_REG_SHIFT = 14,
SEM_XGMAC0_MASK = 0x00030000,
SEM_XGMAC1_MASK = 0x000c0000,
SEM_ICB_MASK = 0x00300000,
SEM_MAC_ADDR_MASK = 0x00c00000,
SEM_FLASH_MASK = 0x03000000,
SEM_PROBE_MASK = 0x0c000000,
SEM_RT_IDX_MASK = 0x30000000,
SEM_PROC_REG_MASK = 0xc0000000,
};
/*
* 10G MAC Address Register (XGMAC_ADDR) bit definitions.
*/
enum {
XGMAC_ADDR_RDY = (1 << 31),
XGMAC_ADDR_R = (1 << 30),
XGMAC_ADDR_XME = (1 << 29),
/* XGMAC control registers */
PAUSE_SRC_LO = 0x00000100,
PAUSE_SRC_HI = 0x00000104,
GLOBAL_CFG = 0x00000108,
GLOBAL_CFG_RESET = (1 << 0),
GLOBAL_CFG_JUMBO = (1 << 6),
GLOBAL_CFG_TX_STAT_EN = (1 << 10),
GLOBAL_CFG_RX_STAT_EN = (1 << 11),
TX_CFG = 0x0000010c,
TX_CFG_RESET = (1 << 0),
TX_CFG_EN = (1 << 1),
TX_CFG_PREAM = (1 << 2),
RX_CFG = 0x00000110,
RX_CFG_RESET = (1 << 0),
RX_CFG_EN = (1 << 1),
RX_CFG_PREAM = (1 << 2),
FLOW_CTL = 0x0000011c,
PAUSE_OPCODE = 0x00000120,
PAUSE_TIMER = 0x00000124,
PAUSE_FRM_DEST_LO = 0x00000128,
PAUSE_FRM_DEST_HI = 0x0000012c,
MAC_TX_PARAMS = 0x00000134,
MAC_TX_PARAMS_JUMBO = (1 << 31),
MAC_TX_PARAMS_SIZE_SHIFT = 16,
MAC_RX_PARAMS = 0x00000138,
MAC_SYS_INT = 0x00000144,
MAC_SYS_INT_MASK = 0x00000148,
MAC_MGMT_INT = 0x0000014c,
MAC_MGMT_IN_MASK = 0x00000150,
EXT_ARB_MODE = 0x000001fc,
/* XGMAC TX statistics registers */
TX_PKTS = 0x00000200,
TX_BYTES = 0x00000208,
TX_MCAST_PKTS = 0x00000210,
TX_BCAST_PKTS = 0x00000218,
TX_UCAST_PKTS = 0x00000220,
TX_CTL_PKTS = 0x00000228,
TX_PAUSE_PKTS = 0x00000230,
TX_64_PKT = 0x00000238,
TX_65_TO_127_PKT = 0x00000240,
TX_128_TO_255_PKT = 0x00000248,
TX_256_511_PKT = 0x00000250,
TX_512_TO_1023_PKT = 0x00000258,
TX_1024_TO_1518_PKT = 0x00000260,
TX_1519_TO_MAX_PKT = 0x00000268,
TX_UNDERSIZE_PKT = 0x00000270,
TX_OVERSIZE_PKT = 0x00000278,
/* XGMAC statistics control registers */
RX_HALF_FULL_DET = 0x000002a0,
TX_HALF_FULL_DET = 0x000002a4,
RX_OVERFLOW_DET = 0x000002a8,
TX_OVERFLOW_DET = 0x000002ac,
RX_HALF_FULL_MASK = 0x000002b0,
TX_HALF_FULL_MASK = 0x000002b4,
RX_OVERFLOW_MASK = 0x000002b8,
TX_OVERFLOW_MASK = 0x000002bc,
STAT_CNT_CTL = 0x000002c0,
STAT_CNT_CTL_CLEAR_TX = (1 << 0),
STAT_CNT_CTL_CLEAR_RX = (1 << 1),
AUX_RX_HALF_FULL_DET = 0x000002d0,
AUX_TX_HALF_FULL_DET = 0x000002d4,
AUX_RX_OVERFLOW_DET = 0x000002d8,
AUX_TX_OVERFLOW_DET = 0x000002dc,
AUX_RX_HALF_FULL_MASK = 0x000002f0,
AUX_TX_HALF_FULL_MASK = 0x000002f4,
AUX_RX_OVERFLOW_MASK = 0x000002f8,
AUX_TX_OVERFLOW_MASK = 0x000002fc,
/* XGMAC RX statistics registers */
RX_BYTES = 0x00000300,
RX_BYTES_OK = 0x00000308,
RX_PKTS = 0x00000310,
RX_PKTS_OK = 0x00000318,
RX_BCAST_PKTS = 0x00000320,
RX_MCAST_PKTS = 0x00000328,
RX_UCAST_PKTS = 0x00000330,
RX_UNDERSIZE_PKTS = 0x00000338,
RX_OVERSIZE_PKTS = 0x00000340,
RX_JABBER_PKTS = 0x00000348,
RX_UNDERSIZE_FCERR_PKTS = 0x00000350,
RX_DROP_EVENTS = 0x00000358,
RX_FCERR_PKTS = 0x00000360,
RX_ALIGN_ERR = 0x00000368,
RX_SYMBOL_ERR = 0x00000370,
RX_MAC_ERR = 0x00000378,
RX_CTL_PKTS = 0x00000380,
RX_PAUSE_PKTS = 0x00000388,
RX_64_PKTS = 0x00000390,
RX_65_TO_127_PKTS = 0x00000398,
RX_128_255_PKTS = 0x000003a0,
RX_256_511_PKTS = 0x000003a8,
RX_512_TO_1023_PKTS = 0x000003b0,
RX_1024_TO_1518_PKTS = 0x000003b8,
RX_1519_TO_MAX_PKTS = 0x000003c0,
RX_LEN_ERR_PKTS = 0x000003c8,
/* XGMAC MDIO control registers */
MDIO_TX_DATA = 0x00000400,
MDIO_RX_DATA = 0x00000410,
MDIO_CMD = 0x00000420,
MDIO_PHY_ADDR = 0x00000430,
MDIO_PORT = 0x00000440,
MDIO_STATUS = 0x00000450,
XGMAC_REGISTER_END = 0x00000740,
};
/*
* Enhanced Transmission Schedule Registers (NIC_ETS,CNA_ETS) bit definitions.
*/
enum {
ETS_QUEUE_SHIFT = 29,
ETS_REF = (1 << 26),
ETS_RS = (1 << 27),
ETS_P = (1 << 28),
ETS_FC_COS_SHIFT = 23,
};
/*
* Flash Address Register (FLASH_ADDR) bit definitions.
*/
enum {
FLASH_ADDR_RDY = (1 << 31),
FLASH_ADDR_R = (1 << 30),
FLASH_ADDR_ERR = (1 << 29),
};
/*
* Stop CQ Processing Register (CQ_STOP) bit definitions.
*/
enum {
CQ_STOP_QUEUE_MASK = (0x007f0000),
CQ_STOP_TYPE_MASK = (0x03000000),
CQ_STOP_TYPE_START = 0x00000100,
CQ_STOP_TYPE_STOP = 0x00000200,
CQ_STOP_TYPE_READ = 0x00000300,
CQ_STOP_EN = (1 << 15),
};
/*
* MAC Protocol Address Index Register (MAC_ADDR_IDX) bit definitions.
*/
enum {
MAC_ADDR_IDX_SHIFT = 4,
MAC_ADDR_TYPE_SHIFT = 16,
MAC_ADDR_TYPE_COUNT = 10,
MAC_ADDR_TYPE_MASK = 0x000f0000,
MAC_ADDR_TYPE_CAM_MAC = 0x00000000,
MAC_ADDR_TYPE_MULTI_MAC = 0x00010000,
MAC_ADDR_TYPE_VLAN = 0x00020000,
MAC_ADDR_TYPE_MULTI_FLTR = 0x00030000,
MAC_ADDR_TYPE_FC_MAC = 0x00040000,
MAC_ADDR_TYPE_MGMT_MAC = 0x00050000,
MAC_ADDR_TYPE_MGMT_VLAN = 0x00060000,
MAC_ADDR_TYPE_MGMT_V4 = 0x00070000,
MAC_ADDR_TYPE_MGMT_V6 = 0x00080000,
MAC_ADDR_TYPE_MGMT_TU_DP = 0x00090000,
MAC_ADDR_ADR = (1 << 25),
MAC_ADDR_RS = (1 << 26),
MAC_ADDR_E = (1 << 27),
MAC_ADDR_MR = (1 << 30),
MAC_ADDR_MW = (1 << 31),
MAX_MULTICAST_ENTRIES = 32,
/* Entry count and words per entry
* for each address type in the filter.
*/
MAC_ADDR_MAX_CAM_ENTRIES = 512,
MAC_ADDR_MAX_CAM_WCOUNT = 3,
MAC_ADDR_MAX_MULTICAST_ENTRIES = 32,
MAC_ADDR_MAX_MULTICAST_WCOUNT = 2,
MAC_ADDR_MAX_VLAN_ENTRIES = 4096,
MAC_ADDR_MAX_VLAN_WCOUNT = 1,
MAC_ADDR_MAX_MCAST_FLTR_ENTRIES = 4096,
MAC_ADDR_MAX_MCAST_FLTR_WCOUNT = 1,
MAC_ADDR_MAX_FC_MAC_ENTRIES = 4,
MAC_ADDR_MAX_FC_MAC_WCOUNT = 2,
MAC_ADDR_MAX_MGMT_MAC_ENTRIES = 8,
MAC_ADDR_MAX_MGMT_MAC_WCOUNT = 2,
MAC_ADDR_MAX_MGMT_VLAN_ENTRIES = 16,
MAC_ADDR_MAX_MGMT_VLAN_WCOUNT = 1,
MAC_ADDR_MAX_MGMT_V4_ENTRIES = 4,
MAC_ADDR_MAX_MGMT_V4_WCOUNT = 1,
MAC_ADDR_MAX_MGMT_V6_ENTRIES = 4,
MAC_ADDR_MAX_MGMT_V6_WCOUNT = 4,
MAC_ADDR_MAX_MGMT_TU_DP_ENTRIES = 4,
MAC_ADDR_MAX_MGMT_TU_DP_WCOUNT = 1,
};
/*
* MAC Protocol Address Index Register (SPLT_HDR) bit definitions.
*/
enum {
SPLT_HDR_EP = (1 << 31),
};
/*
* FCoE Receive Configuration Register (FC_RCV_CFG) bit definitions.
