| /* |
| * Derived from "arch/i386/kernel/process.c" |
| * Copyright (C) 1995 Linus Torvalds |
| * |
| * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and |
| * Paul Mackerras (paulus@cs.anu.edu.au) |
| * |
| * PowerPC version |
| * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/stddef.h> |
| #include <linux/unistd.h> |
| #include <linux/ptrace.h> |
| #include <linux/slab.h> |
| #include <linux/user.h> |
| #include <linux/elf.h> |
| #include <linux/prctl.h> |
| #include <linux/init_task.h> |
| #include <linux/export.h> |
| #include <linux/kallsyms.h> |
| #include <linux/mqueue.h> |
| #include <linux/hardirq.h> |
| #include <linux/utsname.h> |
| #include <linux/ftrace.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/personality.h> |
| #include <linux/random.h> |
| #include <linux/hw_breakpoint.h> |
| #include <linux/uaccess.h> |
| #include <linux/elf-randomize.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/io.h> |
| #include <asm/processor.h> |
| #include <asm/mmu.h> |
| #include <asm/prom.h> |
| #include <asm/machdep.h> |
| #include <asm/time.h> |
| #include <asm/runlatch.h> |
| #include <asm/syscalls.h> |
| #include <asm/switch_to.h> |
| #include <asm/tm.h> |
| #include <asm/debug.h> |
| #ifdef CONFIG_PPC64 |
| #include <asm/firmware.h> |
| #endif |
| #include <asm/code-patching.h> |
| #include <asm/exec.h> |
| #include <asm/livepatch.h> |
| #include <asm/cpu_has_feature.h> |
| |
| #include <linux/kprobes.h> |
| #include <linux/kdebug.h> |
| |
| /* Transactional Memory debug */ |
| #ifdef TM_DEBUG_SW |
| #define TM_DEBUG(x...) printk(KERN_INFO x) |
| #else |
| #define TM_DEBUG(x...) do { } while(0) |
| #endif |
| |
| extern unsigned long _get_SP(void); |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| static void check_if_tm_restore_required(struct task_struct *tsk) |
| { |
| /* |
| * If we are saving the current thread's registers, and the |
| * thread is in a transactional state, set the TIF_RESTORE_TM |
| * bit so that we know to restore the registers before |
| * returning to userspace. |
| */ |
| if (tsk == current && tsk->thread.regs && |
| MSR_TM_ACTIVE(tsk->thread.regs->msr) && |
| !test_thread_flag(TIF_RESTORE_TM)) { |
| tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; |
| set_thread_flag(TIF_RESTORE_TM); |
| } |
| } |
| #else |
| static inline void check_if_tm_restore_required(struct task_struct *tsk) { } |
| #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ |
| |
| bool strict_msr_control; |
| EXPORT_SYMBOL(strict_msr_control); |
| |
| static int __init enable_strict_msr_control(char *str) |
| { |
| strict_msr_control = true; |
| pr_info("Enabling strict facility control\n"); |
| |
| return 0; |
| } |
| early_param("ppc_strict_facility_enable", enable_strict_msr_control); |
| |
| void msr_check_and_set(unsigned long bits) |
| { |
| unsigned long oldmsr = mfmsr(); |
| unsigned long newmsr; |
| |
| newmsr = oldmsr | bits; |
| |
| #ifdef CONFIG_VSX |
| if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) |
| newmsr |= MSR_VSX; |
| #endif |
| |
| if (oldmsr != newmsr) |
| mtmsr_isync(newmsr); |
| } |
| |
| void __msr_check_and_clear(unsigned long bits) |
| { |
| unsigned long oldmsr = mfmsr(); |
| unsigned long newmsr; |
| |
| newmsr = oldmsr & ~bits; |
| |
| #ifdef CONFIG_VSX |
| if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) |
| newmsr &= ~MSR_VSX; |
| #endif |
| |
| if (oldmsr != newmsr) |
| mtmsr_isync(newmsr); |
| } |
| EXPORT_SYMBOL(__msr_check_and_clear); |
| |
| #ifdef CONFIG_PPC_FPU |
| void __giveup_fpu(struct task_struct *tsk) |
| { |
| unsigned long msr; |
| |
| save_fpu(tsk); |
| msr = tsk->thread.regs->msr; |
