blob: 15f9a80c10b9bd58096d95214b921dee5c72f48f [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*/
#include <linux/mtd/spi-nor.h>
#include "core.h"
/* flash_info mfr_flag. Used to clear sticky prorietary SR bits. */
#define USE_CLSR BIT(0)
#define SPINOR_OP_CLSR 0x30 /* Clear status register 1 */
#define SPINOR_OP_RD_ANY_REG 0x65 /* Read any register */
#define SPINOR_OP_WR_ANY_REG 0x71 /* Write any register */
#define SPINOR_REG_CYPRESS_VREG 0x00800000
#define SPINOR_REG_CYPRESS_STR1 0x0
#define SPINOR_REG_CYPRESS_STR1V \
(SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_STR1)
#define SPINOR_REG_CYPRESS_CFR1 0x2
#define SPINOR_REG_CYPRESS_CFR1V \
(SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_CFR1)
#define SPINOR_REG_CYPRESS_CFR1_QUAD_EN BIT(1) /* Quad Enable */
#define SPINOR_REG_CYPRESS_CFR2 0x3
#define SPINOR_REG_CYPRESS_CFR2V \
(SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_CFR2)
#define SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24 0xb
#define SPINOR_REG_CYPRESS_CFR2_ADRBYT BIT(7)
#define SPINOR_REG_CYPRESS_CFR3 0x4
#define SPINOR_REG_CYPRESS_CFR3V \
(SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_CFR3)
#define SPINOR_REG_CYPRESS_CFR3_PGSZ BIT(4) /* Page size. */
#define SPINOR_REG_CYPRESS_CFR5 0x6
#define SPINOR_REG_CYPRESS_CFR5V \
(SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_CFR5)
#define SPINOR_REG_CYPRESS_CFR5_BIT6 BIT(6)
#define SPINOR_REG_CYPRESS_CFR5_DDR BIT(1)
#define SPINOR_REG_CYPRESS_CFR5_OPI BIT(0)
#define SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN \
(SPINOR_REG_CYPRESS_CFR5_BIT6 | SPINOR_REG_CYPRESS_CFR5_DDR | \
SPINOR_REG_CYPRESS_CFR5_OPI)
#define SPINOR_REG_CYPRESS_CFR5_OCT_DTR_DS SPINOR_REG_CYPRESS_CFR5_BIT6
#define SPINOR_OP_CYPRESS_RD_FAST 0xee
#define SPINOR_REG_CYPRESS_ARCFN 0x00000006
/* Cypress SPI NOR flash operations. */
#define CYPRESS_NOR_WR_ANY_REG_OP(naddr, addr, ndata, buf) \
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 0), \
SPI_MEM_OP_ADDR(naddr, addr, 0), \
SPI_MEM_OP_NO_DUMMY, \
SPI_MEM_OP_DATA_OUT(ndata, buf, 0))
#define CYPRESS_NOR_RD_ANY_REG_OP(naddr, addr, ndummy, buf) \
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 0), \
SPI_MEM_OP_ADDR(naddr, addr, 0), \
SPI_MEM_OP_DUMMY(ndummy, 0), \
SPI_MEM_OP_DATA_IN(1, buf, 0))
#define SPANSION_CLSR_OP \
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLSR, 0), \
SPI_MEM_OP_NO_ADDR, \
SPI_MEM_OP_NO_DUMMY, \
SPI_MEM_OP_NO_DATA)
/**
* spansion_nor_clear_sr() - Clear the Status Register.
* @nor: pointer to 'struct spi_nor'.
