| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com> |
| * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org> |
| * swiped from i386, and cloned for MIPS by Geert, polished by Ralf. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/mm.h> |
| #include <linux/module.h> |
| #include <linux/scatterlist.h> |
| #include <linux/string.h> |
| #include <linux/gfp.h> |
| #include <linux/highmem.h> |
| #include <linux/dma-contiguous.h> |
| |
| #include <asm/cache.h> |
| #include <asm/cpu-type.h> |
| #include <asm/io.h> |
| |
| #include <dma-coherence.h> |
| |
| #ifdef CONFIG_DMA_MAYBE_COHERENT |
| int coherentio = 0; /* User defined DMA coherency from command line. */ |
| EXPORT_SYMBOL_GPL(coherentio); |
| int hw_coherentio = 0; /* Actual hardware supported DMA coherency setting. */ |
| |
| static int __init setcoherentio(char *str) |
| { |
| coherentio = 1; |
| pr_info("Hardware DMA cache coherency (command line)\n"); |
| return 0; |
| } |
| early_param("coherentio", setcoherentio); |
| |
| static int __init setnocoherentio(char *str) |
| { |
| coherentio = 0; |
| pr_info("Software DMA cache coherency (command line)\n"); |
| return 0; |
| } |
| early_param("nocoherentio", setnocoherentio); |
| #endif |
| |
| static inline struct page *dma_addr_to_page(struct device *dev, |
| dma_addr_t dma_addr) |
| { |
| return pfn_to_page( |
| plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT); |
| } |
| |
| /* |
| * The affected CPUs below in 'cpu_needs_post_dma_flush()' can |
| * speculatively fill random cachelines with stale data at any time, |
| * requiring an extra flush post-DMA. |
| * |
| * Warning on the terminology - Linux calls an uncached area coherent; |
| * MIPS terminology calls memory areas with hardware maintained coherency |
| * coherent. |
| * |
| * Note that the R14000 and R16000 should also be checked for in this |
| * condition. However this function is only called on non-I/O-coherent |
| * systems and only the R10000 and R12000 are used in such systems, the |
| * SGI IP28 Indigo² rsp. SGI IP32 aka O2. |
| */ |
| static inline int cpu_needs_post_dma_flush(struct device *dev) |
| { |
| return !plat_device_is_coherent(dev) && |
| (boot_cpu_type() == CPU_R10000 || |
| boot_cpu_type() == CPU_R12000 || |
| boot_cpu_type() == CPU_BMIPS5000); |
| } |
| |
| static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp) |
| { |
| gfp_t dma_flag; |
| |
| /* ignore region specifiers */ |
| gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM); |
| |
| #ifdef CONFIG_ISA |
| if (dev == NULL) |
| dma_flag = __GFP_DMA; |
| else |
| #endif |
| #if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA) |
| if (dev == NULL || dev->coherent_dma_mask < DMA_BIT_MASK(32)) |
| dma_flag = __GFP_DMA; |
| else if (dev->coherent_dma_mask < DMA_BIT_MASK(64)) |
| dma_flag = __GFP_DMA32; |
| else |
| #endif |
| #if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA) |
| if (dev == NULL || dev->coherent_dma_mask < DMA_BIT_MASK(64)) |
| dma_flag = __GFP_DMA32; |
| else |
| #endif |
| #if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32) |
| if (dev == NULL || |
| dev->coherent_dma_mask < DMA_BIT_MASK(sizeof(phys_addr_t) * 8)) |
| dma_flag = __GFP_DMA; |
| else |
| #endif |
| dma_flag = 0; |
| |
| /* Don't invoke OOM killer */ |
| gfp |= __GFP_NORETRY; |
| |
| return gfp | dma_flag; |
| } |
| |
| static void *mips_dma_alloc_noncoherent(struct device *dev, size_t size, |
| dma_addr_t * dma_handle, gfp_t gfp) |
| { |
| void *ret; |
| |
| gfp = massage_gfp_flags(dev, gfp); |
| |
| ret = (void *) __get_free_pages(gfp, get_order(size)); |
| |
| if (ret != NULL) { |
| memset(ret, 0, size); |
| *dma_handle = plat_map_dma_mem(dev, ret, size); |
| } |
| |
| return ret; |
| } |
| |
| static void *mips_dma_alloc_coherent(struct device *dev, size_t size, |
| dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) |
| { |
| void *ret; |
| struct page *page = NULL; |
| unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| |
| /* |
| * XXX: seems like the coherent and non-coherent implementations could |
| * be consolidated. |
| */ |
| if (attrs & DMA_ATTR_NON_CONSISTENT) |
| return mips_dma_alloc_noncoherent(dev, size, dma_handle, gfp); |
| |
| gfp = massage_gfp_flags(dev, gfp); |