| msr &= ~MSR_FP; |
| #ifdef CONFIG_VSX |
| if (cpu_has_feature(CPU_FTR_VSX)) |
| msr &= ~MSR_VSX; |
| #endif |
| tsk->thread.regs->msr = msr; |
| } |
| |
| void giveup_fpu(struct task_struct *tsk) |
| { |
| check_if_tm_restore_required(tsk); |
| |
| msr_check_and_set(MSR_FP); |
| __giveup_fpu(tsk); |
| msr_check_and_clear(MSR_FP); |
| } |
| EXPORT_SYMBOL(giveup_fpu); |
| |
| /* |
| * Make sure the floating-point register state in the |
| * the thread_struct is up to date for task tsk. |
| */ |
| void flush_fp_to_thread(struct task_struct *tsk) |
| { |
| if (tsk->thread.regs) { |
| /* |
| * We need to disable preemption here because if we didn't, |
| * another process could get scheduled after the regs->msr |
| * test but before we have finished saving the FP registers |
| * to the thread_struct. That process could take over the |
| * FPU, and then when we get scheduled again we would store |
| * bogus values for the remaining FP registers. |
| */ |
| preempt_disable(); |
| if (tsk->thread.regs->msr & MSR_FP) { |
| /* |
| * This should only ever be called for current or |
| * for a stopped child process. Since we save away |
| * the FP register state on context switch, |
| * there is something wrong if a stopped child appears |
| * to still have its FP state in the CPU registers. |
| */ |
| BUG_ON(tsk != current); |
| giveup_fpu(tsk); |
| } |
| preempt_enable(); |
| } |
| } |
| EXPORT_SYMBOL_GPL(flush_fp_to_thread); |
| |
| void enable_kernel_fp(void) |
| { |
| WARN_ON(preemptible()); |
| |
| msr_check_and_set(MSR_FP); |
| |
| if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { |
| check_if_tm_restore_required(current); |
| __giveup_fpu(current); |
| } |
| } |
| EXPORT_SYMBOL(enable_kernel_fp); |
| |
| static int restore_fp(struct task_struct *tsk) { |
| if (tsk->thread.load_fp) { |
| load_fp_state(¤t->thread.fp_state); |
| current->thread.load_fp++; |
| return 1; |
| } |
| return 0; |
| } |
| #else |
| static int restore_fp(struct task_struct *tsk) { return 0; } |
| #endif /* CONFIG_PPC_FPU */ |
| |
| #ifdef CONFIG_ALTIVEC |
| #define loadvec(thr) ((thr).load_vec) |
| |
| static void __giveup_altivec(struct task_struct *tsk) |
| { |
| unsigned long msr; |
| |
| save_altivec(tsk); |
| msr = tsk->thread.regs->msr; |
| msr &= ~MSR_VEC; |
| #ifdef CONFIG_VSX |
| if (cpu_has_feature(CPU_FTR_VSX)) |
| msr &= ~MSR_VSX; |
| #endif |
| tsk->thread.regs->msr = msr; |
| } |
| |
| void giveup_altivec(struct task_struct *tsk) |
| { |
| check_if_tm_restore_required(tsk); |
| |
| msr_check_and_set(MSR_VEC); |
| __giveup_altivec(tsk); |
| msr_check_and_clear(MSR_VEC); |
| } |
| EXPORT_SYMBOL(giveup_altivec); |
| |
| void enable_kernel_altivec(void) |
| { |
| WARN_ON(preemptible()); |
| |
| msr_check_and_set(MSR_VEC); |
| |
| if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { |
| check_if_tm_restore_required(current); |
| __giveup_altivec(current); |
| } |
| } |
| EXPORT_SYMBOL(enable_kernel_altivec); |
| |
| /* |
| * Make sure the VMX/Altivec register state in the |
| * the thread_struct is up to date for task tsk. |
| */ |
| void flush_altivec_to_thread(struct task_struct *tsk) |
| { |
| if (tsk->thread.regs) { |
| preempt_disable(); |
| if (tsk->thread.regs->msr & MSR_VEC) { |
| BUG_ON(tsk != current); |
| giveup_altivec(tsk); |
| } |
| preempt_enable(); |
| } |
| } |
| EXPORT_SYMBOL_GPL(flush_altivec_to_thread); |
| |
| static int restore_altivec(struct task_struct *tsk) |
| { |
| if (cpu_has_feature(CPU_FTR_ALTIVEC) && tsk->thread.load_vec) { |
| load_vr_state(&tsk->thread.vr_state); |
| tsk->thread.used_vr = 1; |
| tsk->thread.load_vec++; |
| |
| return 1; |
| } |
