| /* |
| * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved. |
| * |
| * This program is free software; you can distribute it and/or modify it |
| * under the terms of the GNU General Public License (Version 2) as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write to the Free Software Foundation, Inc., |
| * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. |
| */ |
| |
| /* |
| * VPE support module |
| * |
| * Provides support for loading a MIPS SP program on VPE1. |
| * The SP enviroment is rather simple, no tlb's. It needs to be relocatable |
| * (or partially linked). You should initialise your stack in the startup |
| * code. This loader looks for the symbol __start and sets up |
| * execution to resume from there. The MIPS SDE kit contains suitable examples. |
| * |
| * To load and run, simply cat a SP 'program file' to /dev/vpe1. |
| * i.e cat spapp >/dev/vpe1. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/fs.h> |
| #include <linux/init.h> |
| #include <asm/uaccess.h> |
| #include <linux/slab.h> |
| #include <linux/list.h> |
| #include <linux/vmalloc.h> |
| #include <linux/elf.h> |
| #include <linux/seq_file.h> |
| #include <linux/syscalls.h> |
| #include <linux/moduleloader.h> |
| #include <linux/interrupt.h> |
| #include <linux/poll.h> |
| #include <linux/bootmem.h> |
| #include <asm/mipsregs.h> |
| #include <asm/mipsmtregs.h> |
| #include <asm/cacheflush.h> |
| #include <asm/atomic.h> |
| #include <asm/cpu.h> |
| #include <asm/processor.h> |
| #include <asm/system.h> |
| #include <asm/vpe.h> |
| #include <asm/kspd.h> |
| |
| typedef void *vpe_handle; |
| |
| #ifndef ARCH_SHF_SMALL |
| #define ARCH_SHF_SMALL 0 |
| #endif |
| |
| /* If this is set, the section belongs in the init part of the module */ |
| #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1)) |
| |
| static char module_name[] = "vpe"; |
| static int major; |
| |
| #ifdef CONFIG_MIPS_APSP_KSPD |
| static struct kspd_notifications kspd_events; |
| static int kspd_events_reqd = 0; |
| #endif |
| |
| /* grab the likely amount of memory we will need. */ |
| #ifdef CONFIG_MIPS_VPE_LOADER_TOM |
| #define P_SIZE (2 * 1024 * 1024) |
| #else |
| /* add an overhead to the max kmalloc size for non-striped symbols/etc */ |
| #define P_SIZE (256 * 1024) |
| #endif |
| |
| extern unsigned long physical_memsize; |
| |
| #define MAX_VPES 16 |
| #define VPE_PATH_MAX 256 |
| |
| enum vpe_state { |
| VPE_STATE_UNUSED = 0, |
| VPE_STATE_INUSE, |
| VPE_STATE_RUNNING |
| }; |
| |
| enum tc_state { |
| TC_STATE_UNUSED = 0, |
| TC_STATE_INUSE, |
| TC_STATE_RUNNING, |
| TC_STATE_DYNAMIC |
| }; |
| |
| struct vpe { |
| enum vpe_state state; |
| |
| /* (device) minor associated with this vpe */ |
| int minor; |
| |
| /* elfloader stuff */ |
| void *load_addr; |
| unsigned long len; |
| char *pbuffer; |
| unsigned long plen; |
| unsigned int uid, gid; |
| char cwd[VPE_PATH_MAX]; |
| |
| unsigned long __start; |
| |
| /* tc's associated with this vpe */ |
| struct list_head tc; |
| |
| /* The list of vpe's */ |
| struct list_head list; |
| |
| /* shared symbol address */ |
| void *shared_ptr; |
| |
| /* the list of who wants to know when something major happens */ |
| struct list_head notify; |
| }; |
| |
| struct tc { |
| enum tc_state state; |
| int index; |
| |
| /* parent VPE */ |
| struct vpe *pvpe; |
| |
| /* The list of TC's with this VPE */ |
| struct list_head tc; |
| |
| /* The global list of tc's */ |
| struct list_head list; |
| }; |
| |
| struct vpecontrol_ { |
| /* Virtual processing elements */ |
| struct list_head vpe_list; |
| |
| /* Thread contexts */ |
| struct list_head tc_list; |
| } vpecontrol; |
| |
| static void release_progmem(void *ptr); |
| /* static __attribute_used__ void dump_vpe(struct vpe * v); */ |
| extern void save_gp_address(unsigned int secbase, unsigned int rel); |
| |
| /* get the vpe associated with this minor */ |
| struct vpe *get_vpe(int minor) |
| { |
| struct vpe *v; |
| |
| if (!cpu_has_mipsmt) |
| return NULL; |
| |
| list_for_each_entry(v, &vpecontrol.vpe_list, list) { |
| if (v->minor == minor) |
| return v; |
| } |
| |
| return NULL; |
| } |
| |
| /* get the vpe associated with this minor */ |
| struct tc *get_tc(int index) |
| { |
| struct tc *t; |
| |
| list_for_each_entry(t, &vpecontrol.tc_list, list) { |
| if (t->index == index) |
| return t; |
| } |
| |
| return NULL; |
| } |
| |
| struct tc *get_tc_unused(void) |
| { |
| struct tc *t; |
| |
| list_for_each_entry(t, &vpecontrol.tc_list, list) { |
| if (t->state == TC_STATE_UNUSED) |
| return t; |
| } |
| |
| return NULL; |
| } |
| |
| /* allocate a vpe and associate it with this minor (or index) */ |
| struct vpe *alloc_vpe(int minor) |
| { |
| struct vpe *v; |
| |
| if ((v = kzalloc(sizeof(struct vpe), GFP_KERNEL)) == NULL) { |