*/
static void spansion_nor_clear_sr(struct spi_nor *nor)
{
int ret;
if (nor->spimem) {
struct spi_mem_op op = SPANSION_CLSR_OP;
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLSR,
NULL, 0);
}
if (ret)
dev_dbg(nor->dev, "error %d clearing SR\n", ret);
}
static int cypress_nor_sr_ready_and_clear_reg(struct spi_nor *nor, u64 addr)
{
struct spi_mem_op op =
CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes, addr,
0, nor->bouncebuf);
int ret;
ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
if (ret)
return ret;
if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
if (nor->bouncebuf[0] & SR_E_ERR)
dev_err(nor->dev, "Erase Error occurred\n");
else
dev_err(nor->dev, "Programming Error occurred\n");
spansion_nor_clear_sr(nor);
ret = spi_nor_write_disable(nor);
if (ret)
return ret;
return -EIO;
}
return !(nor->bouncebuf[0] & SR_WIP);
}
/**
* cypress_nor_sr_ready_and_clear() - Query the Status Register of each die by
* using Read Any Register command to see if the whole flash is ready for new
* commands and clear it if there are any errors.
* @nor: pointer to 'struct spi_nor'.
*
* Return: 1 if ready, 0 if not ready, -errno on errors.
*/
static int cypress_nor_sr_ready_and_clear(struct spi_nor *nor)
{
struct spi_nor_flash_parameter *params = nor->params;
u64 addr;
int ret;
u8 i;
for (i = 0; i < params->n_dice; i++) {
addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_STR1;
ret = cypress_nor_sr_ready_and_clear_reg(nor, addr);
if (ret < 0)
return ret;
else if (ret == 0)
return 0;
}
return 1;
}
static int cypress_nor_octal_dtr_en(struct spi_nor *nor)
{
struct spi_mem_op op;
u8 *buf = nor->bouncebuf;
int ret;
u8 addr_mode_nbytes = nor->params->addr_mode_nbytes;
/* Use 24 dummy cycles for memory array reads. */
*buf = SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24;
op = (struct spi_mem_op)
CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes,
SPINOR_REG_CYPRESS_CFR2V, 1, buf);
ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
if (ret)
return ret;
nor->read_dummy = 24;
/* Set the octal and DTR enable bits. */
buf[0] = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN;
op = (struct spi_mem_op)
CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes,
SPINOR_REG_CYPRESS_CFR5V, 1, buf);
ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
if (ret)
return ret;
/* Read flash ID to make sure the switch was successful. */
ret = spi_nor_read_id(nor, nor->addr_nbytes, 3, buf,
SNOR_PROTO_8_8_8_DTR);
if (ret) {
dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret);
return ret;
}
if (memcmp(buf, nor->info->id, nor->info->id_len))
return -EINVAL;
return 0;
}
static int cypress_nor_octal_dtr_dis(struct spi_nor *nor)
{
struct spi_mem_op op;
u8 *buf = nor->bouncebuf;
int ret;
/*
* The register is 1-byte wide, but 1-byte transactions are not allowed
* in 8D-8D-8D mode. Since there is no register at the next location,
* just initialize the value to 0 and let the transaction go on.
*/
buf[0] = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_DS;
buf[1] = 0;
op = (struct spi_mem_op)
CYPRESS_NOR_WR_ANY_REG_OP(nor->addr_nbytes,
SPINOR_REG_CYPRESS_CFR5V, 2, buf);
ret = spi_nor_write_any_volatile_reg(nor, &op, SNOR_PROTO_8_8_8_DTR);
if (ret)
return ret;
/* Read flash ID to make sure the switch was successful. */
ret = spi_nor_read_id(nor, 0, 0, buf, SNOR_PROTO_1_1_1);
if (ret) {
dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret);
return ret;
}
if (memcmp(buf, nor->info->id, nor->info->id_len))
return -EINVAL;
return 0;
}
static int cypress_nor_quad_enable_volatile_reg(struct spi_nor *nor, u64 addr)
{
struct spi_mem_op op;
u8 addr_mode_nbytes = nor->params->addr_mode_nbytes;
u8 cfr1v_written;
int ret;
op = (struct spi_mem_op)
CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0,
nor->bouncebuf);
ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
if (ret)
return ret;
if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR1_QUAD_EN)
return 0;
/* Update the Quad Enable bit. */
nor->bouncebuf[0] |= SPINOR_REG_CYPRESS_CFR1_QUAD_EN;
op = (struct spi_mem_op)
CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes, addr, 1,
nor->bouncebuf);
ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
if (ret)
return ret;
cfr1v_written = nor->bouncebuf[0];
/* Read back and check it. */
op = (struct spi_mem_op)
CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0,
nor->bouncebuf);
ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
if (ret)
return ret;
if (nor->bouncebuf[0] != cfr1v_written) {
dev_err(nor->dev, "CFR1: Read back test failed\n");
return -EIO;
}
return 0;
}
/**
* cypress_nor_quad_enable_volatile() - enable Quad I/O mode in volatile
* register.