| return 0; |
| } |
| #else |
| #define loadvec(thr) 0 |
| static inline int restore_altivec(struct task_struct *tsk) { return 0; } |
| #endif /* CONFIG_ALTIVEC */ |
| |
| #ifdef CONFIG_VSX |
| static void __giveup_vsx(struct task_struct *tsk) |
| { |
| if (tsk->thread.regs->msr & MSR_FP) |
| __giveup_fpu(tsk); |
| if (tsk->thread.regs->msr & MSR_VEC) |
| __giveup_altivec(tsk); |
| tsk->thread.regs->msr &= ~MSR_VSX; |
| } |
| |
| static void giveup_vsx(struct task_struct *tsk) |
| { |
| check_if_tm_restore_required(tsk); |
| |
| msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); |
| __giveup_vsx(tsk); |
| msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); |
| } |
| |
| static void save_vsx(struct task_struct *tsk) |
| { |
| if (tsk->thread.regs->msr & MSR_FP) |
| save_fpu(tsk); |
| if (tsk->thread.regs->msr & MSR_VEC) |
| save_altivec(tsk); |
| } |
| |
| void enable_kernel_vsx(void) |
| { |
| WARN_ON(preemptible()); |
| |
| msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); |
| |
| if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) { |
| check_if_tm_restore_required(current); |
| if (current->thread.regs->msr & MSR_FP) |
| __giveup_fpu(current); |
| if (current->thread.regs->msr & MSR_VEC) |
| __giveup_altivec(current); |
| __giveup_vsx(current); |
| } |
| } |
| EXPORT_SYMBOL(enable_kernel_vsx); |
| |
| void flush_vsx_to_thread(struct task_struct *tsk) |
| { |
| if (tsk->thread.regs) { |
| preempt_disable(); |
| if (tsk->thread.regs->msr & MSR_VSX) { |
| BUG_ON(tsk != current); |
| giveup_vsx(tsk); |
| } |
| preempt_enable(); |
| } |
| } |
| EXPORT_SYMBOL_GPL(flush_vsx_to_thread); |
| |
| static int restore_vsx(struct task_struct *tsk) |
| { |
| if (cpu_has_feature(CPU_FTR_VSX)) { |
| tsk->thread.used_vsr = 1; |
| return 1; |
| } |
| |
| return 0; |
| } |
| #else |
| static inline int restore_vsx(struct task_struct *tsk) { return 0; } |
| static inline void save_vsx(struct task_struct *tsk) { } |
| #endif /* CONFIG_VSX */ |
| |
| #ifdef CONFIG_SPE |
| void giveup_spe(struct task_struct *tsk) |
| { |
| check_if_tm_restore_required(tsk); |
| |
| msr_check_and_set(MSR_SPE); |
| __giveup_spe(tsk); |
| msr_check_and_clear(MSR_SPE); |
| } |
| EXPORT_SYMBOL(giveup_spe); |
| |
| void enable_kernel_spe(void) |
| { |
| WARN_ON(preemptible()); |
| |
| msr_check_and_set(MSR_SPE); |
| |
| if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { |
| check_if_tm_restore_required(current); |
| __giveup_spe(current); |
| } |
| } |
| EXPORT_SYMBOL(enable_kernel_spe); |
| |
| void flush_spe_to_thread(struct task_struct *tsk) |
| { |
| if (tsk->thread.regs) { |
| preempt_disable(); |
| if (tsk->thread.regs->msr & MSR_SPE) { |
| BUG_ON(tsk != current); |
| tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); |
| giveup_spe(tsk); |
| } |
| preempt_enable(); |
| } |
| } |
| #endif /* CONFIG_SPE */ |
| |
| static unsigned long msr_all_available; |
| |
| static int __init init_msr_all_available(void) |
| { |
| #ifdef CONFIG_PPC_FPU |
| msr_all_available |= MSR_FP; |
| #endif |
| #ifdef CONFIG_ALTIVEC |
| if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
| msr_all_available |= MSR_VEC; |
| #endif |
| #ifdef CONFIG_VSX |
| if (cpu_has_feature(CPU_FTR_VSX)) |
| msr_all_available |= MSR_VSX; |
| #endif |
| #ifdef CONFIG_SPE |
| if (cpu_has_feature(CPU_FTR_SPE)) |
| msr_all_available |= MSR_SPE; |
| #endif |
| |
| return 0; |
| } |
| early_initcall(init_msr_all_available); |
| |
| void giveup_all(struct task_struct *tsk) |
| { |
| unsigned long usermsr; |
| |
| if (!tsk->thread.regs) |
| return; |
| |
| usermsr = tsk->thread.regs->msr; |
| |
| if ((usermsr & msr_all_available) == 0) |