| return NULL; |
| } |
| |
| INIT_LIST_HEAD(&v->tc); |
| list_add_tail(&v->list, &vpecontrol.vpe_list); |
| |
| INIT_LIST_HEAD(&v->notify); |
| v->minor = minor; |
| return v; |
| } |
| |
| /* allocate a tc. At startup only tc0 is running, all other can be halted. */ |
| struct tc *alloc_tc(int index) |
| { |
| struct tc *t; |
| |
| if ((t = kzalloc(sizeof(struct tc), GFP_KERNEL)) == NULL) { |
| return NULL; |
| } |
| |
| INIT_LIST_HEAD(&t->tc); |
| list_add_tail(&t->list, &vpecontrol.tc_list); |
| |
| t->index = index; |
| |
| return t; |
| } |
| |
| /* clean up and free everything */ |
| void release_vpe(struct vpe *v) |
| { |
| list_del(&v->list); |
| if (v->load_addr) |
| release_progmem(v); |
| kfree(v); |
| } |
| |
| void dump_mtregs(void) |
| { |
| unsigned long val; |
| |
| val = read_c0_config3(); |
| printk("config3 0x%lx MT %ld\n", val, |
| (val & CONFIG3_MT) >> CONFIG3_MT_SHIFT); |
| |
| val = read_c0_mvpcontrol(); |
| printk("MVPControl 0x%lx, STLB %ld VPC %ld EVP %ld\n", val, |
| (val & MVPCONTROL_STLB) >> MVPCONTROL_STLB_SHIFT, |
| (val & MVPCONTROL_VPC) >> MVPCONTROL_VPC_SHIFT, |
| (val & MVPCONTROL_EVP)); |
| |
| val = read_c0_mvpconf0(); |
| printk("mvpconf0 0x%lx, PVPE %ld PTC %ld M %ld\n", val, |
| (val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT, |
| val & MVPCONF0_PTC, (val & MVPCONF0_M) >> MVPCONF0_M_SHIFT); |
| } |
| |
| /* Find some VPE program space */ |
| static void *alloc_progmem(unsigned long len) |
| { |
| #ifdef CONFIG_MIPS_VPE_LOADER_TOM |
| /* this means you must tell linux to use less memory than you physically have */ |
| return pfn_to_kaddr(max_pfn); |
| #else |
| // simple grab some mem for now |
| return kmalloc(len, GFP_KERNEL); |
| #endif |
| } |
| |
| static void release_progmem(void *ptr) |
| { |
| #ifndef CONFIG_MIPS_VPE_LOADER_TOM |
| kfree(ptr); |
| #endif |
| } |
| |
| /* Update size with this section: return offset. */ |
| static long get_offset(unsigned long *size, Elf_Shdr * sechdr) |
| { |
| long ret; |
| |
| ret = ALIGN(*size, sechdr->sh_addralign ? : 1); |
| *size = ret + sechdr->sh_size; |
| return ret; |
| } |
| |
| /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld |
| might -- code, read-only data, read-write data, small data. Tally |
| sizes, and place the offsets into sh_entsize fields: high bit means it |
| belongs in init. */ |
| static void layout_sections(struct module *mod, const Elf_Ehdr * hdr, |
| Elf_Shdr * sechdrs, const char *secstrings) |
| { |
| static unsigned long const masks[][2] = { |
| /* NOTE: all executable code must be the first section |
| * in this array; otherwise modify the text_size |
| * finder in the two loops below */ |
| {SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL}, |
| {SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL}, |
| {SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL}, |
| {ARCH_SHF_SMALL | SHF_ALLOC, 0} |
| }; |
| unsigned int m, i; |
| |
| for (i = 0; i < hdr->e_shnum; i++) |
| sechdrs[i].sh_entsize = ~0UL; |
| |
| for (m = 0; m < ARRAY_SIZE(masks); ++m) { |
| for (i = 0; i < hdr->e_shnum; ++i) { |
| Elf_Shdr *s = &sechdrs[i]; |
| |
| // || strncmp(secstrings + s->sh_name, ".init", 5) == 0) |
| if ((s->sh_flags & masks[m][0]) != masks[m][0] |
| || (s->sh_flags & masks[m][1]) |
| || s->sh_entsize != ~0UL) |
| continue; |
| s->sh_entsize = get_offset(&mod->core_size, s); |
| } |
| |
| if (m == 0) |
| mod->core_text_size = mod->core_size; |
| |
| } |
| } |
| |
| |
| /* from module-elf32.c, but subverted a little */ |
| |
| struct mips_hi16 { |
| struct mips_hi16 *next; |
| Elf32_Addr *addr; |
| Elf32_Addr value; |
| }; |
| |
| static struct mips_hi16 *mips_hi16_list; |
| static unsigned int gp_offs, gp_addr; |
| |
| static int apply_r_mips_none(struct module *me, uint32_t *location, |
| Elf32_Addr v) |
| { |
| return 0; |
| } |
| |
| static int apply_r_mips_gprel16(struct module *me, uint32_t *location, |
| Elf32_Addr v) |
| { |
| int rel; |
| |
| if( !(*location & 0xffff) ) { |
| rel = (int)v - gp_addr; |
| } |
| else { |
| /* .sbss + gp(relative) + offset */ |
| /* kludge! */ |
| rel = (int)(short)((int)v + gp_offs + |
| (int)(short)(*location & 0xffff) - gp_addr); |
| } |
| |
| if( (rel > 32768) || (rel < -32768) ) { |
| printk(KERN_DEBUG "VPE loader: apply_r_mips_gprel16: " |
| "relative address 0x%x out of range of gp register\n", |
| rel); |
| return -ENOEXEC; |
| } |
| |
| *location = (*location & 0xffff0000) | (rel & 0xffff); |
| |
| return 0; |
| } |
| |
| static int apply_r_mips_pc16(struct module *me, uint32_t *location, |
| Elf32_Addr v) |
| { |
| int rel; |
| rel = (((unsigned int)v - (unsigned int)location)); |
| rel >>= 2; // because the offset is in _instructions_ not bytes. |
| rel -= 1; // and one instruction less due to the branch delay slot. |
| |