*/
enum {
FC_RCV_CFG_ECT = (1 << 15),
FC_RCV_CFG_DFH = (1 << 20),
FC_RCV_CFG_DVF = (1 << 21),
FC_RCV_CFG_RCE = (1 << 27),
FC_RCV_CFG_RFE = (1 << 28),
FC_RCV_CFG_TEE = (1 << 29),
FC_RCV_CFG_TCE = (1 << 30),
FC_RCV_CFG_TFE = (1 << 31),
};
/*
* NIC Receive Configuration Register (NIC_RCV_CFG) bit definitions.
*/
enum {
NIC_RCV_CFG_PPE = (1 << 0),
NIC_RCV_CFG_VLAN_MASK = 0x00060000,
NIC_RCV_CFG_VLAN_ALL = 0x00000000,
NIC_RCV_CFG_VLAN_MATCH_ONLY = 0x00000002,
NIC_RCV_CFG_VLAN_MATCH_AND_NON = 0x00000004,
NIC_RCV_CFG_VLAN_NONE_AND_NON = 0x00000006,
NIC_RCV_CFG_RV = (1 << 3),
NIC_RCV_CFG_DFQ_MASK = (0x7f000000),
NIC_RCV_CFG_DFQ_SHIFT = 8,
NIC_RCV_CFG_DFQ = 0, /* HARDCODE default queue to 0. */
};
/*
* Mgmt Receive Configuration Register (MGMT_RCV_CFG) bit definitions.
*/
enum {
MGMT_RCV_CFG_ARP = (1 << 0),
MGMT_RCV_CFG_DHC = (1 << 1),
MGMT_RCV_CFG_DHS = (1 << 2),
MGMT_RCV_CFG_NP = (1 << 3),
MGMT_RCV_CFG_I6N = (1 << 4),
MGMT_RCV_CFG_I6R = (1 << 5),
MGMT_RCV_CFG_DH6 = (1 << 6),
MGMT_RCV_CFG_UD1 = (1 << 7),
MGMT_RCV_CFG_UD0 = (1 << 8),
MGMT_RCV_CFG_BCT = (1 << 9),
MGMT_RCV_CFG_MCT = (1 << 10),
MGMT_RCV_CFG_DM = (1 << 11),
MGMT_RCV_CFG_RM = (1 << 12),
MGMT_RCV_CFG_STL = (1 << 13),
MGMT_RCV_CFG_VLAN_MASK = 0xc0000000,
MGMT_RCV_CFG_VLAN_ALL = 0x00000000,
MGMT_RCV_CFG_VLAN_MATCH_ONLY = 0x00004000,
MGMT_RCV_CFG_VLAN_MATCH_AND_NON = 0x00008000,
MGMT_RCV_CFG_VLAN_NONE_AND_NON = 0x0000c000,
};
/*
* Routing Index Register (RT_IDX) bit definitions.
*/
enum {
RT_IDX_IDX_SHIFT = 8,
RT_IDX_TYPE_MASK = 0x000f0000,
RT_IDX_TYPE_SHIFT = 16,
RT_IDX_TYPE_RT = 0x00000000,
RT_IDX_TYPE_RT_INV = 0x00010000,
RT_IDX_TYPE_NICQ = 0x00020000,
RT_IDX_TYPE_NICQ_INV = 0x00030000,
RT_IDX_DST_MASK = 0x00700000,
RT_IDX_DST_RSS = 0x00000000,
RT_IDX_DST_CAM_Q = 0x00100000,
RT_IDX_DST_COS_Q = 0x00200000,
RT_IDX_DST_DFLT_Q = 0x00300000,
RT_IDX_DST_DEST_Q = 0x00400000,
RT_IDX_RS = (1 << 26),
RT_IDX_E = (1 << 27),
RT_IDX_MR = (1 << 30),
RT_IDX_MW = (1 << 31),
/* Nic Queue format - type 2 bits */
RT_IDX_BCAST = (1 << 0),
RT_IDX_MCAST = (1 << 1),
RT_IDX_MCAST_MATCH = (1 << 2),
RT_IDX_MCAST_REG_MATCH = (1 << 3),
RT_IDX_MCAST_HASH_MATCH = (1 << 4),
RT_IDX_FC_MACH = (1 << 5),
RT_IDX_ETH_FCOE = (1 << 6),
RT_IDX_CAM_HIT = (1 << 7),
RT_IDX_CAM_BIT0 = (1 << 8),
RT_IDX_CAM_BIT1 = (1 << 9),
RT_IDX_VLAN_TAG = (1 << 10),
RT_IDX_VLAN_MATCH = (1 << 11),
RT_IDX_VLAN_FILTER = (1 << 12),
RT_IDX_ETH_SKIP1 = (1 << 13),
RT_IDX_ETH_SKIP2 = (1 << 14),
RT_IDX_BCAST_MCAST_MATCH = (1 << 15),
RT_IDX_802_3 = (1 << 16),
RT_IDX_LLDP = (1 << 17),
RT_IDX_UNUSED018 = (1 << 18),
RT_IDX_UNUSED019 = (1 << 19),
RT_IDX_UNUSED20 = (1 << 20),
RT_IDX_UNUSED21 = (1 << 21),
RT_IDX_ERR = (1 << 22),
RT_IDX_VALID = (1 << 23),
RT_IDX_TU_CSUM_ERR = (1 << 24),
RT_IDX_IP_CSUM_ERR = (1 << 25),
RT_IDX_MAC_ERR = (1 << 26),
RT_IDX_RSS_TCP6 = (1 << 27),
RT_IDX_RSS_TCP4 = (1 << 28),
RT_IDX_RSS_IPV6 = (1 << 29),
RT_IDX_RSS_IPV4 = (1 << 30),
RT_IDX_RSS_MATCH = (1 << 31),
/* Hierarchy for the NIC Queue Mask */
RT_IDX_ALL_ERR_SLOT = 0,
RT_IDX_MAC_ERR_SLOT = 0,
RT_IDX_IP_CSUM_ERR_SLOT = 1,
RT_IDX_TCP_UDP_CSUM_ERR_SLOT = 2,
RT_IDX_BCAST_SLOT = 3,
RT_IDX_MCAST_MATCH_SLOT = 4,
RT_IDX_ALLMULTI_SLOT = 5,
RT_IDX_UNUSED6_SLOT = 6,
RT_IDX_UNUSED7_SLOT = 7,
RT_IDX_RSS_MATCH_SLOT = 8,
RT_IDX_RSS_IPV4_SLOT = 8,
RT_IDX_RSS_IPV6_SLOT = 9,
RT_IDX_RSS_TCP4_SLOT = 10,
RT_IDX_RSS_TCP6_SLOT = 11,
RT_IDX_CAM_HIT_SLOT = 12,
RT_IDX_UNUSED013 = 13,
RT_IDX_UNUSED014 = 14,
RT_IDX_PROMISCUOUS_SLOT = 15,
RT_IDX_MAX_RT_SLOTS = 8,
RT_IDX_MAX_NIC_SLOTS = 16,
};
/*
* Serdes Address Register (XG_SERDES_ADDR) bit definitions.
*/
enum {
XG_SERDES_ADDR_RDY = (1 << 31),
XG_SERDES_ADDR_R = (1 << 30),
XG_SERDES_ADDR_STS = 0x00001E06,
XG_SERDES_ADDR_XFI1_PWR_UP = 0x00000005,
XG_SERDES_ADDR_XFI2_PWR_UP = 0x0000000a,
XG_SERDES_ADDR_XAUI_PWR_DOWN = 0x00000001,
/* Serdes coredump definitions. */
XG_SERDES_XAUI_AN_START = 0x00000000,
XG_SERDES_XAUI_AN_END = 0x00000034,
XG_SERDES_XAUI_HSS_PCS_START = 0x00000800,
XG_SERDES_XAUI_HSS_PCS_END = 0x0000880,
XG_SERDES_XFI_AN_START = 0x00001000,
XG_SERDES_XFI_AN_END = 0x00001034,
XG_SERDES_XFI_TRAIN_START = 0x10001050,
XG_SERDES_XFI_TRAIN_END = 0x1000107C,
XG_SERDES_XFI_HSS_PCS_START = 0x00001800,
XG_SERDES_XFI_HSS_PCS_END = 0x00001838,
XG_SERDES_XFI_HSS_TX_START = 0x00001c00,
XG_SERDES_XFI_HSS_TX_END = 0x00001c1f,
XG_SERDES_XFI_HSS_RX_START = 0x00001c40,
XG_SERDES_XFI_HSS_RX_END = 0x00001c5f,
XG_SERDES_XFI_HSS_PLL_START = 0x00001e00,
XG_SERDES_XFI_HSS_PLL_END = 0x00001e1f,
};
/*
* NIC Probe Mux Address Register (PRB_MX_ADDR) bit definitions.
*/
enum {
PRB_MX_ADDR_ARE = (1 << 16),
PRB_MX_ADDR_UP = (1 << 15),
PRB_MX_ADDR_SWP = (1 << 14),
/* Module select values. */
PRB_MX_ADDR_MAX_MODS = 21,
PRB_MX_ADDR_MOD_SEL_SHIFT = 9,
PRB_MX_ADDR_MOD_SEL_TBD = 0,
PRB_MX_ADDR_MOD_SEL_IDE1 = 1,
PRB_MX_ADDR_MOD_SEL_IDE2 = 2,
PRB_MX_ADDR_MOD_SEL_FRB = 3,
PRB_MX_ADDR_MOD_SEL_ODE1 = 4,
PRB_MX_ADDR_MOD_SEL_ODE2 = 5,
PRB_MX_ADDR_MOD_SEL_DA1 = 6,
PRB_MX_ADDR_MOD_SEL_DA2 = 7,
PRB_MX_ADDR_MOD_SEL_IMP1 = 8,
PRB_MX_ADDR_MOD_SEL_IMP2 = 9,
PRB_MX_ADDR_MOD_SEL_OMP1 = 10,
PRB_MX_ADDR_MOD_SEL_OMP2 = 11,
PRB_MX_ADDR_MOD_SEL_ORS1 = 12,
PRB_MX_ADDR_MOD_SEL_ORS2 = 13,
PRB_MX_ADDR_MOD_SEL_REG = 14,
PRB_MX_ADDR_MOD_SEL_MAC1 = 16,
PRB_MX_ADDR_MOD_SEL_MAC2 = 17,
PRB_MX_ADDR_MOD_SEL_VQM1 = 18,
PRB_MX_ADDR_MOD_SEL_VQM2 = 19,
PRB_MX_ADDR_MOD_SEL_MOP = 20,
/* Bit fields indicating which modules
* are valid for each clock domain.