* @nor: pointer to a 'struct spi_nor'
*
* It is recommended to update volatile registers in the field application due
* to a risk of the non-volatile registers corruption by power interrupt. This
* function sets Quad Enable bit in CFR1 volatile. If users set the Quad Enable
* bit in the CFR1 non-volatile in advance (typically by a Flash programmer
* before mounting Flash on PCB), the Quad Enable bit in the CFR1 volatile is
* also set during Flash power-up.
*
* Return: 0 on success, -errno otherwise.
*/
static int cypress_nor_quad_enable_volatile(struct spi_nor *nor)
{
struct spi_nor_flash_parameter *params = nor->params;
u64 addr;
u8 i;
int ret;
if (!params->n_dice)
return cypress_nor_quad_enable_volatile_reg(nor,
SPINOR_REG_CYPRESS_CFR1V);
for (i = 0; i < params->n_dice; i++) {
addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR1;
ret = cypress_nor_quad_enable_volatile_reg(nor, addr);
if (ret)
return ret;
}
return 0;
}
/**
* cypress_nor_determine_addr_mode_by_sr1() - Determine current address mode
* (3 or 4-byte) by querying status
* register 1 (SR1).
* @nor: pointer to a 'struct spi_nor'
* @addr_mode: ponter to a buffer where we return the determined
* address mode.
*
* This function tries to determine current address mode by comparing SR1 value
* from RDSR1(no address), RDAR(3-byte address), and RDAR(4-byte address).
*
* Return: 0 on success, -errno otherwise.
*/
static int cypress_nor_determine_addr_mode_by_sr1(struct spi_nor *nor,
u8 *addr_mode)
{
struct spi_mem_op op =
CYPRESS_NOR_RD_ANY_REG_OP(3, SPINOR_REG_CYPRESS_STR1V, 0,
nor->bouncebuf);
bool is3byte, is4byte;
int ret;
ret = spi_nor_read_sr(nor, &nor->bouncebuf[1]);
if (ret)
return ret;
ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
if (ret)
return ret;
is3byte = (nor->bouncebuf[0] == nor->bouncebuf[1]);
op = (struct spi_mem_op)
CYPRESS_NOR_RD_ANY_REG_OP(4, SPINOR_REG_CYPRESS_STR1V, 0,
nor->bouncebuf);
ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
if (ret)
return ret;
is4byte = (nor->bouncebuf[0] == nor->bouncebuf[1]);
if (is3byte == is4byte)
return -EIO;
if (is3byte)
*addr_mode = 3;
else
*addr_mode = 4;
return 0;
}
/**
* cypress_nor_set_addr_mode_nbytes() - Set the number of address bytes mode of
* current address mode.
* @nor: pointer to a 'struct spi_nor'
*
* Determine current address mode by reading SR1 with different methods, then
* query CFR2V[7] to confirm. If determination is failed, force enter to 4-byte
* address mode.
*
* Return: 0 on success, -errno otherwise.
*/
static int cypress_nor_set_addr_mode_nbytes(struct spi_nor *nor)
{
struct spi_mem_op op;
u8 addr_mode;
int ret;
/*
* Read SR1 by RDSR1 and RDAR(3- AND 4-byte addr). Use write enable
* that sets bit-1 in SR1.