| if( (rel > 32768) || (rel < -32768) ) { |
| printk(KERN_DEBUG "VPE loader: " |
| "apply_r_mips_pc16: relative address out of range 0x%x\n", rel); |
| return -ENOEXEC; |
| } |
| |
| *location = (*location & 0xffff0000) | (rel & 0xffff); |
| |
| return 0; |
| } |
| |
| static int apply_r_mips_32(struct module *me, uint32_t *location, |
| Elf32_Addr v) |
| { |
| *location += v; |
| |
| return 0; |
| } |
| |
| static int apply_r_mips_26(struct module *me, uint32_t *location, |
| Elf32_Addr v) |
| { |
| if (v % 4) { |
| printk(KERN_DEBUG "VPE loader: apply_r_mips_26 " |
| " unaligned relocation\n"); |
| return -ENOEXEC; |
| } |
| |
| /* |
| * Not desperately convinced this is a good check of an overflow condition |
| * anyway. But it gets in the way of handling undefined weak symbols which |
| * we want to set to zero. |
| * if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) { |
| * printk(KERN_ERR |
| * "module %s: relocation overflow\n", |
| * me->name); |
| * return -ENOEXEC; |
| * } |
| */ |
| |
| *location = (*location & ~0x03ffffff) | |
| ((*location + (v >> 2)) & 0x03ffffff); |
| return 0; |
| } |
| |
| static int apply_r_mips_hi16(struct module *me, uint32_t *location, |
| Elf32_Addr v) |
| { |
| struct mips_hi16 *n; |
| |
| /* |
| * We cannot relocate this one now because we don't know the value of |
| * the carry we need to add. Save the information, and let LO16 do the |
| * actual relocation. |
| */ |
| n = kmalloc(sizeof *n, GFP_KERNEL); |
| if (!n) |
| return -ENOMEM; |
| |
| n->addr = location; |
| n->value = v; |
| n->next = mips_hi16_list; |
| mips_hi16_list = n; |
| |
| return 0; |
| } |
| |
| static int apply_r_mips_lo16(struct module *me, uint32_t *location, |
| Elf32_Addr v) |
| { |
| unsigned long insnlo = *location; |
| Elf32_Addr val, vallo; |
| |
| /* Sign extend the addend we extract from the lo insn. */ |
| vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000; |
| |
| if (mips_hi16_list != NULL) { |
| struct mips_hi16 *l; |
| |
| l = mips_hi16_list; |
| while (l != NULL) { |
| struct mips_hi16 *next; |
| unsigned long insn; |
| |
| /* |
| * The value for the HI16 had best be the same. |
| */ |
| if (v != l->value) { |
| printk(KERN_DEBUG "VPE loader: " |
| "apply_r_mips_lo16/hi16: " |
| "inconsistent value information\n"); |
| return -ENOEXEC; |
| } |
| |
| /* |
| * Do the HI16 relocation. Note that we actually don't |
| * need to know anything about the LO16 itself, except |
| * where to find the low 16 bits of the addend needed |
| * by the LO16. |
| */ |
| insn = *l->addr; |
| val = ((insn & 0xffff) << 16) + vallo; |
| val += v; |
| |
| /* |
| * Account for the sign extension that will happen in |
| * the low bits. |
| */ |
| val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff; |
| |
| insn = (insn & ~0xffff) | val; |
| *l->addr = insn; |
| |
| next = l->next; |
| kfree(l); |
| l = next; |
| } |
| |
| mips_hi16_list = NULL; |
| } |
| |
| /* |
| * Ok, we're done with the HI16 relocs. Now deal with the LO16. |
| */ |
| val = v + vallo; |
| insnlo = (insnlo & ~0xffff) | (val & 0xffff); |
| *location = insnlo; |
| |
| return 0; |
| } |
| |
| static int (*reloc_handlers[]) (struct module *me, uint32_t *location, |
| Elf32_Addr v) = { |
| [R_MIPS_NONE] = apply_r_mips_none, |
| [R_MIPS_32] = apply_r_mips_32, |
| [R_MIPS_26] = apply_r_mips_26, |
| [R_MIPS_HI16] = apply_r_mips_hi16, |
| [R_MIPS_LO16] = apply_r_mips_lo16, |
| [R_MIPS_GPREL16] = apply_r_mips_gprel16, |
| [R_MIPS_PC16] = apply_r_mips_pc16 |
| }; |
| |
| static char *rstrs[] = { |
| [R_MIPS_NONE] = "MIPS_NONE", |
| [R_MIPS_32] = "MIPS_32", |
| [R_MIPS_26] = "MIPS_26", |
| [R_MIPS_HI16] = "MIPS_HI16", |
| [R_MIPS_LO16] = "MIPS_LO16", |
| [R_MIPS_GPREL16] = "MIPS_GPREL16", |
| [R_MIPS_PC16] = "MIPS_PC16" |
| }; |
| |
| int apply_relocations(Elf32_Shdr *sechdrs, |
| const char *strtab, |
| unsigned int symindex, |
| unsigned int relsec, |
| struct module *me) |
| { |
| Elf32_Rel *rel = (void *) sechdrs[relsec].sh_addr; |
| Elf32_Sym *sym; |
| uint32_t *location; |
| unsigned int i; |
| Elf32_Addr v; |
| int res; |
| |
| for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { |
| Elf32_Word r_info = rel[i].r_info; |
| |
| /* This is where to make the change */ |
| location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr |
| + rel[i].r_offset; |
| /* This is the symbol it is referring to */ |
| sym = (Elf32_Sym *)sechdrs[symindex].sh_addr |
| + ELF32_R_SYM(r_info); |
| |
| if (!sym->st_value) { |
| printk(KERN_DEBUG "%s: undefined weak symbol %s\n", |
| me->name, strtab + sym->st_name); |
| /* just print the warning, dont barf */ |
| } |
| |
| v = sym->st_value; |
| |
| res = reloc_handlers[ELF32_R_TYPE(r_info)](me, location, v); |
| if( res ) { |
| char *r = rstrs[ELF32_R_TYPE(r_info)]; |