| |
| if (IS_ENABLED(CONFIG_DMA_CMA) && gfpflags_allow_blocking(gfp)) |
| page = dma_alloc_from_contiguous(dev, |
| count, get_order(size)); |
| if (!page) |
| page = alloc_pages(gfp, get_order(size)); |
| |
| if (!page) |
| return NULL; |
| |
| ret = page_address(page); |
| memset(ret, 0, size); |
| *dma_handle = plat_map_dma_mem(dev, ret, size); |
| if (!plat_device_is_coherent(dev)) { |
| dma_cache_wback_inv((unsigned long) ret, size); |
| if (!hw_coherentio) |
| ret = UNCAC_ADDR(ret); |
| } |
| |
| return ret; |
| } |
| |
| |
| static void mips_dma_free_noncoherent(struct device *dev, size_t size, |
| void *vaddr, dma_addr_t dma_handle) |
| { |
| plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL); |
| free_pages((unsigned long) vaddr, get_order(size)); |
| } |
| |
| static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr, |
| dma_addr_t dma_handle, unsigned long attrs) |
| { |
| unsigned long addr = (unsigned long) vaddr; |
| unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| struct page *page = NULL; |
| |
| if (attrs & DMA_ATTR_NON_CONSISTENT) { |
| mips_dma_free_noncoherent(dev, size, vaddr, dma_handle); |
| return; |
| } |
| |
| plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL); |
| |
| if (!plat_device_is_coherent(dev) && !hw_coherentio) |
| addr = CAC_ADDR(addr); |
| |
| page = virt_to_page((void *) addr); |
| |
| if (!dma_release_from_contiguous(dev, page, count)) |
| __free_pages(page, get_order(size)); |
| } |
| |
| static int mips_dma_mmap(struct device *dev, struct vm_area_struct *vma, |
| void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| unsigned long attrs) |
| { |
| unsigned long user_count = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; |
| unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| unsigned long addr = (unsigned long)cpu_addr; |
| unsigned long off = vma->vm_pgoff; |
| unsigned long pfn; |
| int ret = -ENXIO; |
| |
| if (!plat_device_is_coherent(dev) && !hw_coherentio) |
| addr = CAC_ADDR(addr); |
| |
| pfn = page_to_pfn(virt_to_page((void *)addr)); |
| |
| if (attrs & DMA_ATTR_WRITE_COMBINE) |
| vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); |
| else |
| vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); |
| |
| if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) |
| return ret; |
| |
| if (off < count && user_count <= (count - off)) { |
| ret = remap_pfn_range(vma, vma->vm_start, |
| pfn + off, |
| user_count << PAGE_SHIFT, |
| vma->vm_page_prot); |
| } |
| |
| return ret; |
| } |
| |
| static inline void __dma_sync_virtual(void *addr, size_t size, |
| enum dma_data_direction direction) |
| { |
| switch (direction) { |
| case DMA_TO_DEVICE: |
| dma_cache_wback((unsigned long)addr, size); |
| break; |
| |
| case DMA_FROM_DEVICE: |
| dma_cache_inv((unsigned long)addr, size); |
| break; |
| |
| case DMA_BIDIRECTIONAL: |
| dma_cache_wback_inv((unsigned long)addr, size); |
| break; |
| |
| default: |
| BUG(); |
| } |
| } |
| |
| /* |
| * A single sg entry may refer to multiple physically contiguous |
| * pages. But we still need to process highmem pages individually. |
| * If highmem is not configured then the bulk of this loop gets |
| * optimized out. |
| */ |
| static inline void __dma_sync(struct page *page, |
| unsigned long offset, size_t size, enum dma_data_direction direction) |
| { |
| size_t left = size; |
| |
| do { |
| size_t len = left; |
| |
| if (PageHighMem(page)) { |
| void *addr; |
| |
| if (offset + len > PAGE_SIZE) { |
| if (offset >= PAGE_SIZE) { |
| page += offset >> PAGE_SHIFT; |
| offset &= ~PAGE_MASK; |
| } |
| len = PAGE_SIZE - offset; |
| } |
| |
| addr = kmap_atomic(page); |
| __dma_sync_virtual(addr + offset, len, direction); |
| kunmap_atomic(addr); |
| } else |
| __dma_sync_virtual(page_address(page) + offset, |
| size, direction); |
| offset = 0; |
| page++; |
| left -= len; |
| } while (left); |
| } |
| |
| static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr, |
| size_t size, enum dma_data_direction direction, unsigned long attrs) |
| { |
| if (cpu_needs_post_dma_flush(dev)) |
| __dma_sync(dma_addr_to_page(dev, dma_addr), |
| dma_addr & ~PAGE_MASK, size, direction); |
| plat_post_dma_flush(dev); |