*/
ret = spi_nor_write_enable(nor);
if (ret)
return ret;
ret = cypress_nor_determine_addr_mode_by_sr1(nor, &addr_mode);
if (ret) {
ret = spi_nor_set_4byte_addr_mode(nor, true);
if (ret)
return ret;
return spi_nor_write_disable(nor);
}
ret = spi_nor_write_disable(nor);
if (ret)
return ret;
/*
* Query CFR2V and make sure no contradiction between determined address
* mode and CFR2V[7].
*/
op = (struct spi_mem_op)
CYPRESS_NOR_RD_ANY_REG_OP(addr_mode, SPINOR_REG_CYPRESS_CFR2V,
0, nor->bouncebuf);
ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
if (ret)
return ret;
if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR2_ADRBYT) {
if (addr_mode != 4)
return spi_nor_set_4byte_addr_mode(nor, true);
} else {
if (addr_mode != 3)
return spi_nor_set_4byte_addr_mode(nor, true);
}
nor->params->addr_nbytes = addr_mode;
nor->params->addr_mode_nbytes = addr_mode;
return 0;
}
static int cypress_nor_get_page_size_single_chip(struct spi_nor *nor)
{
struct spi_mem_op op =
CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes,
SPINOR_REG_CYPRESS_CFR3V, 0,
nor->bouncebuf);
int ret;
ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
if (ret)
return ret;
if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR3_PGSZ)
nor->params->page_size = 512;
else
nor->params->page_size = 256;
return 0;
}
static int cypress_nor_get_page_size_mcp(struct spi_nor *nor)
{
struct spi_mem_op op =
CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes,
0, 0, nor->bouncebuf);
struct spi_nor_flash_parameter *params = nor->params;
int ret;
u8 i;
/*
* Use the minimum common page size configuration. Programming 256-byte
* under 512-byte page size configuration is safe.
*/
params->page_size = 256;
for (i = 0; i < params->n_dice; i++) {
op.addr.val = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR3;
ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
if (ret)
return ret;
if (!(nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR3_PGSZ))
return 0;
}
params->page_size = 512;
return 0;
}
/**
* cypress_nor_get_page_size() - Get flash page size configuration.
* @nor: pointer to a 'struct spi_nor'
*
* The BFPT table advertises a 512B or 256B page size depending on part but the
* page size is actually configurable (with the default being 256B). Read from
* CFR3V[4] and set the correct size.
*
* Return: 0 on success, -errno otherwise.
*/
static int cypress_nor_get_page_size(struct spi_nor *nor)
{
if (nor->params->n_dice)
return cypress_nor_get_page_size_mcp(nor);
return cypress_nor_get_page_size_single_chip(nor);
}
static void cypress_nor_ecc_init(struct spi_nor *nor)
{
/*
* Programming is supported only in 16-byte ECC data unit granularity.
* Byte-programming, bit-walking, or multiple program operations to the
* same ECC data unit without an erase are not allowed.
*/
nor->params->writesize = 16;
nor->flags |= SNOR_F_ECC;
}
static int
s25fs256t_post_bfpt_fixup(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
const struct sfdp_bfpt *bfpt)
{
struct spi_mem_op op;
int ret;
ret = cypress_nor_set_addr_mode_nbytes(nor);
if (ret)
return ret;
/* Read Architecture Configuration Register (ARCFN) */
op = (struct spi_mem_op)
CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes,
SPINOR_REG_CYPRESS_ARCFN, 1,
nor->bouncebuf);
ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
if (ret)
return ret;
/* ARCFN value must be 0 if uniform sector is selected */
if (nor->bouncebuf[0])
return -ENODEV;
return cypress_nor_get_page_size(nor);
}
static int s25fs256t_post_sfdp_fixup(struct spi_nor *nor)
{
struct spi_nor_flash_parameter *params = nor->params;
/* PP_1_1_4_4B is supported but missing in 4BAIT. */
params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_1_1_4],
SPINOR_OP_PP_1_1_4_4B,
SNOR_PROTO_1_1_4);
return 0;
}
static void s25fs256t_late_init(struct spi_nor *nor)
{
cypress_nor_ecc_init(nor);
}
static struct spi_nor_fixups s25fs256t_fixups = {
.post_bfpt = s25fs256t_post_bfpt_fixup,
.post_sfdp = s25fs256t_post_sfdp_fixup,
.late_init = s25fs256t_late_init,
};
static int
s25hx_t_post_bfpt_fixup(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
const struct sfdp_bfpt *bfpt)
{
int ret;
ret = cypress_nor_set_addr_mode_nbytes(nor);
if (ret)
return ret;
/* Replace Quad Enable with volatile version */
nor->params->quad_enable = cypress_nor_quad_enable_volatile;
return 0;
}
static int s25hx_t_post_sfdp_fixup(struct spi_nor *nor)
{
struct spi_nor_erase_type *erase_type =
nor->params->erase_map.erase_type;
unsigned int i;
/*
* In some parts, 3byte erase opcodes are advertised by 4BAIT.