| printk(KERN_WARNING "VPE loader: .text+0x%x " |
| "relocation type %s for symbol \"%s\" failed\n", |
| rel[i].r_offset, r ? r : "UNKNOWN", |
| strtab + sym->st_name); |
| return res; |
| } |
| } |
| |
| return 0; |
| } |
| |
| void save_gp_address(unsigned int secbase, unsigned int rel) |
| { |
| gp_addr = secbase + rel; |
| gp_offs = gp_addr - (secbase & 0xffff0000); |
| } |
| /* end module-elf32.c */ |
| |
| |
| |
| /* Change all symbols so that sh_value encodes the pointer directly. */ |
| static void simplify_symbols(Elf_Shdr * sechdrs, |
| unsigned int symindex, |
| const char *strtab, |
| const char *secstrings, |
| unsigned int nsecs, struct module *mod) |
| { |
| Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr; |
| unsigned long secbase, bssbase = 0; |
| unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym); |
| int size; |
| |
| /* find the .bss section for COMMON symbols */ |
| for (i = 0; i < nsecs; i++) { |
| if (strncmp(secstrings + sechdrs[i].sh_name, ".bss", 4) == 0) { |
| bssbase = sechdrs[i].sh_addr; |
| break; |
| } |
| } |
| |
| for (i = 1; i < n; i++) { |
| switch (sym[i].st_shndx) { |
| case SHN_COMMON: |
| /* Allocate space for the symbol in the .bss section. |
| st_value is currently size. |
| We want it to have the address of the symbol. */ |
| |
| size = sym[i].st_value; |
| sym[i].st_value = bssbase; |
| |
| bssbase += size; |
| break; |
| |
| case SHN_ABS: |
| /* Don't need to do anything */ |
| break; |
| |
| case SHN_UNDEF: |
| /* ret = -ENOENT; */ |
| break; |
| |
| case SHN_MIPS_SCOMMON: |
| printk(KERN_DEBUG "simplify_symbols: ignoring SHN_MIPS_SCOMMON" |
| "symbol <%s> st_shndx %d\n", strtab + sym[i].st_name, |
| sym[i].st_shndx); |
| // .sbss section |
| break; |
| |
| default: |
| secbase = sechdrs[sym[i].st_shndx].sh_addr; |
| |
| if (strncmp(strtab + sym[i].st_name, "_gp", 3) == 0) { |
| save_gp_address(secbase, sym[i].st_value); |
| } |
| |
| sym[i].st_value += secbase; |
| break; |
| } |
| } |
| } |
| |
| #ifdef DEBUG_ELFLOADER |
| static void dump_elfsymbols(Elf_Shdr * sechdrs, unsigned int symindex, |
| const char *strtab, struct module *mod) |
| { |
| Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr; |
| unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym); |
| |
| printk(KERN_DEBUG "dump_elfsymbols: n %d\n", n); |
| for (i = 1; i < n; i++) { |
| printk(KERN_DEBUG " i %d name <%s> 0x%x\n", i, |
| strtab + sym[i].st_name, sym[i].st_value); |
| } |
| } |
| #endif |
| |
| static void dump_tc(struct tc *t) |
| { |
| unsigned long val; |
| |
| settc(t->index); |
| printk(KERN_DEBUG "VPE loader: TC index %d targtc %ld " |
| "TCStatus 0x%lx halt 0x%lx\n", |
| t->index, read_c0_vpecontrol() & VPECONTROL_TARGTC, |
| read_tc_c0_tcstatus(), read_tc_c0_tchalt()); |
| |
| printk(KERN_DEBUG " tcrestart 0x%lx\n", read_tc_c0_tcrestart()); |
| printk(KERN_DEBUG " tcbind 0x%lx\n", read_tc_c0_tcbind()); |
| |
| val = read_c0_vpeconf0(); |
| printk(KERN_DEBUG " VPEConf0 0x%lx MVP %ld\n", val, |
| (val & VPECONF0_MVP) >> VPECONF0_MVP_SHIFT); |
| |
| printk(KERN_DEBUG " c0 status 0x%lx\n", read_vpe_c0_status()); |
| printk(KERN_DEBUG " c0 cause 0x%lx\n", read_vpe_c0_cause()); |
| |
| printk(KERN_DEBUG " c0 badvaddr 0x%lx\n", read_vpe_c0_badvaddr()); |
| printk(KERN_DEBUG " c0 epc 0x%lx\n", read_vpe_c0_epc()); |
| } |
| |
| static void dump_tclist(void) |
| { |
| struct tc *t; |
| |
| list_for_each_entry(t, &vpecontrol.tc_list, list) { |
| dump_tc(t); |
| } |
| } |
| |
| /* We are prepared so configure and start the VPE... */ |
| int vpe_run(struct vpe * v) |
| { |
| struct vpe_notifications *n; |
| unsigned long val, dmt_flag; |
| struct tc *t; |
| |
| /* check we are the Master VPE */ |
| val = read_c0_vpeconf0(); |
| if (!(val & VPECONF0_MVP)) { |
| printk(KERN_WARNING |
| "VPE loader: only Master VPE's are allowed to configure MT\n"); |
| return -1; |
| } |
| |
| /* disable MT (using dvpe) */ |
| dvpe(); |
| |
| if (!list_empty(&v->tc)) { |
| if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) { |
| printk(KERN_WARNING "VPE loader: TC %d is already in use.\n", |
| t->index); |
| return -ENOEXEC; |
| } |
| } else { |
| printk(KERN_WARNING "VPE loader: No TC's associated with VPE %d\n", |
| v->minor); |
| return -ENOEXEC; |
| } |
| |
| /* Put MVPE's into 'configuration state' */ |
| set_c0_mvpcontrol(MVPCONTROL_VPC); |
| |
| settc(t->index); |
| |
| /* should check it is halted, and not activated */ |
| if ((read_tc_c0_tcstatus() & TCSTATUS_A) || !(read_tc_c0_tchalt() & TCHALT_H)) { |
| printk(KERN_WARNING "VPE loader: TC %d is already doing something!\n", |
| t->index); |
| dump_tclist(); |
| return -ENOEXEC; |
| } |
| |
| /* |
| * Disable multi-threaded execution whilst we activate, clear the |
| * halt bit and bound the tc to the other VPE... |
| */ |
| dmt_flag = dmt(); |