*/
PRB_MX_ADDR_VALID_SYS_MOD = 0x000f7ff7,
PRB_MX_ADDR_VALID_PCI_MOD = 0x000040c1,
PRB_MX_ADDR_VALID_XGM_MOD = 0x00037309,
PRB_MX_ADDR_VALID_FC_MOD = 0x00003001,
PRB_MX_ADDR_VALID_TOTAL = 34,
/* Clock domain values. */
PRB_MX_ADDR_CLOCK_SHIFT = 6,
PRB_MX_ADDR_SYS_CLOCK = 0,
PRB_MX_ADDR_PCI_CLOCK = 2,
PRB_MX_ADDR_FC_CLOCK = 5,
PRB_MX_ADDR_XGM_CLOCK = 6,
PRB_MX_ADDR_MAX_MUX = 64,
};
/*
* Control Register Set Map
*/
enum {
PROC_ADDR = 0, /* Use semaphore */
PROC_DATA = 0x04, /* Use semaphore */
SYS = 0x08,
RST_FO = 0x0c,
FSC = 0x10,
CSR = 0x14,
LED = 0x18,
ICB_RID = 0x1c, /* Use semaphore */
ICB_L = 0x20, /* Use semaphore */
ICB_H = 0x24, /* Use semaphore */
CFG = 0x28,
BIOS_ADDR = 0x2c,
STS = 0x30,
INTR_EN = 0x34,
INTR_MASK = 0x38,
ISR1 = 0x3c,
ISR2 = 0x40,
ISR3 = 0x44,
ISR4 = 0x48,
REV_ID = 0x4c,
FRC_ECC_ERR = 0x50,
ERR_STS = 0x54,
RAM_DBG_ADDR = 0x58,
RAM_DBG_DATA = 0x5c,
ECC_ERR_CNT = 0x60,
SEM = 0x64,
GPIO_1 = 0x68, /* Use semaphore */
GPIO_2 = 0x6c, /* Use semaphore */
GPIO_3 = 0x70, /* Use semaphore */
RSVD2 = 0x74,
XGMAC_ADDR = 0x78, /* Use semaphore */
XGMAC_DATA = 0x7c, /* Use semaphore */
NIC_ETS = 0x80,
CNA_ETS = 0x84,
FLASH_ADDR = 0x88, /* Use semaphore */
FLASH_DATA = 0x8c, /* Use semaphore */
CQ_STOP = 0x90,
PAGE_TBL_RID = 0x94,
WQ_PAGE_TBL_LO = 0x98,
WQ_PAGE_TBL_HI = 0x9c,
CQ_PAGE_TBL_LO = 0xa0,
CQ_PAGE_TBL_HI = 0xa4,
MAC_ADDR_IDX = 0xa8, /* Use semaphore */
MAC_ADDR_DATA = 0xac, /* Use semaphore */
COS_DFLT_CQ1 = 0xb0,
COS_DFLT_CQ2 = 0xb4,
ETYPE_SKIP1 = 0xb8,
ETYPE_SKIP2 = 0xbc,
SPLT_HDR = 0xc0,
FC_PAUSE_THRES = 0xc4,
NIC_PAUSE_THRES = 0xc8,
FC_ETHERTYPE = 0xcc,
FC_RCV_CFG = 0xd0,
NIC_RCV_CFG = 0xd4,
FC_COS_TAGS = 0xd8,
NIC_COS_TAGS = 0xdc,
MGMT_RCV_CFG = 0xe0,
RT_IDX = 0xe4,
RT_DATA = 0xe8,
RSVD7 = 0xec,
XG_SERDES_ADDR = 0xf0,
XG_SERDES_DATA = 0xf4,
PRB_MX_ADDR = 0xf8, /* Use semaphore */
PRB_MX_DATA = 0xfc, /* Use semaphore */
};
#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
#define SMALL_BUFFER_SIZE 256
#define SMALL_BUF_MAP_SIZE SMALL_BUFFER_SIZE
#define SPLT_SETTING FSC_DBRST_1024
#define SPLT_LEN 0
#define QLGE_SB_PAD 0
#else
#define SMALL_BUFFER_SIZE 512
#define SMALL_BUF_MAP_SIZE (SMALL_BUFFER_SIZE / 2)
#define SPLT_SETTING FSC_SH
#define SPLT_LEN (SPLT_HDR_EP | \
min(SMALL_BUF_MAP_SIZE, 1023))
#define QLGE_SB_PAD 32
#endif
/*
* CAM output format.
*/
enum {
CAM_OUT_ROUTE_FC = 0,
CAM_OUT_ROUTE_NIC = 1,
CAM_OUT_FUNC_SHIFT = 2,
CAM_OUT_RV = (1 << 4),
CAM_OUT_SH = (1 << 15),
CAM_OUT_CQ_ID_SHIFT = 5,
};
/*
* Mailbox definitions
*/
enum {
/* Asynchronous Event Notifications */
AEN_SYS_ERR = 0x00008002,
AEN_LINK_UP = 0x00008011,
AEN_LINK_DOWN = 0x00008012,
AEN_IDC_CMPLT = 0x00008100,
AEN_IDC_REQ = 0x00008101,
AEN_IDC_EXT = 0x00008102,
AEN_DCBX_CHG = 0x00008110,
AEN_AEN_LOST = 0x00008120,
AEN_AEN_SFP_IN = 0x00008130,
AEN_AEN_SFP_OUT = 0x00008131,
AEN_FW_INIT_DONE = 0x00008400,
AEN_FW_INIT_FAIL = 0x00008401,
/* Mailbox Command Opcodes. */
MB_CMD_NOP = 0x00000000,
MB_CMD_EX_FW = 0x00000002,
MB_CMD_MB_TEST = 0x00000006,
MB_CMD_CSUM_TEST = 0x00000007, /* Verify Checksum */
MB_CMD_ABOUT_FW = 0x00000008,
MB_CMD_COPY_RISC_RAM = 0x0000000a,
MB_CMD_LOAD_RISC_RAM = 0x0000000b,
MB_CMD_DUMP_RISC_RAM = 0x0000000c,
MB_CMD_WRITE_RAM = 0x0000000d,
MB_CMD_INIT_RISC_RAM = 0x0000000e,
MB_CMD_READ_RAM = 0x0000000f,
MB_CMD_STOP_FW = 0x00000014,
MB_CMD_MAKE_SYS_ERR = 0x0000002a,
MB_CMD_WRITE_SFP = 0x00000030,
MB_CMD_READ_SFP = 0x00000031,
MB_CMD_INIT_FW = 0x00000060,
MB_CMD_GET_IFCB = 0x00000061,
MB_CMD_GET_FW_STATE = 0x00000069,
MB_CMD_IDC_REQ = 0x00000100, /* Inter-Driver Communication */
MB_CMD_IDC_ACK = 0x00000101, /* Inter-Driver Communication */
MB_CMD_SET_WOL_MODE = 0x00000110, /* Wake On Lan */
MB_WOL_DISABLE = 0,
MB_WOL_MAGIC_PKT = (1 << 1),
MB_WOL_FLTR = (1 << 2),
MB_WOL_UCAST = (1 << 3),
MB_WOL_MCAST = (1 << 4),
MB_WOL_BCAST = (1 << 5),
MB_WOL_LINK_UP = (1 << 6),
MB_WOL_LINK_DOWN = (1 << 7),
MB_WOL_MODE_ON = (1 << 16), /* Wake on Lan Mode on */
MB_CMD_SET_WOL_FLTR = 0x00000111, /* Wake On Lan Filter */
MB_CMD_CLEAR_WOL_FLTR = 0x00000112, /* Wake On Lan Filter */
MB_CMD_SET_WOL_MAGIC = 0x00000113, /* Wake On Lan Magic Packet */
MB_CMD_CLEAR_WOL_MAGIC = 0x00000114,/* Wake On Lan Magic Packet */
MB_CMD_SET_WOL_IMMED = 0x00000115,
MB_CMD_PORT_RESET = 0x00000120,
MB_CMD_SET_PORT_CFG = 0x00000122,
MB_CMD_GET_PORT_CFG = 0x00000123,
MB_CMD_GET_LINK_STS = 0x00000124,
MB_CMD_SET_LED_CFG = 0x00000125, /* Set LED Configuration Register */
QL_LED_BLINK = 0x03e803e8,
MB_CMD_GET_LED_CFG = 0x00000126, /* Get LED Configuration Register */
MB_CMD_SET_MGMNT_TFK_CTL = 0x00000160, /* Set Mgmnt Traffic Control */
MB_SET_MPI_TFK_STOP = (1 << 0),
MB_SET_MPI_TFK_RESUME = (1 << 1),
MB_CMD_GET_MGMNT_TFK_CTL = 0x00000161, /* Get Mgmnt Traffic Control */
MB_GET_MPI_TFK_STOPPED = (1 << 0),
MB_GET_MPI_TFK_FIFO_EMPTY = (1 << 1),
/* Sub-commands for IDC request.
* This describes the reason for the
* IDC request.
*/
MB_CMD_IOP_NONE = 0x0000,
MB_CMD_IOP_PREP_UPDATE_MPI = 0x0001,
MB_CMD_IOP_COMP_UPDATE_MPI = 0x0002,
MB_CMD_IOP_PREP_LINK_DOWN = 0x0010,
MB_CMD_IOP_DVR_START = 0x0100,
MB_CMD_IOP_FLASH_ACC = 0x0101,
MB_CMD_IOP_RESTART_MPI = 0x0102,
MB_CMD_IOP_CORE_DUMP_MPI = 0x0103,
/* Mailbox Command Status. */
MB_CMD_STS_GOOD = 0x00004000, /* Success. */
MB_CMD_STS_INTRMDT = 0x00001000, /* Intermediate Complete. */
MB_CMD_STS_INVLD_CMD = 0x00004001, /* Invalid. */
MB_CMD_STS_XFC_ERR = 0x00004002, /* Interface Error. */
MB_CMD_STS_CSUM_ERR = 0x00004003, /* Csum Error. */
MB_CMD_STS_ERR = 0x00004005, /* System Error. */
MB_CMD_STS_PARAM_ERR = 0x00004006, /* Parameter Error. */
};
struct mbox_params {
u32 mbox_in[MAILBOX_COUNT];
u32 mbox_out[MAILBOX_COUNT];
int in_count;
int out_count;
};
struct flash_params_8012 {
u8 dev_id_str[4];
__le16 size;
__le16 csum;
__le16 ver;
__le16 sub_dev_id;
u8 mac_addr[6];
__le16 res;
};
/* 8000 device's flash is a different structure
* at a different offset in flash.