* Convert them to 4byte erase opcodes.
*/
for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
switch (erase_type[i].opcode) {
case SPINOR_OP_SE:
erase_type[i].opcode = SPINOR_OP_SE_4B;
break;
case SPINOR_OP_BE_4K:
erase_type[i].opcode = SPINOR_OP_BE_4K_4B;
break;
default:
break;
}
}
/* The 2 Gb parts duplicate info and advertise 4 dice instead of 2. */
if (nor->params->size == SZ_256M)
nor->params->n_dice = 2;
return cypress_nor_get_page_size(nor);
}
static void s25hx_t_late_init(struct spi_nor *nor)
{
struct spi_nor_flash_parameter *params = nor->params;
/* Fast Read 4B requires mode cycles */
params->reads[SNOR_CMD_READ_FAST].num_mode_clocks = 8;
cypress_nor_ecc_init(nor);
/* Replace ready() with multi die version */
if (params->n_dice)
params->ready = cypress_nor_sr_ready_and_clear;
}
static struct spi_nor_fixups s25hx_t_fixups = {
.post_bfpt = s25hx_t_post_bfpt_fixup,
.post_sfdp = s25hx_t_post_sfdp_fixup,
.late_init = s25hx_t_late_init,
};
/**
* cypress_nor_octal_dtr_enable() - Enable octal DTR on Cypress flashes.
* @nor: pointer to a 'struct spi_nor'
* @enable: whether to enable or disable Octal DTR
*
* This also sets the memory access latency cycles to 24 to allow the flash to
* run at up to 200MHz.
*
* Return: 0 on success, -errno otherwise.
*/
static int cypress_nor_octal_dtr_enable(struct spi_nor *nor, bool enable)
{
return enable ? cypress_nor_octal_dtr_en(nor) :
cypress_nor_octal_dtr_dis(nor);
}
static int s28hx_t_post_sfdp_fixup(struct spi_nor *nor)
{
/*
* On older versions of the flash the xSPI Profile 1.0 table has the
* 8D-8D-8D Fast Read opcode as 0x00. But it actually should be 0xEE.
*/
if (nor->params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode == 0)
nor->params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode =
SPINOR_OP_CYPRESS_RD_FAST;
/* This flash is also missing the 4-byte Page Program opcode bit. */
spi_nor_set_pp_settings(&nor->params->page_programs[SNOR_CMD_PP],
SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
/*
* Since xSPI Page Program opcode is backward compatible with
* Legacy SPI, use Legacy SPI opcode there as well.
*/
spi_nor_set_pp_settings(&nor->params->page_programs[SNOR_CMD_PP_8_8_8_DTR],
SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
/*
* The xSPI Profile 1.0 table advertises the number of additional
* address bytes needed for Read Status Register command as 0 but the
* actual value for that is 4.