| |
| /* Write the address we want it to start running from in the TCPC register. */ |
| write_tc_c0_tcrestart((unsigned long)v->__start); |
| write_tc_c0_tccontext((unsigned long)0); |
| /* |
| * Mark the TC as activated, not interrupt exempt and not dynamically |
| * allocatable |
| */ |
| val = read_tc_c0_tcstatus(); |
| val = (val & ~(TCSTATUS_DA | TCSTATUS_IXMT)) | TCSTATUS_A; |
| write_tc_c0_tcstatus(val); |
| |
| write_tc_c0_tchalt(read_tc_c0_tchalt() & ~TCHALT_H); |
| |
| /* |
| * The sde-kit passes 'memsize' to __start in $a3, so set something |
| * here... Or set $a3 to zero and define DFLT_STACK_SIZE and |
| * DFLT_HEAP_SIZE when you compile your program |
| */ |
| mttgpr(7, physical_memsize); |
| |
| |
| /* set up VPE1 */ |
| /* |
| * bind the TC to VPE 1 as late as possible so we only have the final |
| * VPE registers to set up, and so an EJTAG probe can trigger on it |
| */ |
| write_tc_c0_tcbind((read_tc_c0_tcbind() & ~TCBIND_CURVPE) | v->minor); |
| |
| /* Set up the XTC bit in vpeconf0 to point at our tc */ |
| write_vpe_c0_vpeconf0( (read_vpe_c0_vpeconf0() & ~(VPECONF0_XTC)) |
| | (t->index << VPECONF0_XTC_SHIFT)); |
| |
| /* enable this VPE */ |
| write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA); |
| |
| /* clear out any left overs from a previous program */ |
| write_vpe_c0_status(0); |
| write_vpe_c0_cause(0); |
| |
| /* take system out of configuration state */ |
| clear_c0_mvpcontrol(MVPCONTROL_VPC); |
| |
| /* now safe to re-enable multi-threading */ |
| emt(dmt_flag); |
| |
| /* set it running */ |
| evpe(EVPE_ENABLE); |
| |
| list_for_each_entry(n, &v->notify, list) { |
| n->start(v->minor); |
| } |
| |
| return 0; |
| } |
| |
| static int find_vpe_symbols(struct vpe * v, Elf_Shdr * sechdrs, |
| unsigned int symindex, const char *strtab, |
| struct module *mod) |
| { |
| Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr; |
| unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym); |
| |
| for (i = 1; i < n; i++) { |
| if (strcmp(strtab + sym[i].st_name, "__start") == 0) { |
| v->__start = sym[i].st_value; |
| } |
| |
| if (strcmp(strtab + sym[i].st_name, "vpe_shared") == 0) { |
| v->shared_ptr = (void *)sym[i].st_value; |
| } |
| } |
| |
| if ( (v->__start == 0) || (v->shared_ptr == NULL)) |
| return -1; |
| |
| return 0; |
| } |
| |
| /* |
| * Allocates a VPE with some program code space(the load address), copies the |
| * contents of the program (p)buffer performing relocatations/etc, free's it |
| * when finished. |
| */ |
| int vpe_elfload(struct vpe * v) |
| { |
| Elf_Ehdr *hdr; |
| Elf_Shdr *sechdrs; |
| long err = 0; |
| char *secstrings, *strtab = NULL; |
| unsigned int len, i, symindex = 0, strindex = 0, relocate = 0; |
| struct module mod; // so we can re-use the relocations code |
| |
| memset(&mod, 0, sizeof(struct module)); |
| strcpy(mod.name, "VPE loader"); |
| |
| hdr = (Elf_Ehdr *) v->pbuffer; |
| len = v->plen; |
| |
| /* Sanity checks against insmoding binaries or wrong arch, |
| weird elf version */ |
| if (memcmp(hdr->e_ident, ELFMAG, 4) != 0 |
| || (hdr->e_type != ET_REL && hdr->e_type != ET_EXEC) |
| || !elf_check_arch(hdr) |
| || hdr->e_shentsize != sizeof(*sechdrs)) { |
| printk(KERN_WARNING |
| "VPE loader: program wrong arch or weird elf version\n"); |
| |
| return -ENOEXEC; |
| } |
| |
| if (hdr->e_type == ET_REL) |
| relocate = 1; |
| |
| if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) { |
| printk(KERN_ERR "VPE loader: program length %u truncated\n", |
| len); |
| |
| return -ENOEXEC; |
| } |
| |
| /* Convenience variables */ |
| sechdrs = (void *)hdr + hdr->e_shoff; |
| secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset; |
| sechdrs[0].sh_addr = 0; |
| |
| /* And these should exist, but gcc whinges if we don't init them */ |
| symindex = strindex = 0; |
| |
| if (relocate) { |
| for (i = 1; i < hdr->e_shnum; i++) { |
| if (sechdrs[i].sh_type != SHT_NOBITS |
| && len < sechdrs[i].sh_offset + sechdrs[i].sh_size) { |
| printk(KERN_ERR "VPE program length %u truncated\n", |
| len); |
| return -ENOEXEC; |
| } |
| |
| /* Mark all sections sh_addr with their address in the |
| temporary image. */ |
| sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset; |
| |
| /* Internal symbols and strings. */ |
| if (sechdrs[i].sh_type == SHT_SYMTAB) { |
| symindex = i; |
| strindex = sechdrs[i].sh_link; |
| strtab = (char *)hdr + sechdrs[strindex].sh_offset; |
| } |
| } |
| layout_sections(&mod, hdr, sechdrs, secstrings); |
| } |
| |
| v->load_addr = alloc_progmem(mod.core_size); |
| memset(v->load_addr, 0, mod.core_size); |
| |
| printk("VPE loader: loading to %p\n", v->load_addr); |
| |
| if (relocate) { |
| for (i = 0; i < hdr->e_shnum; i++) { |
| void *dest; |
| |
| if (!(sechdrs[i].sh_flags & SHF_ALLOC)) |