| return; |
| |
| msr_check_and_set(msr_all_available); |
| |
| #ifdef CONFIG_PPC_FPU |
| if (usermsr & MSR_FP) |
| __giveup_fpu(tsk); |
| #endif |
| #ifdef CONFIG_ALTIVEC |
| if (usermsr & MSR_VEC) |
| __giveup_altivec(tsk); |
| #endif |
| #ifdef CONFIG_VSX |
| if (usermsr & MSR_VSX) |
| __giveup_vsx(tsk); |
| #endif |
| #ifdef CONFIG_SPE |
| if (usermsr & MSR_SPE) |
| __giveup_spe(tsk); |
| #endif |
| |
| msr_check_and_clear(msr_all_available); |
| } |
| EXPORT_SYMBOL(giveup_all); |
| |
| void restore_math(struct pt_regs *regs) |
| { |
| unsigned long msr; |
| |
| if (!current->thread.load_fp && !loadvec(current->thread)) |
| return; |
| |
| msr = regs->msr; |
| msr_check_and_set(msr_all_available); |
| |
| /* |
| * Only reload if the bit is not set in the user MSR, the bit BEING set |
| * indicates that the registers are hot |
| */ |
| if ((!(msr & MSR_FP)) && restore_fp(current)) |
| msr |= MSR_FP | current->thread.fpexc_mode; |
| |
| if ((!(msr & MSR_VEC)) && restore_altivec(current)) |
| msr |= MSR_VEC; |
| |
| if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) && |
| restore_vsx(current)) { |
| msr |= MSR_VSX; |
| } |
| |
| msr_check_and_clear(msr_all_available); |
| |
| regs->msr = msr; |
| } |
| |
| void save_all(struct task_struct *tsk) |
| { |
| unsigned long usermsr; |
| |
| if (!tsk->thread.regs) |
| return; |
| |
| usermsr = tsk->thread.regs->msr; |
| |
| if ((usermsr & msr_all_available) == 0) |
| return; |
| |
| msr_check_and_set(msr_all_available); |
| |
| /* |
| * Saving the way the register space is in hardware, save_vsx boils |
| * down to a save_fpu() and save_altivec() |
| */ |
| if (usermsr & MSR_VSX) { |
| save_vsx(tsk); |
| } else { |
| if (usermsr & MSR_FP) |
| save_fpu(tsk); |
| |
| if (usermsr & MSR_VEC) |
| save_altivec(tsk); |
| } |
| |
| if (usermsr & MSR_SPE) |
| __giveup_spe(tsk); |
| |
| msr_check_and_clear(msr_all_available); |
| } |
| |
| void flush_all_to_thread(struct task_struct *tsk) |
| { |
| if (tsk->thread.regs) { |
| preempt_disable(); |
| BUG_ON(tsk != current); |
| save_all(tsk); |
| |
| #ifdef CONFIG_SPE |
| if (tsk->thread.regs->msr & MSR_SPE) |
| tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); |
| #endif |
| |
| preempt_enable(); |
| } |
| } |
| EXPORT_SYMBOL(flush_all_to_thread); |
| |
| #ifdef CONFIG_PPC_ADV_DEBUG_REGS |
| void do_send_trap(struct pt_regs *regs, unsigned long address, |
| unsigned long error_code, int signal_code, int breakpt) |
| { |
| siginfo_t info; |
| |
| current->thread.trap_nr = signal_code; |
| if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, |
| 11, SIGSEGV) == NOTIFY_STOP) |
| return; |
| |
| /* Deliver the signal to userspace */ |
| info.si_signo = SIGTRAP; |
| info.si_errno = breakpt; /* breakpoint or watchpoint id */ |
| info.si_code = signal_code; |
| info.si_addr = (void __user *)address; |
| force_sig_info(SIGTRAP, &info, current); |
| } |
| #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ |
| void do_break (struct pt_regs *regs, unsigned long address, |
| unsigned long error_code) |
| { |
| siginfo_t info; |
| |
| current->thread.trap_nr = TRAP_HWBKPT; |
| if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, |
| 11, SIGSEGV) == NOTIFY_STOP) |
| return; |
| |
| if (debugger_break_match(regs)) |
| return; |
| |
| /* Clear the breakpoint */ |
| hw_breakpoint_disable(); |
| |
| /* Deliver the signal to userspace */ |
| info.si_signo = SIGTRAP; |
| info.si_errno = 0; |
| info.si_code = TRAP_HWBKPT; |
| info.si_addr = (void __user *)address; |
| force_sig_info(SIGTRAP, &info, current); |
| } |
| #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ |
| |