*/
nor->params->rdsr_addr_nbytes = 4;
return cypress_nor_get_page_size(nor);
}
static int s28hx_t_post_bfpt_fixup(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
const struct sfdp_bfpt *bfpt)
{
int ret;
ret = cypress_nor_set_addr_mode_nbytes(nor);
if (ret)
return ret;
return 0;
}
static void s28hx_t_late_init(struct spi_nor *nor)
{
nor->params->octal_dtr_enable = cypress_nor_octal_dtr_enable;
cypress_nor_ecc_init(nor);
}
static const struct spi_nor_fixups s28hx_t_fixups = {
.post_sfdp = s28hx_t_post_sfdp_fixup,
.post_bfpt = s28hx_t_post_bfpt_fixup,
.late_init = s28hx_t_late_init,
};
static int
s25fs_s_nor_post_bfpt_fixups(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
const struct sfdp_bfpt *bfpt)
{
/*
* The S25FS-S chip family reports 512-byte pages in BFPT but
* in reality the write buffer still wraps at the safe default
* of 256 bytes. Overwrite the page size advertised by BFPT
* to get the writes working.
*/
nor->params->page_size = 256;
return 0;
}
static const struct spi_nor_fixups s25fs_s_nor_fixups = {
.post_bfpt = s25fs_s_nor_post_bfpt_fixups,
};
static const struct flash_info spansion_nor_parts[] = {
/* Spansion/Cypress -- single (large) sector size only, at least
* for the chips listed here (without boot sectors).
*/
{ "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64)
NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128)
NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25fl128s0", INFO6(0x012018, 0x4d0080, 256 * 1024, 64)
NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_CLSR)
},
{ "s25fl128s1", INFO6(0x012018, 0x4d0180, 64 * 1024, 256)
NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_CLSR)
},
{ "s25fl256s0", INFO6(0x010219, 0x4d0080, 256 * 1024, 128)
NO_SFDP_FLAGS(SPI_NOR_SKIP_SFDP | SPI_NOR_DUAL_READ |
SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_CLSR)
},
{ "s25fl256s1", INFO6(0x010219, 0x4d0180, 64 * 1024, 512)
NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_CLSR)
},
{ "s25fl512s", INFO6(0x010220, 0x4d0080, 256 * 1024, 256)
FLAGS(SPI_NOR_HAS_LOCK)
NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_CLSR)
},
{ "s25fs128s1", INFO6(0x012018, 0x4d0181, 64 * 1024, 256)
NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_CLSR)
.fixups = &s25fs_s_nor_fixups, },
{ "s25fs256s0", INFO6(0x010219, 0x4d0081, 256 * 1024, 128)
NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_CLSR)
},
{ "s25fs256s1", INFO6(0x010219, 0x4d0181, 64 * 1024, 512)
NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_CLSR)
},
{ "s25fs512s", INFO6(0x010220, 0x4d0081, 256 * 1024, 256)
NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_CLSR)
.fixups = &s25fs_s_nor_fixups, },
{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64) },
{ "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256) },
{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64)
NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_CLSR)
},
{ "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256)
NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_CLSR)
},
{ "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8) },
{ "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16) },
{ "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32) },
{ "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64) },
{ "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128) },
{ "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
SPI_NOR_QUAD_READ) },
{ "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
SPI_NOR_QUAD_READ) },
{ "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
SPI_NOR_QUAD_READ) },
{ "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