| continue; |
| |
| dest = v->load_addr + sechdrs[i].sh_entsize; |
| |
| if (sechdrs[i].sh_type != SHT_NOBITS) |
| memcpy(dest, (void *)sechdrs[i].sh_addr, |
| sechdrs[i].sh_size); |
| /* Update sh_addr to point to copy in image. */ |
| sechdrs[i].sh_addr = (unsigned long)dest; |
| |
| printk(KERN_DEBUG " section sh_name %s sh_addr 0x%x\n", |
| secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr); |
| } |
| |
| /* Fix up syms, so that st_value is a pointer to location. */ |
| simplify_symbols(sechdrs, symindex, strtab, secstrings, |
| hdr->e_shnum, &mod); |
| |
| /* Now do relocations. */ |
| for (i = 1; i < hdr->e_shnum; i++) { |
| const char *strtab = (char *)sechdrs[strindex].sh_addr; |
| unsigned int info = sechdrs[i].sh_info; |
| |
| /* Not a valid relocation section? */ |
| if (info >= hdr->e_shnum) |
| continue; |
| |
| /* Don't bother with non-allocated sections */ |
| if (!(sechdrs[info].sh_flags & SHF_ALLOC)) |
| continue; |
| |
| if (sechdrs[i].sh_type == SHT_REL) |
| err = apply_relocations(sechdrs, strtab, symindex, i, |
| &mod); |
| else if (sechdrs[i].sh_type == SHT_RELA) |
| err = apply_relocate_add(sechdrs, strtab, symindex, i, |
| &mod); |
| if (err < 0) |
| return err; |
| |
| } |
| } else { |
| for (i = 0; i < hdr->e_shnum; i++) { |
| |
| /* Internal symbols and strings. */ |
| if (sechdrs[i].sh_type == SHT_SYMTAB) { |
| symindex = i; |
| strindex = sechdrs[i].sh_link; |
| strtab = (char *)hdr + sechdrs[strindex].sh_offset; |
| |
| /* mark the symtab's address for when we try to find the |
| magic symbols */ |
| sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset; |
| } |
| |
| /* filter sections we dont want in the final image */ |
| if (!(sechdrs[i].sh_flags & SHF_ALLOC) || |
| (sechdrs[i].sh_type == SHT_MIPS_REGINFO)) { |
| printk( KERN_DEBUG " ignoring section, " |
| "name %s type %x address 0x%x \n", |
| secstrings + sechdrs[i].sh_name, |
| sechdrs[i].sh_type, sechdrs[i].sh_addr); |
| continue; |
| } |
| |
| if (sechdrs[i].sh_addr < (unsigned int)v->load_addr) { |
| printk( KERN_WARNING "VPE loader: " |
| "fully linked image has invalid section, " |
| "name %s type %x address 0x%x, before load " |
| "address of 0x%x\n", |
| secstrings + sechdrs[i].sh_name, |
| sechdrs[i].sh_type, sechdrs[i].sh_addr, |
| (unsigned int)v->load_addr); |
| return -ENOEXEC; |
| } |
| |
| printk(KERN_DEBUG " copying section sh_name %s, sh_addr 0x%x " |
| "size 0x%x0 from x%p\n", |
| secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr, |
| sechdrs[i].sh_size, hdr + sechdrs[i].sh_offset); |
| |
| if (sechdrs[i].sh_type != SHT_NOBITS) |
| memcpy((void *)sechdrs[i].sh_addr, |
| (char *)hdr + sechdrs[i].sh_offset, |
| sechdrs[i].sh_size); |
| else |
| memset((void *)sechdrs[i].sh_addr, 0, sechdrs[i].sh_size); |
| } |
| } |
| |
| /* make sure it's physically written out */ |
| flush_icache_range((unsigned long)v->load_addr, |
| (unsigned long)v->load_addr + v->len); |
| |
| if ((find_vpe_symbols(v, sechdrs, symindex, strtab, &mod)) < 0) { |
| if (v->__start == 0) { |
| printk(KERN_WARNING "VPE loader: program does not contain " |
| "a __start symbol\n"); |
| return -ENOEXEC; |
| } |
| |
| if (v->shared_ptr == NULL) |
| printk(KERN_WARNING "VPE loader: " |
| "program does not contain vpe_shared symbol.\n" |
| " Unable to use AMVP (AP/SP) facilities.\n"); |
| } |
| |
| printk(" elf loaded\n"); |
| return 0; |
| } |
| |
| __attribute_used__ void dump_vpe(struct vpe * v) |
| { |
| struct tc *t; |
| |
| settc(v->minor); |
| |
| printk(KERN_DEBUG "VPEControl 0x%lx\n", read_vpe_c0_vpecontrol()); |
| printk(KERN_DEBUG "VPEConf0 0x%lx\n", read_vpe_c0_vpeconf0()); |
| |
| list_for_each_entry(t, &vpecontrol.tc_list, list) |
| dump_tc(t); |
| } |
| |
| static void cleanup_tc(struct tc *tc) |
| { |
| int tmp; |
| |
| /* Put MVPE's into 'configuration state' */ |
| set_c0_mvpcontrol(MVPCONTROL_VPC); |
| |
| settc(tc->index); |
| tmp = read_tc_c0_tcstatus(); |
| |
| /* mark not allocated and not dynamically allocatable */ |
| tmp &= ~(TCSTATUS_A | TCSTATUS_DA); |
| tmp |= TCSTATUS_IXMT; /* interrupt exempt */ |
| write_tc_c0_tcstatus(tmp); |
| |
| write_tc_c0_tchalt(TCHALT_H); |
| |
| /* bind it to anything other than VPE1 */ |
| write_tc_c0_tcbind(read_tc_c0_tcbind() & ~TCBIND_CURVPE); // | TCBIND_CURVPE |
| |
| clear_c0_mvpcontrol(MVPCONTROL_VPC); |
| } |
| |
| static int getcwd(char *buff, int size) |
| { |
| mm_segment_t old_fs; |
| int ret; |
| |
| old_fs = get_fs(); |
| set_fs(KERNEL_DS); |
| |
| ret = sys_getcwd(buff,size); |
| |
| set_fs(old_fs); |
| |
| return ret; |
| } |
| |
| /* checks VPE is unused and gets ready to load program */ |
| static int vpe_open(struct inode *inode, struct file *filp) |
| { |
| int minor, ret; |
| struct vpe *v; |
| struct vpe_notifications *not; |
| |