| static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); |
| |
| #ifdef CONFIG_PPC_ADV_DEBUG_REGS |
| /* |
| * Set the debug registers back to their default "safe" values. |
| */ |
| static void set_debug_reg_defaults(struct thread_struct *thread) |
| { |
| thread->debug.iac1 = thread->debug.iac2 = 0; |
| #if CONFIG_PPC_ADV_DEBUG_IACS > 2 |
| thread->debug.iac3 = thread->debug.iac4 = 0; |
| #endif |
| thread->debug.dac1 = thread->debug.dac2 = 0; |
| #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 |
| thread->debug.dvc1 = thread->debug.dvc2 = 0; |
| #endif |
| thread->debug.dbcr0 = 0; |
| #ifdef CONFIG_BOOKE |
| /* |
| * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) |
| */ |
| thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | |
| DBCR1_IAC3US | DBCR1_IAC4US; |
| /* |
| * Force Data Address Compare User/Supervisor bits to be User-only |
| * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. |
| */ |
| thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; |
| #else |
| thread->debug.dbcr1 = 0; |
| #endif |
| } |
| |
| static void prime_debug_regs(struct debug_reg *debug) |
| { |
| /* |
| * We could have inherited MSR_DE from userspace, since |
| * it doesn't get cleared on exception entry. Make sure |
| * MSR_DE is clear before we enable any debug events. |
| */ |
| mtmsr(mfmsr() & ~MSR_DE); |
| |
| mtspr(SPRN_IAC1, debug->iac1); |
| mtspr(SPRN_IAC2, debug->iac2); |
| #if CONFIG_PPC_ADV_DEBUG_IACS > 2 |
| mtspr(SPRN_IAC3, debug->iac3); |
| mtspr(SPRN_IAC4, debug->iac4); |
| #endif |
| mtspr(SPRN_DAC1, debug->dac1); |
| mtspr(SPRN_DAC2, debug->dac2); |
| #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 |
| mtspr(SPRN_DVC1, debug->dvc1); |
| mtspr(SPRN_DVC2, debug->dvc2); |
| #endif |
| mtspr(SPRN_DBCR0, debug->dbcr0); |
| mtspr(SPRN_DBCR1, debug->dbcr1); |
| #ifdef CONFIG_BOOKE |
| mtspr(SPRN_DBCR2, debug->dbcr2); |
| #endif |
| } |
| /* |
| * Unless neither the old or new thread are making use of the |
| * debug registers, set the debug registers from the values |
| * stored in the new thread. |
| */ |
| void switch_booke_debug_regs(struct debug_reg *new_debug) |
| { |
| if ((current->thread.debug.dbcr0 & DBCR0_IDM) |
| || (new_debug->dbcr0 & DBCR0_IDM)) |
| prime_debug_regs(new_debug); |
| } |
| EXPORT_SYMBOL_GPL(switch_booke_debug_regs); |
| #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ |
| #ifndef CONFIG_HAVE_HW_BREAKPOINT |
| static void set_debug_reg_defaults(struct thread_struct *thread) |
| { |
| thread->hw_brk.address = 0; |
| thread->hw_brk.type = 0; |
| set_breakpoint(&thread->hw_brk); |
| } |
| #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ |
| #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ |
| |
| #ifdef CONFIG_PPC_ADV_DEBUG_REGS |
| static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) |
| { |
| mtspr(SPRN_DAC1, dabr); |
| #ifdef CONFIG_PPC_47x |
| isync(); |
| #endif |
| return 0; |
| } |
| #elif defined(CONFIG_PPC_BOOK3S) |
| static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) |
| { |
| mtspr(SPRN_DABR, dabr); |
| if (cpu_has_feature(CPU_FTR_DABRX)) |
| mtspr(SPRN_DABRX, dabrx); |
| return 0; |
| } |
| #else |
| static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) |
| { |
| return -EINVAL; |
| } |
| #endif |
| |
| static inline int set_dabr(struct arch_hw_breakpoint *brk) |
| { |
| unsigned long dabr, dabrx; |
| |
| dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); |
| dabrx = ((brk->type >> 3) & 0x7); |
| |
| if (ppc_md.set_dabr) |
| return ppc_md.set_dabr(dabr, dabrx); |
| |
| return __set_dabr(dabr, dabrx); |
| } |
| |
| static inline int set_dawr(struct arch_hw_breakpoint *brk) |