*/
#define FUNC0_FLASH_OFFSET 0x140200
#define FUNC1_FLASH_OFFSET 0x140600
/* Flash related data structures. */
struct flash_params_8000 {
u8 dev_id_str[4]; /* "8000" */
__le16 ver;
__le16 size;
__le16 csum;
__le16 reserved0;
__le16 total_size;
__le16 entry_count;
u8 data_type0;
u8 data_size0;
u8 mac_addr[6];
u8 data_type1;
u8 data_size1;
u8 mac_addr1[6];
u8 data_type2;
u8 data_size2;
__le16 vlan_id;
u8 data_type3;
u8 data_size3;
__le16 last;
u8 reserved1[464];
__le16 subsys_ven_id;
__le16 subsys_dev_id;
u8 reserved2[4];
};
union flash_params {
struct flash_params_8012 flash_params_8012;
struct flash_params_8000 flash_params_8000;
};
/*
* doorbell space for the rx ring context
*/
struct rx_doorbell_context {
u32 cnsmr_idx; /* 0x00 */
u32 valid; /* 0x04 */
u32 reserved[4]; /* 0x08-0x14 */
u32 lbq_prod_idx; /* 0x18 */
u32 sbq_prod_idx; /* 0x1c */
};
/*
* doorbell space for the tx ring context
*/
struct tx_doorbell_context {
u32 prod_idx; /* 0x00 */
u32 valid; /* 0x04 */
u32 reserved[4]; /* 0x08-0x14 */
u32 lbq_prod_idx; /* 0x18 */
u32 sbq_prod_idx; /* 0x1c */
};
/* DATA STRUCTURES SHARED WITH HARDWARE. */
struct tx_buf_desc {
__le64 addr;
__le32 len;
#define TX_DESC_LEN_MASK 0x000fffff
#define TX_DESC_C 0x40000000
#define TX_DESC_E 0x80000000
} __packed;
/*
* IOCB Definitions...
*/
#define OPCODE_OB_MAC_IOCB 0x01
#define OPCODE_OB_MAC_TSO_IOCB 0x02
#define OPCODE_IB_MAC_IOCB 0x20
#define OPCODE_IB_MPI_IOCB 0x21
#define OPCODE_IB_AE_IOCB 0x3f
struct ob_mac_iocb_req {
u8 opcode;
u8 flags1;
#define OB_MAC_IOCB_REQ_OI 0x01
#define OB_MAC_IOCB_REQ_I 0x02
#define OB_MAC_IOCB_REQ_D 0x08
#define OB_MAC_IOCB_REQ_F 0x10
u8 flags2;
u8 flags3;
#define OB_MAC_IOCB_DFP 0x02
#define OB_MAC_IOCB_V 0x04
__le32 reserved1[2];
__le16 frame_len;
#define OB_MAC_IOCB_LEN_MASK 0x3ffff
__le16 reserved2;
u32 tid;
u32 txq_idx;
__le32 reserved3;
__le16 vlan_tci;
__le16 reserved4;
struct tx_buf_desc tbd[TX_DESC_PER_IOCB];
} __packed;
struct ob_mac_iocb_rsp {
u8 opcode; /* */
u8 flags1; /* */
#define OB_MAC_IOCB_RSP_OI 0x01 /* */
#define OB_MAC_IOCB_RSP_I 0x02 /* */
#define OB_MAC_IOCB_RSP_E 0x08 /* */
#define OB_MAC_IOCB_RSP_S 0x10 /* too Short */
#define OB_MAC_IOCB_RSP_L 0x20 /* too Large */
#define OB_MAC_IOCB_RSP_P 0x40 /* Padded */
u8 flags2; /* */
u8 flags3; /* */
#define OB_MAC_IOCB_RSP_B 0x80 /* */
u32 tid;
u32 txq_idx;
__le32 reserved[13];
} __packed;
struct ob_mac_tso_iocb_req {
u8 opcode;
u8 flags1;
#define OB_MAC_TSO_IOCB_OI 0x01
#define OB_MAC_TSO_IOCB_I 0x02
#define OB_MAC_TSO_IOCB_D 0x08
#define OB_MAC_TSO_IOCB_IP4 0x40
#define OB_MAC_TSO_IOCB_IP6 0x80
u8 flags2;
#define OB_MAC_TSO_IOCB_LSO 0x20
#define OB_MAC_TSO_IOCB_UC 0x40
#define OB_MAC_TSO_IOCB_TC 0x80
u8 flags3;
#define OB_MAC_TSO_IOCB_IC 0x01
#define OB_MAC_TSO_IOCB_DFP 0x02
#define OB_MAC_TSO_IOCB_V 0x04
__le32 reserved1[2];
__le32 frame_len;
u32 tid;
u32 txq_idx;
__le16 total_hdrs_len;
__le16 net_trans_offset;
#define OB_MAC_TRANSPORT_HDR_SHIFT 6
__le16 vlan_tci;
__le16 mss;
struct tx_buf_desc tbd[TX_DESC_PER_IOCB];
} __packed;
struct ob_mac_tso_iocb_rsp {
u8 opcode;
u8 flags1;
#define OB_MAC_TSO_IOCB_RSP_OI 0x01
#define OB_MAC_TSO_IOCB_RSP_I 0x02
#define OB_MAC_TSO_IOCB_RSP_E 0x08
#define OB_MAC_TSO_IOCB_RSP_S 0x10
#define OB_MAC_TSO_IOCB_RSP_L 0x20
#define OB_MAC_TSO_IOCB_RSP_P 0x40
u8 flags2; /* */
u8 flags3; /* */
#define OB_MAC_TSO_IOCB_RSP_B 0x8000
u32 tid;
u32 txq_idx;
__le32 reserved2[13];
} __packed;
struct ib_mac_iocb_rsp {
u8 opcode; /* 0x20 */
u8 flags1;
#define IB_MAC_IOCB_RSP_OI 0x01 /* Override intr delay */
#define IB_MAC_IOCB_RSP_I 0x02 /* Disable Intr Generation */
#define IB_MAC_CSUM_ERR_MASK 0x1c /* A mask to use for csum errs */
#define IB_MAC_IOCB_RSP_TE 0x04 /* Checksum error */
#define IB_MAC_IOCB_RSP_NU 0x08 /* No checksum rcvd */
#define IB_MAC_IOCB_RSP_IE 0x10 /* IPv4 checksum error */
#define IB_MAC_IOCB_RSP_M_MASK 0x60 /* Multicast info */
#define IB_MAC_IOCB_RSP_M_NONE 0x00 /* Not mcast frame */
#define IB_MAC_IOCB_RSP_M_HASH 0x20 /* HASH mcast frame */
#define IB_MAC_IOCB_RSP_M_REG 0x40 /* Registered mcast frame */
#define IB_MAC_IOCB_RSP_M_PROM 0x60 /* Promiscuous mcast frame */
#define IB_MAC_IOCB_RSP_B 0x80 /* Broadcast frame */
u8 flags2;
#define IB_MAC_IOCB_RSP_P 0x01 /* Promiscuous frame */
#define IB_MAC_IOCB_RSP_V 0x02 /* Vlan tag present */
#define IB_MAC_IOCB_RSP_ERR_MASK 0x1c /* */
#define IB_MAC_IOCB_RSP_ERR_CODE_ERR 0x04
#define IB_MAC_IOCB_RSP_ERR_OVERSIZE 0x08
#define IB_MAC_IOCB_RSP_ERR_UNDERSIZE 0x10
#define IB_MAC_IOCB_RSP_ERR_PREAMBLE 0x14
#define IB_MAC_IOCB_RSP_ERR_FRAME_LEN 0x18
#define IB_MAC_IOCB_RSP_ERR_CRC 0x1c
#define IB_MAC_IOCB_RSP_U 0x20 /* UDP packet */
#define IB_MAC_IOCB_RSP_T 0x40 /* TCP packet */
#define IB_MAC_IOCB_RSP_FO 0x80 /* Failover port */
u8 flags3;
#define IB_MAC_IOCB_RSP_RSS_MASK 0x07 /* RSS mask */
#define IB_MAC_IOCB_RSP_M_NONE 0x00 /* No RSS match */
#define IB_MAC_IOCB_RSP_M_IPV4 0x04 /* IPv4 RSS match */
#define IB_MAC_IOCB_RSP_M_IPV6 0x02 /* IPv6 RSS match */
#define IB_MAC_IOCB_RSP_M_TCP_V4 0x05 /* TCP with IPv4 */
#define IB_MAC_IOCB_RSP_M_TCP_V6 0x03 /* TCP with IPv6 */
#define IB_MAC_IOCB_RSP_V4 0x08 /* IPV4 */
#define IB_MAC_IOCB_RSP_V6 0x10 /* IPV6 */
#define IB_MAC_IOCB_RSP_IH 0x20 /* Split after IP header */
#define IB_MAC_IOCB_RSP_DS 0x40 /* data is in small buffer */
#define IB_MAC_IOCB_RSP_DL 0x80 /* data is in large buffer */
__le32 data_len; /* */
__le64 data_addr; /* */
__le32 rss; /* */
__le16 vlan_id; /* 12 bits */
#define IB_MAC_IOCB_RSP_C 0x1000 /* VLAN CFI bit */
#define IB_MAC_IOCB_RSP_COS_SHIFT 12 /* class of service value */
#define IB_MAC_IOCB_RSP_VLAN_MASK 0x0ffff
__le16 reserved1;
__le32 reserved2[6];
u8 reserved3[3];
u8 flags4;
#define IB_MAC_IOCB_RSP_HV 0x20
#define IB_MAC_IOCB_RSP_HS 0x40
#define IB_MAC_IOCB_RSP_HL 0x80
__le32 hdr_len; /* */
__le64 hdr_addr; /* */
} __packed;
struct ib_ae_iocb_rsp {
u8 opcode;
u8 flags1;
#define IB_AE_IOCB_RSP_OI 0x01
#define IB_AE_IOCB_RSP_I 0x02
u8 event;
#define LINK_UP_EVENT 0x00
#define LINK_DOWN_EVENT 0x01
#define CAM_LOOKUP_ERR_EVENT 0x06
#define SOFT_ECC_ERROR_EVENT 0x07
#define MGMT_ERR_EVENT 0x08
#define TEN_GIG_MAC_EVENT 0x09
#define GPI0_H2L_EVENT 0x10
#define GPI0_L2H_EVENT 0x20
#define GPI1_H2L_EVENT 0x11
#define GPI1_L2H_EVENT 0x21
#define PCI_ERR_ANON_BUF_RD 0x40
u8 q_id;
__le32 reserved[15];
} __packed;
/*
* These three structures are for generic
* handling of ib and ob iocbs.
*/
struct ql_net_rsp_iocb {
u8 opcode;
u8 flags0;
__le16 length;
__le32 tid;
__le32 reserved[14];
} __packed;
struct net_req_iocb {
u8 opcode;
u8 flags0;
__le16 flags1;
__le32 tid;
__le32 reserved1[30];
} __packed;
/*
* tx ring initialization control block for chip.
* It is defined as:
* "Work Queue Initialization Control Block"
*/
struct wqicb {
__le16 len;
#define Q_LEN_V (1 << 4)
#define Q_LEN_CPP_CONT 0x0000
#define Q_LEN_CPP_16 0x0001
#define Q_LEN_CPP_32 0x0002
#define Q_LEN_CPP_64 0x0003
#define Q_LEN_CPP_512 0x0006
__le16 flags;
#define Q_PRI_SHIFT 1
#define Q_FLAGS_LC 0x1000
#define Q_FLAGS_LB 0x2000
#define Q_FLAGS_LI 0x4000
#define Q_FLAGS_LO 0x8000
__le16 cq_id_rss;
#define Q_CQ_ID_RSS_RV 0x8000
__le16 rid;
__le64 addr;
__le64 cnsmr_idx_addr;
} __packed;
/*
* rx ring initialization control block for chip.