| /* assume only 1 device at the mo. */ |
| if ((minor = iminor(inode)) != 1) { |
| printk(KERN_WARNING "VPE loader: only vpe1 is supported\n"); |
| return -ENODEV; |
| } |
| |
| if ((v = get_vpe(minor)) == NULL) { |
| printk(KERN_WARNING "VPE loader: unable to get vpe\n"); |
| return -ENODEV; |
| } |
| |
| if (v->state != VPE_STATE_UNUSED) { |
| dvpe(); |
| |
| printk(KERN_DEBUG "VPE loader: tc in use dumping regs\n"); |
| |
| dump_tc(get_tc(minor)); |
| |
| list_for_each_entry(not, &v->notify, list) { |
| not->stop(minor); |
| } |
| |
| release_progmem(v->load_addr); |
| cleanup_tc(get_tc(minor)); |
| } |
| |
| // allocate it so when we get write ops we know it's expected. |
| v->state = VPE_STATE_INUSE; |
| |
| /* this of-course trashes what was there before... */ |
| v->pbuffer = vmalloc(P_SIZE); |
| v->plen = P_SIZE; |
| v->load_addr = NULL; |
| v->len = 0; |
| |
| v->uid = filp->f_uid; |
| v->gid = filp->f_gid; |
| |
| #ifdef CONFIG_MIPS_APSP_KSPD |
| /* get kspd to tell us when a syscall_exit happens */ |
| if (!kspd_events_reqd) { |
| kspd_notify(&kspd_events); |
| kspd_events_reqd++; |
| } |
| #endif |
| |
| v->cwd[0] = 0; |
| ret = getcwd(v->cwd, VPE_PATH_MAX); |
| if (ret < 0) |
| printk(KERN_WARNING "VPE loader: open, getcwd returned %d\n", ret); |
| |
| v->shared_ptr = NULL; |
| v->__start = 0; |
| return 0; |
| } |
| |
| static int vpe_release(struct inode *inode, struct file *filp) |
| { |
| int minor, ret = 0; |
| struct vpe *v; |
| Elf_Ehdr *hdr; |
| |
| minor = iminor(inode); |
| if ((v = get_vpe(minor)) == NULL) |
| return -ENODEV; |
| |
| // simple case of fire and forget, so tell the VPE to run... |
| |
| hdr = (Elf_Ehdr *) v->pbuffer; |
| if (memcmp(hdr->e_ident, ELFMAG, 4) == 0) { |
| if (vpe_elfload(v) >= 0) |
| vpe_run(v); |
| else { |
| printk(KERN_WARNING "VPE loader: ELF load failed.\n"); |
| ret = -ENOEXEC; |
| } |
| } else { |
| printk(KERN_WARNING "VPE loader: only elf files are supported\n"); |
| ret = -ENOEXEC; |
| } |
| |
| /* It's good to be able to run the SP and if it chokes have a look at |
| the /dev/rt?. But if we reset the pointer to the shared struct we |
| loose what has happened. So perhaps if garbage is sent to the vpe |
| device, use it as a trigger for the reset. Hopefully a nice |
| executable will be along shortly. */ |
| if (ret < 0) |
| v->shared_ptr = NULL; |
| |
| // cleanup any temp buffers |
| if (v->pbuffer) |
| vfree(v->pbuffer); |
| v->plen = 0; |
| return ret; |
| } |
| |
| static ssize_t vpe_write(struct file *file, const char __user * buffer, |
| size_t count, loff_t * ppos) |
| { |
| int minor; |
| size_t ret = count; |
| struct vpe *v; |
| |
| minor = iminor(file->f_dentry->d_inode); |
| if ((v = get_vpe(minor)) == NULL) |
| return -ENODEV; |
| |
| if (v->pbuffer == NULL) { |
| printk(KERN_ERR "VPE loader: no buffer for program\n"); |
| return -ENOMEM; |
| } |
| |
| if ((count + v->len) > v->plen) { |
| printk(KERN_WARNING |
| "VPE loader: elf size too big. Perhaps strip uneeded symbols\n"); |
| return -ENOMEM; |
| } |
| |
| count -= copy_from_user(v->pbuffer + v->len, buffer, count); |
| if (!count) |
| return -EFAULT; |
| |
| v->len += count; |
| return ret; |
| } |
| |
| static struct file_operations vpe_fops = { |
| .owner = THIS_MODULE, |
| .open = vpe_open, |
| .release = vpe_release, |
| .write = vpe_write |
| }; |
| |
| /* module wrapper entry points */ |
| /* give me a vpe */ |
| vpe_handle vpe_alloc(void) |
| { |
| int i; |
| struct vpe *v; |
| |
| /* find a vpe */ |
| for (i = 1; i < MAX_VPES; i++) { |
| if ((v = get_vpe(i)) != NULL) { |
| v->state = VPE_STATE_INUSE; |
| return v; |
| } |
| } |
| return NULL; |
| } |
| |
| EXPORT_SYMBOL(vpe_alloc); |
| |
| /* start running from here */ |
| int vpe_start(vpe_handle vpe, unsigned long start) |
| { |
| struct vpe *v = vpe; |
| |
| v->__start = start; |
| return vpe_run(v); |
| } |
| |
| EXPORT_SYMBOL(vpe_start); |
| |
| /* halt it for now */ |
| int vpe_stop(vpe_handle vpe) |
| { |
| struct vpe *v = vpe; |
| struct tc *t; |
| unsigned int evpe_flags; |
| |
| evpe_flags = dvpe(); |
| |
| if ((t = list_entry(v->tc.next, struct tc, tc)) != NULL) { |
| |
| settc(t->index); |
| write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA); |
| } |
| |
| evpe(evpe_flags); |
| |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(vpe_stop); |
| |
| /* I've done with it thank you */ |
| int vpe_free(vpe_handle vpe) |
| { |
| struct vpe *v = vpe; |
| struct tc *t; |
| unsigned int evpe_flags; |
| |
| if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) { |
| return -ENOEXEC; |
| } |
| |
| evpe_flags = dvpe(); |
| |
| /* Put MVPE's into 'configuration state' */ |
| set_c0_mvpcontrol(MVPCONTROL_VPC); |
| |
| settc(t->index); |
| write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA); |
| |