| { |
| unsigned long dawr, dawrx, mrd; |
| |
| dawr = brk->address; |
| |
| dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \ |
| << (63 - 58); //* read/write bits */ |
| dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \ |
| << (63 - 59); //* translate */ |
| dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \ |
| >> 3; //* PRIM bits */ |
| /* dawr length is stored in field MDR bits 48:53. Matches range in |
| doublewords (64 bits) baised by -1 eg. 0b000000=1DW and |
| 0b111111=64DW. |
| brk->len is in bytes. |
| This aligns up to double word size, shifts and does the bias. |
| */ |
| mrd = ((brk->len + 7) >> 3) - 1; |
| dawrx |= (mrd & 0x3f) << (63 - 53); |
| |
| if (ppc_md.set_dawr) |
| return ppc_md.set_dawr(dawr, dawrx); |
| mtspr(SPRN_DAWR, dawr); |
| mtspr(SPRN_DAWRX, dawrx); |
| return 0; |
| } |
| |
| void __set_breakpoint(struct arch_hw_breakpoint *brk) |
| { |
| memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk)); |
| |
| if (cpu_has_feature(CPU_FTR_DAWR)) |
| set_dawr(brk); |
| else |
| set_dabr(brk); |
| } |
| |
| void set_breakpoint(struct arch_hw_breakpoint *brk) |
| { |
| preempt_disable(); |
| __set_breakpoint(brk); |
| preempt_enable(); |
| } |
| |
| #ifdef CONFIG_PPC64 |
| DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); |
| #endif |
| |
| static inline bool hw_brk_match(struct arch_hw_breakpoint *a, |
| struct arch_hw_breakpoint *b) |
| { |
| if (a->address != b->address) |
| return false; |
| if (a->type != b->type) |
| return false; |
| if (a->len != b->len) |
| return false; |
| return true; |
| } |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| static void tm_reclaim_thread(struct thread_struct *thr, |
| struct thread_info *ti, uint8_t cause) |
| { |
| unsigned long msr_diff = 0; |
| |
| /* |
| * If FP/VSX registers have been already saved to the |
| * thread_struct, move them to the transact_fp array. |
| * We clear the TIF_RESTORE_TM bit since after the reclaim |
| * the thread will no longer be transactional. |
| */ |
| if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) { |
| msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr; |
| if (msr_diff & MSR_FP) |
| memcpy(&thr->transact_fp, &thr->fp_state, |
| sizeof(struct thread_fp_state)); |
| if (msr_diff & MSR_VEC) |
| memcpy(&thr->transact_vr, &thr->vr_state, |
| sizeof(struct thread_vr_state)); |
| clear_ti_thread_flag(ti, TIF_RESTORE_TM); |
| msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1; |
| } |
| |
| /* |
| * Use the current MSR TM suspended bit to track if we have |
| * checkpointed state outstanding. |
| * On signal delivery, we'd normally reclaim the checkpointed |
| * state to obtain stack pointer (see:get_tm_stackpointer()). |
| * This will then directly return to userspace without going |
| * through __switch_to(). However, if the stack frame is bad, |
| * we need to exit this thread which calls __switch_to() which |
| * will again attempt to reclaim the already saved tm state. |
| * Hence we need to check that we've not already reclaimed |
| * this state. |
| * We do this using the current MSR, rather tracking it in |
| * some specific thread_struct bit, as it has the additional |
| * benefit of checking for a potential TM bad thing exception. |
| */ |
| if (!MSR_TM_SUSPENDED(mfmsr())) |
| return; |
| |
| tm_reclaim(thr, thr->regs->msr, cause); |
| |
| /* Having done the reclaim, we now have the checkpointed |
| * FP/VSX values in the registers. These might be valid |
| * even if we have previously called enable_kernel_fp() or |
| * flush_fp_to_thread(), so update thr->regs->msr to |
| * indicate their current validity. |
| */ |