* It is defined as:
* "Completion Queue Initialization Control Block"
*/
struct cqicb {
u8 msix_vect;
u8 reserved1;
u8 reserved2;
u8 flags;
#define FLAGS_LV 0x08
#define FLAGS_LS 0x10
#define FLAGS_LL 0x20
#define FLAGS_LI 0x40
#define FLAGS_LC 0x80
__le16 len;
#define LEN_V (1 << 4)
#define LEN_CPP_CONT 0x0000
#define LEN_CPP_32 0x0001
#define LEN_CPP_64 0x0002
#define LEN_CPP_128 0x0003
__le16 rid;
__le64 addr;
__le64 prod_idx_addr;
__le16 pkt_delay;
__le16 irq_delay;
__le64 lbq_addr;
__le16 lbq_buf_size;
__le16 lbq_len; /* entry count */
__le64 sbq_addr;
__le16 sbq_buf_size;
__le16 sbq_len; /* entry count */
} __packed;
struct ricb {
u8 base_cq;
#define RSS_L4K 0x80
u8 flags;
#define RSS_L6K 0x01
#define RSS_LI 0x02
#define RSS_LB 0x04
#define RSS_LM 0x08
#define RSS_RI4 0x10
#define RSS_RT4 0x20
#define RSS_RI6 0x40
#define RSS_RT6 0x80
__le16 mask;
u8 hash_cq_id[1024];
__le32 ipv6_hash_key[10];
__le32 ipv4_hash_key[4];
} __packed;
/* SOFTWARE/DRIVER DATA STRUCTURES. */
struct oal {
struct tx_buf_desc oal[TX_DESC_PER_OAL];
};
struct map_list {
DEFINE_DMA_UNMAP_ADDR(mapaddr);
DEFINE_DMA_UNMAP_LEN(maplen);
};
struct tx_ring_desc {
struct sk_buff *skb;
struct ob_mac_iocb_req *queue_entry;
u32 index;
struct oal oal;
struct map_list map[MAX_SKB_FRAGS + 2];
int map_cnt;
struct tx_ring_desc *next;
};
#define QL_TXQ_IDX(qdev, skb) (smp_processor_id()%(qdev->tx_ring_count))
struct tx_ring {
/*
* queue info.
*/
struct wqicb wqicb; /* structure used to inform chip of new queue */
void *wq_base; /* pci_alloc:virtual addr for tx */
dma_addr_t wq_base_dma; /* pci_alloc:dma addr for tx */
__le32 *cnsmr_idx_sh_reg; /* shadow copy of consumer idx */
dma_addr_t cnsmr_idx_sh_reg_dma; /* dma-shadow copy of consumer */
u32 wq_size; /* size in bytes of queue area */
u32 wq_len; /* number of entries in queue */
void __iomem *prod_idx_db_reg; /* doorbell area index reg at offset 0x00 */
void __iomem *valid_db_reg; /* doorbell area valid reg at offset 0x04 */
u16 prod_idx; /* current value for prod idx */
u16 cq_id; /* completion (rx) queue for tx completions */
u8 wq_id; /* queue id for this entry */
u8 reserved1[3];
struct tx_ring_desc *q; /* descriptor list for the queue */
spinlock_t lock;
atomic_t tx_count; /* counts down for every outstanding IO */
struct delayed_work tx_work;
struct ql_adapter *qdev;
u64 tx_packets;
u64 tx_bytes;
u64 tx_errors;
};
struct qlge_page_chunk {
struct page *page;
void *va; /* virt addr including offset */
unsigned int offset;
};
struct qlge_bq_desc {
union {
/* for large buffers */
struct qlge_page_chunk pg_chunk;
/* for small buffers */
struct sk_buff *skb;
} p;
dma_addr_t dma_addr;
/* address in ring where the buffer address is written for the device */
__le64 *buf_ptr;
u32 index;
};
/* buffer queue */
struct qlge_bq {
__le64 *base;
dma_addr_t base_dma;
__le64 *base_indirect;
dma_addr_t base_indirect_dma;
struct qlge_bq_desc *queue;
/* prod_idx is the index of the first buffer that may NOT be used by
* hw, ie. one after the last. Advanced by sw.
*/
void __iomem *prod_idx_db_reg;
/* next index where sw should refill a buffer for hw */
u16 next_to_use;
/* next index where sw expects to find a buffer filled by hw */
u16 next_to_clean;
enum {
QLGE_SB, /* small buffer */
QLGE_LB, /* large buffer */
} type;
};
#define QLGE_BQ_CONTAINER(bq) \
({ \
typeof(bq) _bq = bq; \
(struct rx_ring *)((char *)_bq - (_bq->type == QLGE_SB ? \
offsetof(struct rx_ring, sbq) : \
offsetof(struct rx_ring, lbq))); \
})
/* Experience shows that the device ignores the low 4 bits of the tail index.
* Refill up to a x16 multiple.
*/
#define QLGE_BQ_ALIGN(index) ALIGN_DOWN(index, 16)
#define QLGE_BQ_WRAP(index) ((index) & (QLGE_BQ_LEN - 1))
#define QLGE_BQ_HW_OWNED(bq) \
({ \
typeof(bq) _bq = bq; \
QLGE_BQ_WRAP(QLGE_BQ_ALIGN((_bq)->next_to_use) - \
(_bq)->next_to_clean); \
})
struct rx_ring {
struct cqicb cqicb; /* The chip's completion queue init control block. */
/* Completion queue elements. */
void *cq_base;
dma_addr_t cq_base_dma;
u32 cq_size;
u32 cq_len;
u16 cq_id;
__le32 *prod_idx_sh_reg; /* Shadowed producer register. */
dma_addr_t prod_idx_sh_reg_dma;
void __iomem *cnsmr_idx_db_reg; /* PCI doorbell mem area + 0 */
u32 cnsmr_idx; /* current sw idx */
struct ql_net_rsp_iocb *curr_entry; /* next entry on queue */
void __iomem *valid_db_reg; /* PCI doorbell mem area + 0x04 */
/* Large buffer queue elements. */
struct qlge_bq lbq;
struct qlge_page_chunk master_chunk;
dma_addr_t chunk_dma_addr;
/* Small buffer queue elements. */
struct qlge_bq sbq;
/* Misc. handler elements. */
u32 irq; /* Which vector this ring is assigned. */
u32 cpu; /* Which CPU this should run on. */
struct delayed_work refill_work;
char name[IFNAMSIZ + 5];
struct napi_struct napi;
u8 reserved;
struct ql_adapter *qdev;
u64 rx_packets;
u64 rx_multicast;
u64 rx_bytes;
u64 rx_dropped;
u64 rx_errors;
};
/*
* RSS Initialization Control Block
*/
struct hash_id {
u8 value[4];
};
struct nic_stats {
/*
* These stats come from offset 200h to 278h
* in the XGMAC register.
*/
u64 tx_pkts;
u64 tx_bytes;
u64 tx_mcast_pkts;
u64 tx_bcast_pkts;
u64 tx_ucast_pkts;
u64 tx_ctl_pkts;
u64 tx_pause_pkts;
u64 tx_64_pkt;
u64 tx_65_to_127_pkt;
u64 tx_128_to_255_pkt;
u64 tx_256_511_pkt;
u64 tx_512_to_1023_pkt;
u64 tx_1024_to_1518_pkt;
u64 tx_1519_to_max_pkt;
u64 tx_undersize_pkt;
u64 tx_oversize_pkt;
/*
* These stats come from offset 300h to 3C8h
* in the XGMAC register.
*/
u64 rx_bytes;
u64 rx_bytes_ok;
u64 rx_pkts;
u64 rx_pkts_ok;
u64 rx_bcast_pkts;
u64 rx_mcast_pkts;
u64 rx_ucast_pkts;
u64 rx_undersize_pkts;
u64 rx_oversize_pkts;
u64 rx_jabber_pkts;
u64 rx_undersize_fcerr_pkts;
u64 rx_drop_events;
u64 rx_fcerr_pkts;
u64 rx_align_err;
u64 rx_symbol_err;
u64 rx_mac_err;
u64 rx_ctl_pkts;
u64 rx_pause_pkts;
u64 rx_64_pkts;
u64 rx_65_to_127_pkts;
u64 rx_128_255_pkts;
u64 rx_256_511_pkts;
u64 rx_512_to_1023_pkts;
u64 rx_1024_to_1518_pkts;
u64 rx_1519_to_max_pkts;
u64 rx_len_err_pkts;
/* Receive Mac Err stats */
u64 rx_code_err;
u64 rx_oversize_err;
u64 rx_undersize_err;
u64 rx_preamble_err;
u64 rx_frame_len_err;
u64 rx_crc_err;
u64 rx_err_count;
/*
* These stats come from offset 500h to 5C8h
* in the XGMAC register.