| plat_unmap_dma_mem(dev, dma_addr, size, direction); |
| } |
| |
| static int mips_dma_map_sg(struct device *dev, struct scatterlist *sglist, |
| int nents, enum dma_data_direction direction, unsigned long attrs) |
| { |
| int i; |
| struct scatterlist *sg; |
| |
| for_each_sg(sglist, sg, nents, i) { |
| if (!plat_device_is_coherent(dev)) |
| __dma_sync(sg_page(sg), sg->offset, sg->length, |
| direction); |
| #ifdef CONFIG_NEED_SG_DMA_LENGTH |
| sg->dma_length = sg->length; |
| #endif |
| sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) + |
| sg->offset; |
| } |
| |
| return nents; |
| } |
| |
| static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page, |
| unsigned long offset, size_t size, enum dma_data_direction direction, |
| unsigned long attrs) |
| { |
| if (!plat_device_is_coherent(dev)) |
| __dma_sync(page, offset, size, direction); |
| |
| return plat_map_dma_mem_page(dev, page) + offset; |
| } |
| |
| static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sglist, |
| int nhwentries, enum dma_data_direction direction, |
| unsigned long attrs) |
| { |
| int i; |
| struct scatterlist *sg; |
| |
| for_each_sg(sglist, sg, nhwentries, i) { |
| if (!plat_device_is_coherent(dev) && |
| direction != DMA_TO_DEVICE) |
| __dma_sync(sg_page(sg), sg->offset, sg->length, |
| direction); |
| plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction); |
| } |
| } |
| |
| static void mips_dma_sync_single_for_cpu(struct device *dev, |
| dma_addr_t dma_handle, size_t size, enum dma_data_direction direction) |
| { |
| if (cpu_needs_post_dma_flush(dev)) |
| __dma_sync(dma_addr_to_page(dev, dma_handle), |
| dma_handle & ~PAGE_MASK, size, direction); |
| plat_post_dma_flush(dev); |
| } |
| |
| static void mips_dma_sync_single_for_device(struct device *dev, |
| dma_addr_t dma_handle, size_t size, enum dma_data_direction direction) |
| { |
| if (!plat_device_is_coherent(dev)) |
| __dma_sync(dma_addr_to_page(dev, dma_handle), |
| dma_handle & ~PAGE_MASK, size, direction); |
| } |
| |
| static void mips_dma_sync_sg_for_cpu(struct device *dev, |
| struct scatterlist *sglist, int nelems, |
| enum dma_data_direction direction) |
| { |
| int i; |
| struct scatterlist *sg; |
| |
| if (cpu_needs_post_dma_flush(dev)) { |
| for_each_sg(sglist, sg, nelems, i) { |
| __dma_sync(sg_page(sg), sg->offset, sg->length, |
| direction); |
| } |
| } |
| plat_post_dma_flush(dev); |
| } |
| |
| static void mips_dma_sync_sg_for_device(struct device *dev, |
| struct scatterlist *sglist, int nelems, |
| enum dma_data_direction direction) |
| { |
| int i; |
| struct scatterlist *sg; |
| |
| if (!plat_device_is_coherent(dev)) { |
| for_each_sg(sglist, sg, nelems, i) { |
| __dma_sync(sg_page(sg), sg->offset, sg->length, |
| direction); |
| } |
| } |
| } |
| |
| int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) |
| { |
| return 0; |
| } |
| |
| int mips_dma_supported(struct device *dev, u64 mask) |
| { |
| return plat_dma_supported(dev, mask); |
| } |
| |
| void dma_cache_sync(struct device *dev, void *vaddr, size_t size, |
| enum dma_data_direction direction) |
| { |
| BUG_ON(direction == DMA_NONE); |
| |
| if (!plat_device_is_coherent(dev)) |
| __dma_sync_virtual(vaddr, size, direction); |
| } |
| |
| EXPORT_SYMBOL(dma_cache_sync); |
| |
| static struct dma_map_ops mips_default_dma_map_ops = { |
| .alloc = mips_dma_alloc_coherent, |
| .free = mips_dma_free_coherent, |
| .mmap = mips_dma_mmap, |
| .map_page = mips_dma_map_page, |
| .unmap_page = mips_dma_unmap_page, |
| .map_sg = mips_dma_map_sg, |
| .unmap_sg = mips_dma_unmap_sg, |
| .sync_single_for_cpu = mips_dma_sync_single_for_cpu, |
| .sync_single_for_device = mips_dma_sync_single_for_device, |
| .sync_sg_for_cpu = mips_dma_sync_sg_for_cpu, |
| .sync_sg_for_device = mips_dma_sync_sg_for_device, |
| .mapping_error = mips_dma_mapping_error, |
| .dma_supported = mips_dma_supported |
| }; |
| |
| struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops; |
| EXPORT_SYMBOL(mips_dma_map_ops); |
| |
| #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16) |
| |
| static int __init mips_dma_init(void) |
| { |
| dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); |
| |
| return 0; |
| } |
| fs_initcall(mips_dma_init); |