| thr->regs->msr |= msr_diff; |
| } |
| |
| void tm_reclaim_current(uint8_t cause) |
| { |
| tm_enable(); |
| tm_reclaim_thread(¤t->thread, current_thread_info(), cause); |
| } |
| |
| static inline void tm_reclaim_task(struct task_struct *tsk) |
| { |
| /* We have to work out if we're switching from/to a task that's in the |
| * middle of a transaction. |
| * |
| * In switching we need to maintain a 2nd register state as |
| * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the |
| * checkpointed (tbegin) state in ckpt_regs and saves the transactional |
| * (current) FPRs into oldtask->thread.transact_fpr[]. |
| * |
| * We also context switch (save) TFHAR/TEXASR/TFIAR in here. |
| */ |
| struct thread_struct *thr = &tsk->thread; |
| |
| if (!thr->regs) |
| return; |
| |
| if (!MSR_TM_ACTIVE(thr->regs->msr)) |
| goto out_and_saveregs; |
| |
| /* Stash the original thread MSR, as giveup_fpu et al will |
| * modify it. We hold onto it to see whether the task used |
| * FP & vector regs. If the TIF_RESTORE_TM flag is set, |
| * ckpt_regs.msr is already set. |
| */ |
| if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM)) |
| thr->ckpt_regs.msr = thr->regs->msr; |
| |
| TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " |
| "ccr=%lx, msr=%lx, trap=%lx)\n", |
| tsk->pid, thr->regs->nip, |
| thr->regs->ccr, thr->regs->msr, |
| thr->regs->trap); |
| |
| tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED); |
| |
| TM_DEBUG("--- tm_reclaim on pid %d complete\n", |
| tsk->pid); |
| |
| out_and_saveregs: |
| /* Always save the regs here, even if a transaction's not active. |
| * This context-switches a thread's TM info SPRs. We do it here to |
| * be consistent with the restore path (in recheckpoint) which |
| * cannot happen later in _switch(). |
| */ |
| tm_save_sprs(thr); |
| } |
| |
| extern void __tm_recheckpoint(struct thread_struct *thread, |
| unsigned long orig_msr); |
| |
| void tm_recheckpoint(struct thread_struct *thread, |
| unsigned long orig_msr) |
| { |
| unsigned long flags; |
| |
| /* We really can't be interrupted here as the TEXASR registers can't |
| * change and later in the trecheckpoint code, we have a userspace R1. |
| * So let's hard disable over this region. |
| */ |
| local_irq_save(flags); |
| hard_irq_disable(); |
| |
| /* The TM SPRs are restored here, so that TEXASR.FS can be set |
| * before the trecheckpoint and no explosion occurs. |
| */ |
| tm_restore_sprs(thread); |
| |
| __tm_recheckpoint(thread, orig_msr); |
| |
| local_irq_restore(flags); |
| } |
| |
| static inline void tm_recheckpoint_new_task(struct task_struct *new) |
| { |
| unsigned long msr; |
| |
| if (!cpu_has_feature(CPU_FTR_TM)) |
| return; |
| |
| /* Recheckpoint the registers of the thread we're about to switch to. |
| * |
| * If the task was using FP, we non-lazily reload both the original and |
| * the speculative FP register states. This is because the kernel |
| * doesn't see if/when a TM rollback occurs, so if we take an FP |
| * unavoidable later, we are unable to determine which set of FP regs |
| * need to be restored. |
| */ |
| if (!new->thread.regs) |
| return; |
| |
| if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ |
| tm_restore_sprs(&new->thread); |
| return; |
| } |
| msr = new->thread.ckpt_regs.msr; |
| /* Recheckpoint to restore original checkpointed register state. */ |
| TM_DEBUG("*** tm_recheckpoint of pid %d " |
| "(new->msr 0x%lx, new->origmsr 0x%lx)\n", |
| new->pid, new->thread.regs->msr, msr); |
| |
| /* This loads the checkpointed FP/VEC state, if used */ |
| tm_recheckpoint(&new->thread, msr); |
| |
| /* This loads the speculative FP/VEC state, if used */ |