*/
u64 tx_cbfc_pause_frames0;
u64 tx_cbfc_pause_frames1;
u64 tx_cbfc_pause_frames2;
u64 tx_cbfc_pause_frames3;
u64 tx_cbfc_pause_frames4;
u64 tx_cbfc_pause_frames5;
u64 tx_cbfc_pause_frames6;
u64 tx_cbfc_pause_frames7;
u64 rx_cbfc_pause_frames0;
u64 rx_cbfc_pause_frames1;
u64 rx_cbfc_pause_frames2;
u64 rx_cbfc_pause_frames3;
u64 rx_cbfc_pause_frames4;
u64 rx_cbfc_pause_frames5;
u64 rx_cbfc_pause_frames6;
u64 rx_cbfc_pause_frames7;
u64 rx_nic_fifo_drop;
};
/* Firmware coredump internal register address/length pairs. */
enum {
MPI_CORE_REGS_ADDR = 0x00030000,
MPI_CORE_REGS_CNT = 127,
MPI_CORE_SH_REGS_CNT = 16,
TEST_REGS_ADDR = 0x00001000,
TEST_REGS_CNT = 23,
RMII_REGS_ADDR = 0x00001040,
RMII_REGS_CNT = 64,
FCMAC1_REGS_ADDR = 0x00001080,
FCMAC2_REGS_ADDR = 0x000010c0,
FCMAC_REGS_CNT = 64,
FC1_MBX_REGS_ADDR = 0x00001100,
FC2_MBX_REGS_ADDR = 0x00001240,
FC_MBX_REGS_CNT = 64,
IDE_REGS_ADDR = 0x00001140,
IDE_REGS_CNT = 64,
NIC1_MBX_REGS_ADDR = 0x00001180,
NIC2_MBX_REGS_ADDR = 0x00001280,
NIC_MBX_REGS_CNT = 64,
SMBUS_REGS_ADDR = 0x00001200,
SMBUS_REGS_CNT = 64,
I2C_REGS_ADDR = 0x00001fc0,
I2C_REGS_CNT = 64,
MEMC_REGS_ADDR = 0x00003000,
MEMC_REGS_CNT = 256,
PBUS_REGS_ADDR = 0x00007c00,
PBUS_REGS_CNT = 256,
MDE_REGS_ADDR = 0x00010000,
MDE_REGS_CNT = 6,
CODE_RAM_ADDR = 0x00020000,
CODE_RAM_CNT = 0x2000,
MEMC_RAM_ADDR = 0x00100000,
MEMC_RAM_CNT = 0x2000,
};
#define MPI_COREDUMP_COOKIE 0x5555aaaa
struct mpi_coredump_global_header {
u32 cookie;
u8 id_string[16];
u32 time_lo;
u32 time_hi;
u32 image_size;
u32 header_size;
u8 info[220];
};
struct mpi_coredump_segment_header {
u32 cookie;
u32 seg_num;
u32 seg_size;
u32 extra;
u8 description[16];
};
/* Firmware coredump header segment numbers. */
enum {
CORE_SEG_NUM = 1,
TEST_LOGIC_SEG_NUM = 2,
RMII_SEG_NUM = 3,
FCMAC1_SEG_NUM = 4,
FCMAC2_SEG_NUM = 5,
FC1_MBOX_SEG_NUM = 6,
IDE_SEG_NUM = 7,
NIC1_MBOX_SEG_NUM = 8,
SMBUS_SEG_NUM = 9,
FC2_MBOX_SEG_NUM = 10,
NIC2_MBOX_SEG_NUM = 11,
I2C_SEG_NUM = 12,
MEMC_SEG_NUM = 13,
PBUS_SEG_NUM = 14,
MDE_SEG_NUM = 15,
NIC1_CONTROL_SEG_NUM = 16,
NIC2_CONTROL_SEG_NUM = 17,
NIC1_XGMAC_SEG_NUM = 18,
NIC2_XGMAC_SEG_NUM = 19,
WCS_RAM_SEG_NUM = 20,
MEMC_RAM_SEG_NUM = 21,
XAUI_AN_SEG_NUM = 22,
XAUI_HSS_PCS_SEG_NUM = 23,
XFI_AN_SEG_NUM = 24,
XFI_TRAIN_SEG_NUM = 25,
XFI_HSS_PCS_SEG_NUM = 26,
XFI_HSS_TX_SEG_NUM = 27,
XFI_HSS_RX_SEG_NUM = 28,
XFI_HSS_PLL_SEG_NUM = 29,
MISC_NIC_INFO_SEG_NUM = 30,
INTR_STATES_SEG_NUM = 31,
CAM_ENTRIES_SEG_NUM = 32,
ROUTING_WORDS_SEG_NUM = 33,
ETS_SEG_NUM = 34,
PROBE_DUMP_SEG_NUM = 35,
ROUTING_INDEX_SEG_NUM = 36,
MAC_PROTOCOL_SEG_NUM = 37,
XAUI2_AN_SEG_NUM = 38,
XAUI2_HSS_PCS_SEG_NUM = 39,
XFI2_AN_SEG_NUM = 40,
XFI2_TRAIN_SEG_NUM = 41,
XFI2_HSS_PCS_SEG_NUM = 42,
XFI2_HSS_TX_SEG_NUM = 43,
XFI2_HSS_RX_SEG_NUM = 44,
XFI2_HSS_PLL_SEG_NUM = 45,
SEM_REGS_SEG_NUM = 50
};
/* There are 64 generic NIC registers. */
#define NIC_REGS_DUMP_WORD_COUNT 64
/* XGMAC word count. */
#define XGMAC_DUMP_WORD_COUNT (XGMAC_REGISTER_END / 4)
/* Word counts for the SERDES blocks. */
#define XG_SERDES_XAUI_AN_COUNT 14
#define XG_SERDES_XAUI_HSS_PCS_COUNT 33
#define XG_SERDES_XFI_AN_COUNT 14
#define XG_SERDES_XFI_TRAIN_COUNT 12
#define XG_SERDES_XFI_HSS_PCS_COUNT 15
#define XG_SERDES_XFI_HSS_TX_COUNT 32
#define XG_SERDES_XFI_HSS_RX_COUNT 32
#define XG_SERDES_XFI_HSS_PLL_COUNT 32
/* There are 2 CNA ETS and 8 NIC ETS registers. */
#define ETS_REGS_DUMP_WORD_COUNT 10
/* Each probe mux entry stores the probe type plus 64 entries
* that are each each 64-bits in length. There are a total of
* 34 (PRB_MX_ADDR_VALID_TOTAL) valid probes.
*/
#define PRB_MX_ADDR_PRB_WORD_COUNT (1 + (PRB_MX_ADDR_MAX_MUX * 2))
#define PRB_MX_DUMP_TOT_COUNT (PRB_MX_ADDR_PRB_WORD_COUNT * \
PRB_MX_ADDR_VALID_TOTAL)
/* Each routing entry consists of 4 32-bit words.
* They are route type, index, index word, and result.
* There are 2 route blocks with 8 entries each and
* 2 NIC blocks with 16 entries each.
* The totol entries is 48 with 4 words each.
*/
#define RT_IDX_DUMP_ENTRIES 48
#define RT_IDX_DUMP_WORDS_PER_ENTRY 4
#define RT_IDX_DUMP_TOT_WORDS (RT_IDX_DUMP_ENTRIES * \
RT_IDX_DUMP_WORDS_PER_ENTRY)
/* There are 10 address blocks in filter, each with
* different entry counts and different word-count-per-entry.
*/
#define MAC_ADDR_DUMP_ENTRIES \
((MAC_ADDR_MAX_CAM_ENTRIES * MAC_ADDR_MAX_CAM_WCOUNT) + \
(MAC_ADDR_MAX_MULTICAST_ENTRIES * MAC_ADDR_MAX_MULTICAST_WCOUNT) + \
(MAC_ADDR_MAX_VLAN_ENTRIES * MAC_ADDR_MAX_VLAN_WCOUNT) + \
(MAC_ADDR_MAX_MCAST_FLTR_ENTRIES * MAC_ADDR_MAX_MCAST_FLTR_WCOUNT) + \
(MAC_ADDR_MAX_FC_MAC_ENTRIES * MAC_ADDR_MAX_FC_MAC_WCOUNT) + \
(MAC_ADDR_MAX_MGMT_MAC_ENTRIES * MAC_ADDR_MAX_MGMT_MAC_WCOUNT) + \
(MAC_ADDR_MAX_MGMT_VLAN_ENTRIES * MAC_ADDR_MAX_MGMT_VLAN_WCOUNT) + \
(MAC_ADDR_MAX_MGMT_V4_ENTRIES * MAC_ADDR_MAX_MGMT_V4_WCOUNT) + \
(MAC_ADDR_MAX_MGMT_V6_ENTRIES * MAC_ADDR_MAX_MGMT_V6_WCOUNT) + \
(MAC_ADDR_MAX_MGMT_TU_DP_ENTRIES * MAC_ADDR_MAX_MGMT_TU_DP_WCOUNT))
#define MAC_ADDR_DUMP_WORDS_PER_ENTRY 2
#define MAC_ADDR_DUMP_TOT_WORDS (MAC_ADDR_DUMP_ENTRIES * \
MAC_ADDR_DUMP_WORDS_PER_ENTRY)
/* Maximum of 4 functions whose semaphore registeres are
* in the coredump.
*/
#define MAX_SEMAPHORE_FUNCTIONS 4
/* Defines for access the MPI shadow registers. */
#define RISC_124 0x0003007c
#define RISC_127 0x0003007f
#define SHADOW_OFFSET 0xb0000000
#define SHADOW_REG_SHIFT 20
struct ql_nic_misc {
u32 rx_ring_count;
u32 tx_ring_count;
u32 intr_count;
u32 function;
};
struct ql_reg_dump {
/* segment 0 */
struct mpi_coredump_global_header mpi_global_header;
/* segment 16 */
struct mpi_coredump_segment_header nic_regs_seg_hdr;
u32 nic_regs[64];
/* segment 30 */
struct mpi_coredump_segment_header misc_nic_seg_hdr;
struct ql_nic_misc misc_nic_info;
/* segment 31 */
/* one interrupt state for each CQ */
struct mpi_coredump_segment_header intr_states_seg_hdr;
u32 intr_states[MAX_CPUS];
/* segment 32 */
/* 3 cam words each for 16 unicast,
* 2 cam words for each of 32 multicast.