| /* mark the TC unallocated and halt'ed */ |
| write_tc_c0_tcstatus(read_tc_c0_tcstatus() & ~TCSTATUS_A); |
| write_tc_c0_tchalt(TCHALT_H); |
| |
| v->state = VPE_STATE_UNUSED; |
| |
| clear_c0_mvpcontrol(MVPCONTROL_VPC); |
| evpe(evpe_flags); |
| |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(vpe_free); |
| |
| void *vpe_get_shared(int index) |
| { |
| struct vpe *v; |
| |
| if ((v = get_vpe(index)) == NULL) |
| return NULL; |
| |
| return v->shared_ptr; |
| } |
| |
| EXPORT_SYMBOL(vpe_get_shared); |
| |
| int vpe_getuid(int index) |
| { |
| struct vpe *v; |
| |
| if ((v = get_vpe(index)) == NULL) |
| return -1; |
| |
| return v->uid; |
| } |
| |
| EXPORT_SYMBOL(vpe_getuid); |
| |
| int vpe_getgid(int index) |
| { |
| struct vpe *v; |
| |
| if ((v = get_vpe(index)) == NULL) |
| return -1; |
| |
| return v->gid; |
| } |
| |
| EXPORT_SYMBOL(vpe_getgid); |
| |
| int vpe_notify(int index, struct vpe_notifications *notify) |
| { |
| struct vpe *v; |
| |
| if ((v = get_vpe(index)) == NULL) |
| return -1; |
| |
| list_add(¬ify->list, &v->notify); |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(vpe_notify); |
| |
| char *vpe_getcwd(int index) |
| { |
| struct vpe *v; |
| |
| if ((v = get_vpe(index)) == NULL) |
| return NULL; |
| |
| return v->cwd; |
| } |
| |
| EXPORT_SYMBOL(vpe_getcwd); |
| |
| #ifdef CONFIG_MIPS_APSP_KSPD |
| static void kspd_sp_exit( int sp_id) |
| { |
| cleanup_tc(get_tc(sp_id)); |
| } |
| #endif |
| |
| static int __init vpe_module_init(void) |
| { |
| struct vpe *v = NULL; |
| struct tc *t; |
| unsigned long val; |
| int i; |
| |
| if (!cpu_has_mipsmt) { |
| printk("VPE loader: not a MIPS MT capable processor\n"); |
| return -ENODEV; |
| } |
| |
| major = register_chrdev(0, module_name, &vpe_fops); |
| if (major < 0) { |
| printk("VPE loader: unable to register character device\n"); |
| return major; |
| } |
| |
| dmt(); |
| dvpe(); |
| |
| /* Put MVPE's into 'configuration state' */ |
| set_c0_mvpcontrol(MVPCONTROL_VPC); |
| |
| /* dump_mtregs(); */ |
| |
| INIT_LIST_HEAD(&vpecontrol.vpe_list); |
| INIT_LIST_HEAD(&vpecontrol.tc_list); |
| |
| val = read_c0_mvpconf0(); |
| for (i = 0; i < ((val & MVPCONF0_PTC) + 1); i++) { |
| t = alloc_tc(i); |
| |
| /* VPE's */ |
| if (i < ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1) { |
| settc(i); |
| |
| if ((v = alloc_vpe(i)) == NULL) { |
| printk(KERN_WARNING "VPE: unable to allocate VPE\n"); |
| return -ENODEV; |
| } |
| |
| /* add the tc to the list of this vpe's tc's. */ |
| list_add(&t->tc, &v->tc); |
| |
| /* deactivate all but vpe0 */ |
| if (i != 0) { |
| unsigned long tmp = read_vpe_c0_vpeconf0(); |
| |
| tmp &= ~VPECONF0_VPA; |
| |
| /* master VPE */ |
| tmp |= VPECONF0_MVP; |
| write_vpe_c0_vpeconf0(tmp); |
| } |
| |
| /* disable multi-threading with TC's */ |
| write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() & ~VPECONTROL_TE); |
| |
| if (i != 0) { |
| write_vpe_c0_status((read_c0_status() & |
| ~(ST0_IM | ST0_IE | ST0_KSU)) |
| | ST0_CU0); |
| |
| /* |
| * Set config to be the same as vpe0, |
| * particularly kseg0 coherency alg |
| */ |
| write_vpe_c0_config(read_c0_config()); |
| } |
| } |
| |
| /* TC's */ |
| t->pvpe = v; /* set the parent vpe */ |
| |
| if (i != 0) { |
| unsigned long tmp; |
| |
| settc(i); |
| |
| /* Any TC that is bound to VPE0 gets left as is - in case |
| we are running SMTC on VPE0. A TC that is bound to any |
| other VPE gets bound to VPE0, ideally I'd like to make |
| it homeless but it doesn't appear to let me bind a TC |
| to a non-existent VPE. Which is perfectly reasonable. |
| |
| The (un)bound state is visible to an EJTAG probe so may |
| notify GDB... |
| */ |
| |
| if (((tmp = read_tc_c0_tcbind()) & TCBIND_CURVPE)) { |
| /* tc is bound >vpe0 */ |
| write_tc_c0_tcbind(tmp & ~TCBIND_CURVPE); |
| |
| t->pvpe = get_vpe(0); /* set the parent vpe */ |
| } |
| |
| tmp = read_tc_c0_tcstatus(); |
| |
| /* mark not activated and not dynamically allocatable */ |
| tmp &= ~(TCSTATUS_A | TCSTATUS_DA); |
| tmp |= TCSTATUS_IXMT; /* interrupt exempt */ |
| write_tc_c0_tcstatus(tmp); |
| |
| write_tc_c0_tchalt(TCHALT_H); |
| } |
| } |
| |
| /* release config state */ |
| clear_c0_mvpcontrol(MVPCONTROL_VPC); |
| |
| #ifdef CONFIG_MIPS_APSP_KSPD |
| kspd_events.kspd_sp_exit = kspd_sp_exit; |
| #endif |
| return 0; |
| } |
| |
| static void __exit vpe_module_exit(void) |
| { |
| struct vpe *v, *n; |
| |
| list_for_each_entry_safe(v, n, &vpecontrol.vpe_list, list) { |
| if (v->state != VPE_STATE_UNUSED) { |
| release_vpe(v); |
| } |
| } |
| |
| unregister_chrdev(major, module_name); |
| } |
| |
| module_init(vpe_module_init); |
| module_exit(vpe_module_exit); |
| MODULE_DESCRIPTION("MIPS VPE Loader"); |
| MODULE_AUTHOR("Elizabeth Oldham, MIPS Technologies, Inc."); |
| MODULE_LICENSE("GPL"); |