SPI_NOR_QUAD_READ) },
{ "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
SPI_NOR_QUAD_READ) },
{ "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64)
NO_SFDP_FLAGS(SECT_4K) },
{ "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128)
NO_SFDP_FLAGS(SECT_4K) },
{ "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) },
{ "s25fl208k", INFO(0x014014, 0, 64 * 1024, 16)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) },
{ "s25fl064l", INFO(0x016017, 0, 64 * 1024, 128)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
FIXUP_FLAGS(SPI_NOR_4B_OPCODES) },
{ "s25fl128l", INFO(0x016018, 0, 64 * 1024, 256)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
FIXUP_FLAGS(SPI_NOR_4B_OPCODES) },
{ "s25fl256l", INFO(0x016019, 0, 64 * 1024, 512)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
FIXUP_FLAGS(SPI_NOR_4B_OPCODES) },
{ "s25fs256t", INFO6(0x342b19, 0x0f0890, 0, 0)
PARSE_SFDP
.fixups = &s25fs256t_fixups },
{ "s25hl512t", INFO6(0x342a1a, 0x0f0390, 256 * 1024, 256)
PARSE_SFDP
MFR_FLAGS(USE_CLSR)
.fixups = &s25hx_t_fixups },
{ "s25hl01gt", INFO6(0x342a1b, 0x0f0390, 256 * 1024, 512)
PARSE_SFDP
MFR_FLAGS(USE_CLSR)
.fixups = &s25hx_t_fixups },
{ "s25hl02gt", INFO6(0x342a1c, 0x0f0090, 0, 0)
PARSE_SFDP
FLAGS(NO_CHIP_ERASE)
.fixups = &s25hx_t_fixups },
{ "s25hs512t", INFO6(0x342b1a, 0x0f0390, 256 * 1024, 256)
PARSE_SFDP
MFR_FLAGS(USE_CLSR)
.fixups = &s25hx_t_fixups },
{ "s25hs01gt", INFO6(0x342b1b, 0x0f0390, 256 * 1024, 512)
PARSE_SFDP
MFR_FLAGS(USE_CLSR)
.fixups = &s25hx_t_fixups },
{ "s25hs02gt", INFO6(0x342b1c, 0x0f0090, 0, 0)
PARSE_SFDP
FLAGS(NO_CHIP_ERASE)
.fixups = &s25hx_t_fixups },
{ "cy15x104q", INFO6(0x042cc2, 0x7f7f7f, 512 * 1024, 1)
FLAGS(SPI_NOR_NO_ERASE) },
{ "s28hl512t", INFO(0x345a1a, 0, 256 * 1024, 256)
PARSE_SFDP
.fixups = &s28hx_t_fixups,
},
{ "s28hl01gt", INFO(0x345a1b, 0, 256 * 1024, 512)
PARSE_SFDP
.fixups = &s28hx_t_fixups,
},
{ "s28hs512t", INFO(0x345b1a, 0, 256 * 1024, 256)
PARSE_SFDP
.fixups = &s28hx_t_fixups,
},
{ "s28hs01gt", INFO(0x345b1b, 0, 256 * 1024, 512)
PARSE_SFDP
.fixups = &s28hx_t_fixups,
},
};
/**
* spansion_nor_sr_ready_and_clear() - Query the Status Register to see if the
* flash is ready for new commands and clear it if there are any errors.
* @nor: pointer to 'struct spi_nor'.
*
* Return: 1 if ready, 0 if not ready, -errno on errors.
*/
static int spansion_nor_sr_ready_and_clear(struct spi_nor *nor)
{
int ret;
ret = spi_nor_read_sr(nor, nor->bouncebuf);
if (ret)
return ret;
if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
if (nor->bouncebuf[0] & SR_E_ERR)
dev_err(nor->dev, "Erase Error occurred\n");
else
dev_err(nor->dev, "Programming Error occurred\n");
spansion_nor_clear_sr(nor);
/*
* WEL bit remains set to one when an erase or page program
* error occurs. Issue a Write Disable command to protect
* against inadvertent writes that can possibly corrupt the
* contents of the memory.
*/
ret = spi_nor_write_disable(nor);
if (ret)
return ret;
return -EIO;
}
return !(nor->bouncebuf[0] & SR_WIP);
}
static void spansion_nor_late_init(struct spi_nor *nor)
{
if (nor->params->size > SZ_16M) {
nor->flags |= SNOR_F_4B_OPCODES;
/* No small sector erase for 4-byte command set */
nor->erase_opcode = SPINOR_OP_SE;
nor->mtd.erasesize = nor->info->sector_size;
}
if (nor->info->mfr_flags & USE_CLSR)
nor->params->ready = spansion_nor_sr_ready_and_clear;
}
static const struct spi_nor_fixups spansion_nor_fixups = {
.late_init = spansion_nor_late_init,
};
const struct spi_nor_manufacturer spi_nor_spansion = {
.name = "spansion",
.parts = spansion_nor_parts,
.nparts = ARRAY_SIZE(spansion_nor_parts),
.fixups = &spansion_nor_fixups,
};