*/
struct mpi_coredump_segment_header cam_entries_seg_hdr;
u32 cam_entries[(16 * 3) + (32 * 3)];
/* segment 33 */
struct mpi_coredump_segment_header nic_routing_words_seg_hdr;
u32 nic_routing_words[16];
/* segment 34 */
struct mpi_coredump_segment_header ets_seg_hdr;
u32 ets[8+2];
};
struct ql_mpi_coredump {
/* segment 0 */
struct mpi_coredump_global_header mpi_global_header;
/* segment 1 */
struct mpi_coredump_segment_header core_regs_seg_hdr;
u32 mpi_core_regs[MPI_CORE_REGS_CNT];
u32 mpi_core_sh_regs[MPI_CORE_SH_REGS_CNT];
/* segment 2 */
struct mpi_coredump_segment_header test_logic_regs_seg_hdr;
u32 test_logic_regs[TEST_REGS_CNT];
/* segment 3 */
struct mpi_coredump_segment_header rmii_regs_seg_hdr;
u32 rmii_regs[RMII_REGS_CNT];
/* segment 4 */
struct mpi_coredump_segment_header fcmac1_regs_seg_hdr;
u32 fcmac1_regs[FCMAC_REGS_CNT];
/* segment 5 */
struct mpi_coredump_segment_header fcmac2_regs_seg_hdr;
u32 fcmac2_regs[FCMAC_REGS_CNT];
/* segment 6 */
struct mpi_coredump_segment_header fc1_mbx_regs_seg_hdr;
u32 fc1_mbx_regs[FC_MBX_REGS_CNT];
/* segment 7 */
struct mpi_coredump_segment_header ide_regs_seg_hdr;
u32 ide_regs[IDE_REGS_CNT];
/* segment 8 */
struct mpi_coredump_segment_header nic1_mbx_regs_seg_hdr;
u32 nic1_mbx_regs[NIC_MBX_REGS_CNT];
/* segment 9 */
struct mpi_coredump_segment_header smbus_regs_seg_hdr;
u32 smbus_regs[SMBUS_REGS_CNT];
/* segment 10 */
struct mpi_coredump_segment_header fc2_mbx_regs_seg_hdr;
u32 fc2_mbx_regs[FC_MBX_REGS_CNT];
/* segment 11 */
struct mpi_coredump_segment_header nic2_mbx_regs_seg_hdr;
u32 nic2_mbx_regs[NIC_MBX_REGS_CNT];
/* segment 12 */
struct mpi_coredump_segment_header i2c_regs_seg_hdr;
u32 i2c_regs[I2C_REGS_CNT];
/* segment 13 */
struct mpi_coredump_segment_header memc_regs_seg_hdr;
u32 memc_regs[MEMC_REGS_CNT];
/* segment 14 */
struct mpi_coredump_segment_header pbus_regs_seg_hdr;
u32 pbus_regs[PBUS_REGS_CNT];
/* segment 15 */
struct mpi_coredump_segment_header mde_regs_seg_hdr;
u32 mde_regs[MDE_REGS_CNT];
/* segment 16 */
struct mpi_coredump_segment_header nic_regs_seg_hdr;
u32 nic_regs[NIC_REGS_DUMP_WORD_COUNT];
/* segment 17 */
struct mpi_coredump_segment_header nic2_regs_seg_hdr;
u32 nic2_regs[NIC_REGS_DUMP_WORD_COUNT];
/* segment 18 */
struct mpi_coredump_segment_header xgmac1_seg_hdr;
u32 xgmac1[XGMAC_DUMP_WORD_COUNT];
/* segment 19 */
struct mpi_coredump_segment_header xgmac2_seg_hdr;
u32 xgmac2[XGMAC_DUMP_WORD_COUNT];
/* segment 20 */
struct mpi_coredump_segment_header code_ram_seg_hdr;
u32 code_ram[CODE_RAM_CNT];
/* segment 21 */
struct mpi_coredump_segment_header memc_ram_seg_hdr;
u32 memc_ram[MEMC_RAM_CNT];
/* segment 22 */
struct mpi_coredump_segment_header xaui_an_hdr;
u32 serdes_xaui_an[XG_SERDES_XAUI_AN_COUNT];
/* segment 23 */
struct mpi_coredump_segment_header xaui_hss_pcs_hdr;
u32 serdes_xaui_hss_pcs[XG_SERDES_XAUI_HSS_PCS_COUNT];
/* segment 24 */
struct mpi_coredump_segment_header xfi_an_hdr;
u32 serdes_xfi_an[XG_SERDES_XFI_AN_COUNT];
/* segment 25 */
struct mpi_coredump_segment_header xfi_train_hdr;
u32 serdes_xfi_train[XG_SERDES_XFI_TRAIN_COUNT];
/* segment 26 */
struct mpi_coredump_segment_header xfi_hss_pcs_hdr;
u32 serdes_xfi_hss_pcs[XG_SERDES_XFI_HSS_PCS_COUNT];
/* segment 27 */
struct mpi_coredump_segment_header xfi_hss_tx_hdr;
u32 serdes_xfi_hss_tx[XG_SERDES_XFI_HSS_TX_COUNT];
/* segment 28 */
struct mpi_coredump_segment_header xfi_hss_rx_hdr;
u32 serdes_xfi_hss_rx[XG_SERDES_XFI_HSS_RX_COUNT];
/* segment 29 */
struct mpi_coredump_segment_header xfi_hss_pll_hdr;
u32 serdes_xfi_hss_pll[XG_SERDES_XFI_HSS_PLL_COUNT];
/* segment 30 */
struct mpi_coredump_segment_header misc_nic_seg_hdr;
struct ql_nic_misc misc_nic_info;
/* segment 31 */
/* one interrupt state for each CQ */
struct mpi_coredump_segment_header intr_states_seg_hdr;
u32 intr_states[MAX_RX_RINGS];
/* segment 32 */
/* 3 cam words each for 16 unicast,
* 2 cam words for each of 32 multicast.
*/
struct mpi_coredump_segment_header cam_entries_seg_hdr;
u32 cam_entries[(16 * 3) + (32 * 3)];
/* segment 33 */
struct mpi_coredump_segment_header nic_routing_words_seg_hdr;
u32 nic_routing_words[16];
/* segment 34 */
struct mpi_coredump_segment_header ets_seg_hdr;
u32 ets[ETS_REGS_DUMP_WORD_COUNT];
/* segment 35 */
struct mpi_coredump_segment_header probe_dump_seg_hdr;
u32 probe_dump[PRB_MX_DUMP_TOT_COUNT];
/* segment 36 */
struct mpi_coredump_segment_header routing_reg_seg_hdr;
u32 routing_regs[RT_IDX_DUMP_TOT_WORDS];
/* segment 37 */
struct mpi_coredump_segment_header mac_prot_reg_seg_hdr;
u32 mac_prot_regs[MAC_ADDR_DUMP_TOT_WORDS];
/* segment 38 */
struct mpi_coredump_segment_header xaui2_an_hdr;
u32 serdes2_xaui_an[XG_SERDES_XAUI_AN_COUNT];
/* segment 39 */
struct mpi_coredump_segment_header xaui2_hss_pcs_hdr;
u32 serdes2_xaui_hss_pcs[XG_SERDES_XAUI_HSS_PCS_COUNT];
/* segment 40 */
struct mpi_coredump_segment_header xfi2_an_hdr;
u32 serdes2_xfi_an[XG_SERDES_XFI_AN_COUNT];
/* segment 41 */
struct mpi_coredump_segment_header xfi2_train_hdr;
u32 serdes2_xfi_train[XG_SERDES_XFI_TRAIN_COUNT];
/* segment 42 */
struct mpi_coredump_segment_header xfi2_hss_pcs_hdr;
u32 serdes2_xfi_hss_pcs[XG_SERDES_XFI_HSS_PCS_COUNT];
/* segment 43 */
struct mpi_coredump_segment_header xfi2_hss_tx_hdr;
u32 serdes2_xfi_hss_tx[XG_SERDES_XFI_HSS_TX_COUNT];
/* segment 44 */
struct mpi_coredump_segment_header xfi2_hss_rx_hdr;
u32 serdes2_xfi_hss_rx[XG_SERDES_XFI_HSS_RX_COUNT];
/* segment 45 */
struct mpi_coredump_segment_header xfi2_hss_pll_hdr;
u32 serdes2_xfi_hss_pll[XG_SERDES_XFI_HSS_PLL_COUNT];
/* segment 50 */
/* semaphore register for all 5 functions */
struct mpi_coredump_segment_header sem_regs_seg_hdr;
u32 sem_regs[MAX_SEMAPHORE_FUNCTIONS];
};
/*
* intr_context structure is used during initialization
* to hook the interrupts. It is also used in a single
* irq environment as a context to the ISR.
*/
struct intr_context {
struct ql_adapter *qdev;
u32 intr;
u32 irq_mask; /* Mask of which rings the vector services. */
u32 hooked;
u32 intr_en_mask; /* value/mask used to enable this intr */
u32 intr_dis_mask; /* value/mask used to disable this intr */
u32 intr_read_mask; /* value/mask used to read this intr */
char name[IFNAMSIZ * 2];
irq_handler_t handler;
};
/* adapter flags definitions. */
enum {
QL_ADAPTER_UP = 0, /* Adapter has been brought up. */
QL_LEGACY_ENABLED = 1,
QL_MSI_ENABLED = 2,
QL_MSIX_ENABLED = 3,
QL_DMA64 = 4,
QL_PROMISCUOUS = 5,
QL_ALLMULTI = 6,
QL_PORT_CFG = 7,
QL_CAM_RT_SET = 8,
QL_SELFTEST = 9,
QL_LB_LINK_UP = 10,
QL_FRC_COREDUMP = 11,
QL_EEH_FATAL = 12,
QL_ASIC_RECOVERY = 14, /* We are in ascic recovery. */
};
/* link_status bit definitions */
enum {
STS_LOOPBACK_MASK = 0x00000700,
STS_LOOPBACK_PCS = 0x00000100,
STS_LOOPBACK_HSS = 0x00000200,
STS_LOOPBACK_EXT = 0x00000300,
STS_PAUSE_MASK = 0x000000c0,
STS_PAUSE_STD = 0x00000040,
STS_PAUSE_PRI = 0x00000080,
STS_SPEED_MASK = 0x00000038,
STS_SPEED_100Mb = 0x00000000,
STS_SPEED_1Gb = 0x00000008,
STS_SPEED_10Gb = 0x00000010,
STS_LINK_TYPE_MASK = 0x00000007,
STS_LINK_TYPE_XFI = 0x00000001,
STS_LINK_TYPE_XAUI = 0x00000002,
STS_LINK_TYPE_XFI_BP = 0x00000003,
STS_LINK_TYPE_XAUI_BP = 0x00000004,
STS_LINK_TYPE_10GBASET = 0x00000005,
};
/* link_config bit definitions */
enum {
CFG_JUMBO_FRAME_SIZE = 0x00010000,
CFG_PAUSE_MASK = 0x00000060,
CFG_PAUSE_STD = 0x00000020,
CFG_PAUSE_PRI = 0x00000040,
CFG_DCBX = 0x00000010,
CFG_LOOPBACK_MASK = 0x00000007,
CFG_LOOPBACK_PCS = 0x00000002,
CFG_LOOPBACK_HSS = 0x00000004,
CFG_LOOPBACK_EXT = 0x00000006,
CFG_DEFAULT_MAX_FRAME_SIZE = 0x00002580,
};
struct nic_operations {
int (*get_flash) (struct ql_adapter *);
int (*port_initialize) (struct ql_adapter *);
};
/*
* The main Adapter structure definition.
* This structure has all fields relevant to the hardware.
*/
struct ql_adapter {
struct ricb ricb;
unsigned long flags;
u32 wol;
struct nic_stats nic_stats;
unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
/* PCI Configuration information for this device */
struct pci_dev *pdev;
struct net_device *ndev; /* Parent NET device */
/* Hardware information */
u32 chip_rev_id;
u32 fw_rev_id;
u32 func; /* PCI function for this adapter */
u32 alt_func; /* PCI function for alternate adapter */
u32 port; /* Port number this adapter */
spinlock_t adapter_lock;
spinlock_t stats_lock;
/* PCI Bus Relative Register Addresses */
void __iomem *reg_base;
void __iomem *doorbell_area;
u32 doorbell_area_size;
u32 msg_enable;
/* Page for Shadow Registers */
void *rx_ring_shadow_reg_area;
dma_addr_t rx_ring_shadow_reg_dma;
void *tx_ring_shadow_reg_area;
dma_addr_t tx_ring_shadow_reg_dma;
u32 mailbox_in;
u32 mailbox_out;
struct mbox_params idc_mbc;
struct mutex mpi_mutex;
int tx_ring_size;
int rx_ring_size;
u32 intr_count;
struct msix_entry *msi_x_entry;
struct intr_context intr_context[MAX_RX_RINGS];
int tx_ring_count; /* One per online CPU. */
u32 rss_ring_count; /* One per irq vector. */
/*
* rx_ring_count =
* (CPU count * outbound completion rx_ring) +
* (irq_vector_cnt * inbound (RSS) completion rx_ring)
*/
int rx_ring_count;
int ring_mem_size;
void *ring_mem;
struct rx_ring rx_ring[MAX_RX_RINGS];
struct tx_ring tx_ring[MAX_TX_RINGS];
unsigned int lbq_buf_order;
u32 lbq_buf_size;
int rx_csum;
u32 default_rx_queue;
u16 rx_coalesce_usecs; /* cqicb->int_delay */
u16 rx_max_coalesced_frames; /* cqicb->pkt_int_delay */
u16 tx_coalesce_usecs; /* cqicb->int_delay */
u16 tx_max_coalesced_frames; /* cqicb->pkt_int_delay */
u32 xg_sem_mask;
u32 port_link_up;
u32 port_init;
u32 link_status;
struct ql_mpi_coredump *mpi_coredump;
u32 core_is_dumped;
u32 link_config;
u32 led_config;
u32 max_frame_size;
union flash_params flash;
struct workqueue_struct *workqueue;
struct delayed_work asic_reset_work;
struct delayed_work mpi_reset_work;
struct delayed_work mpi_work;
struct delayed_work mpi_port_cfg_work;
struct delayed_work mpi_idc_work;
struct delayed_work mpi_core_to_log;
struct completion ide_completion;
const struct nic_operations *nic_ops;
u16 device_id;
struct timer_list timer;
atomic_t lb_count;
/* Keep local copy of current mac address. */
char current_mac_addr[ETH_ALEN];
};
/*
* Typical Register accessor for memory mapped device.
*/
static inline u32 ql_read32(const struct ql_adapter *qdev, int reg)
{
return readl(qdev->reg_base + reg);
}
/*
* Typical Register accessor for memory mapped device.
*/
static inline void ql_write32(const struct ql_adapter *qdev, int reg, u32 val)
{
writel(val, qdev->reg_base + reg);
}
/*
* Doorbell Registers:
* Doorbell registers are virtual registers in the PCI memory space.
* The space is allocated by the chip during PCI initialization. The
* device driver finds the doorbell address in BAR 3 in PCI config space.
* The registers are used to control outbound and inbound queues. For
* example, the producer index for an outbound queue. Each queue uses
* 1 4k chunk of memory. The lower half of the space is for outbound
* queues. The upper half is for inbound queues.
*/
static inline void ql_write_db_reg(u32 val, void __iomem *addr)
{
writel(val, addr);
}
/*
* Doorbell Registers:
* Doorbell registers are virtual registers in the PCI memory space.
* The space is allocated by the chip during PCI initialization. The
* device driver finds the doorbell address in BAR 3 in PCI config space.
* The registers are used to control outbound and inbound queues. For
* example, the producer index for an outbound queue. Each queue uses
* 1 4k chunk of memory. The lower half of the space is for outbound
* queues. The upper half is for inbound queues.
* Caller has to guarantee ordering.
*/
static inline void ql_write_db_reg_relaxed(u32 val, void __iomem *addr)
{
writel_relaxed(val, addr);
}
/*
* Shadow Registers:
* Outbound queues have a consumer index that is maintained by the chip.
* Inbound queues have a producer index that is maintained by the chip.
* For lower overhead, these registers are "shadowed" to host memory
* which allows the device driver to track the queue progress without
* PCI reads. When an entry is placed on an inbound queue, the chip will
* update the relevant index register and then copy the value to the
* shadow register in host memory.
*/
static inline u32 ql_read_sh_reg(__le32 *addr)
{
u32 reg;
reg = le32_to_cpu(*addr);
rmb();
return reg;
}
extern char qlge_driver_name[];
extern const char qlge_driver_version[];
extern const struct ethtool_ops qlge_ethtool_ops;
int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask);
void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask);
int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data);
int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
u32 *value);
int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value);
int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
u16 q_id);
void ql_queue_fw_error(struct ql_adapter *qdev);
void ql_mpi_work(struct work_struct *work);
void ql_mpi_reset_work(struct work_struct *work);
void ql_mpi_core_to_log(struct work_struct *work);
int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 ebit);
void ql_queue_asic_error(struct ql_adapter *qdev);
void ql_set_ethtool_ops(struct net_device *ndev);
int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data);
void ql_mpi_idc_work(struct work_struct *work);
void ql_mpi_port_cfg_work(struct work_struct *work);
int ql_mb_get_fw_state(struct ql_adapter *qdev);
int ql_cam_route_initialize(struct ql_adapter *qdev);
int ql_read_mpi_reg(struct ql_adapter *qdev, u32 reg, u32 *data);
int ql_write_mpi_reg(struct ql_adapter *qdev, u32 reg, u32 data);
int ql_unpause_mpi_risc(struct ql_adapter *qdev);
int ql_pause_mpi_risc(struct ql_adapter *qdev);
int ql_hard_reset_mpi_risc(struct ql_adapter *qdev);
int ql_soft_reset_mpi_risc(struct ql_adapter *qdev);
int ql_dump_risc_ram_area(struct ql_adapter *qdev, void *buf, u32 ram_addr,
int word_count);
int ql_core_dump(struct ql_adapter *qdev, struct ql_mpi_coredump *mpi_coredump);
int ql_mb_about_fw(struct ql_adapter *qdev);
int ql_mb_wol_set_magic(struct ql_adapter *qdev, u32 enable_wol);
int ql_mb_wol_mode(struct ql_adapter *qdev, u32 wol);
int ql_mb_set_led_cfg(struct ql_adapter *qdev, u32 led_config);
int ql_mb_get_led_cfg(struct ql_adapter *qdev);
void ql_link_on(struct ql_adapter *qdev);
void ql_link_off(struct ql_adapter *qdev);
int ql_mb_set_mgmnt_traffic_ctl(struct ql_adapter *qdev, u32 control);
int ql_mb_get_port_cfg(struct ql_adapter *qdev);
int ql_mb_set_port_cfg(struct ql_adapter *qdev);
int ql_wait_fifo_empty(struct ql_adapter *qdev);
void ql_get_dump(struct ql_adapter *qdev, void *buff);
netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev);
void ql_check_lb_frame(struct ql_adapter *, struct sk_buff *);
int ql_own_firmware(struct ql_adapter *qdev);
int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget);
/* #define QL_ALL_DUMP */
/* #define QL_REG_DUMP */
/* #define QL_DEV_DUMP */
/* #define QL_CB_DUMP */
/* #define QL_IB_DUMP */
/* #define QL_OB_DUMP */
#ifdef QL_REG_DUMP
void ql_dump_xgmac_control_regs(struct ql_adapter *qdev);
void ql_dump_routing_entries(struct ql_adapter *qdev);
void ql_dump_regs(struct ql_adapter *qdev);
#define QL_DUMP_REGS(qdev) ql_dump_regs(qdev)
#define QL_DUMP_ROUTE(qdev) ql_dump_routing_entries(qdev)
#define QL_DUMP_XGMAC_CONTROL_REGS(qdev) ql_dump_xgmac_control_regs(qdev)
#else
#define QL_DUMP_REGS(qdev)
#define QL_DUMP_ROUTE(qdev)
#define QL_DUMP_XGMAC_CONTROL_REGS(qdev)
#endif
#ifdef QL_STAT_DUMP
void ql_dump_stat(struct ql_adapter *qdev);
#define QL_DUMP_STAT(qdev) ql_dump_stat(qdev)
#else
#define QL_DUMP_STAT(qdev)
#endif
#ifdef QL_DEV_DUMP
void ql_dump_qdev(struct ql_adapter *qdev);
#define QL_DUMP_QDEV(qdev) ql_dump_qdev(qdev)
#else
#define QL_DUMP_QDEV(qdev)
#endif
#ifdef QL_CB_DUMP
void ql_dump_wqicb(struct wqicb *wqicb);
void ql_dump_tx_ring(struct tx_ring *tx_ring);
void ql_dump_ricb(struct ricb *ricb);
void ql_dump_cqicb(struct cqicb *cqicb);
void ql_dump_rx_ring(struct rx_ring *rx_ring);
void ql_dump_hw_cb(struct ql_adapter *qdev, int size, u32 bit, u16 q_id);
#define QL_DUMP_RICB(ricb) ql_dump_ricb(ricb)
#define QL_DUMP_WQICB(wqicb) ql_dump_wqicb(wqicb)
#define QL_DUMP_TX_RING(tx_ring) ql_dump_tx_ring(tx_ring)
#define QL_DUMP_CQICB(cqicb) ql_dump_cqicb(cqicb)
#define QL_DUMP_RX_RING(rx_ring) ql_dump_rx_ring(rx_ring)
#define QL_DUMP_HW_CB(qdev, size, bit, q_id) \
ql_dump_hw_cb(qdev, size, bit, q_id)
#else
#define QL_DUMP_RICB(ricb)
#define QL_DUMP_WQICB(wqicb)
#define QL_DUMP_TX_RING(tx_ring)
#define QL_DUMP_CQICB(cqicb)
#define QL_DUMP_RX_RING(rx_ring)
#define QL_DUMP_HW_CB(qdev, size, bit, q_id)
#endif
#ifdef QL_OB_DUMP
void ql_dump_tx_desc(struct tx_buf_desc *tbd);
void ql_dump_ob_mac_iocb(struct ob_mac_iocb_req *ob_mac_iocb);
void ql_dump_ob_mac_rsp(struct ob_mac_iocb_rsp *ob_mac_rsp);
#define QL_DUMP_OB_MAC_IOCB(ob_mac_iocb) ql_dump_ob_mac_iocb(ob_mac_iocb)
#define QL_DUMP_OB_MAC_RSP(ob_mac_rsp) ql_dump_ob_mac_rsp(ob_mac_rsp)
#else
#define QL_DUMP_OB_MAC_IOCB(ob_mac_iocb)
#define QL_DUMP_OB_MAC_RSP(ob_mac_rsp)
#endif
#ifdef QL_IB_DUMP
void ql_dump_ib_mac_rsp(struct ib_mac_iocb_rsp *ib_mac_rsp);
#define QL_DUMP_IB_MAC_RSP(ib_mac_rsp) ql_dump_ib_mac_rsp(ib_mac_rsp)
#else
#define QL_DUMP_IB_MAC_RSP(ib_mac_rsp)
#endif
#ifdef QL_ALL_DUMP
void ql_dump_all(struct ql_adapter *qdev);
#define QL_DUMP_ALL(qdev) ql_dump_all(qdev)
#else
#define QL_DUMP_ALL(qdev)
#endif
#endif /* _QLGE_H_ */