| if (msr & MSR_FP) { |
| do_load_up_transact_fpu(&new->thread); |
| new->thread.regs->msr |= |
| (MSR_FP | new->thread.fpexc_mode); |
| } |
| #ifdef CONFIG_ALTIVEC |
| if (msr & MSR_VEC) { |
| do_load_up_transact_altivec(&new->thread); |
| new->thread.regs->msr |= MSR_VEC; |
| } |
| #endif |
| /* We may as well turn on VSX too since all the state is restored now */ |
| if (msr & MSR_VSX) |
| new->thread.regs->msr |= MSR_VSX; |
| |
| TM_DEBUG("*** tm_recheckpoint of pid %d complete " |
| "(kernel msr 0x%lx)\n", |
| new->pid, mfmsr()); |
| } |
| |
| static inline void __switch_to_tm(struct task_struct *prev) |
| { |
| if (cpu_has_feature(CPU_FTR_TM)) { |
| tm_enable(); |
| tm_reclaim_task(prev); |
| } |
| } |
| |
| /* |
| * This is called if we are on the way out to userspace and the |
| * TIF_RESTORE_TM flag is set. It checks if we need to reload |
| * FP and/or vector state and does so if necessary. |
| * If userspace is inside a transaction (whether active or |
| * suspended) and FP/VMX/VSX instructions have ever been enabled |
| * inside that transaction, then we have to keep them enabled |
| * and keep the FP/VMX/VSX state loaded while ever the transaction |
| * continues. The reason is that if we didn't, and subsequently |
| * got a FP/VMX/VSX unavailable interrupt inside a transaction, |
| * we don't know whether it's the same transaction, and thus we |
| * don't know which of the checkpointed state and the transactional |
| * state to use. |
| */ |
| void restore_tm_state(struct pt_regs *regs) |
| { |
| unsigned long msr_diff; |
| |
| clear_thread_flag(TIF_RESTORE_TM); |
| if (!MSR_TM_ACTIVE(regs->msr)) |
| return; |
| |
| msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; |
| msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; |
| |
| restore_math(regs); |
| |
| regs->msr |= msr_diff; |
| } |
| |
| #else |
| #define tm_recheckpoint_new_task(new) |
| #define __switch_to_tm(prev) |
| #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ |
| |
| static inline void save_sprs(struct thread_struct *t) |
| { |
| #ifdef CONFIG_ALTIVEC |
| if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
| t->vrsave = mfspr(SPRN_VRSAVE); |
| #endif |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| if (cpu_has_feature(CPU_FTR_DSCR)) |
| t->dscr = mfspr(SPRN_DSCR); |
| |
| if (cpu_has_feature(CPU_FTR_ARCH_207S)) { |
| t->bescr = mfspr(SPRN_BESCR); |
| t->ebbhr = mfspr(SPRN_EBBHR); |
| t->ebbrr = mfspr(SPRN_EBBRR); |
| |
| t->fscr = mfspr(SPRN_FSCR); |
| |
| /* |
| * Note that the TAR is not available for use in the kernel. |
| * (To provide this, the TAR should be backed up/restored on |
| * exception entry/exit instead, and be in pt_regs. FIXME, |
| * this should be in pt_regs anyway (for debug).) |
| */ |
| t->tar = mfspr(SPRN_TAR); |
| } |
| |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) { |
| /* Conditionally save Load Monitor registers, if enabled */ |
| if (t->fscr & FSCR_LM) { |
| t->lmrr = mfspr(SPRN_LMRR); |
| t->lmser = mfspr(SPRN_LMSER); |
| } |
| } |
| #endif |
| } |
| |
| static inline void restore_sprs(struct thread_struct *old_thread, |
| struct thread_struct *new_thread) |
| { |
| #ifdef CONFIG_ALTIVEC |
| if (cpu_has_feature(CPU_FTR_ALTIVEC) && |
| old_thread->vrsave != new_thread->vrsave) |
| mtspr(SPRN_VRSAVE, new_thread->vrsave); |
| #endif |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| if (cpu_has_feature(CPU_FTR_DSCR)) { |
| u64 dscr = get_paca()->dscr_default; |
| if (new_thread->dscr_inherit) |
| dscr = new_thread->dscr; |
| |
| if (old_thread->dscr != dscr) |
| mtspr(SPRN_DSCR, dscr); |
| } |
| |
| if (cpu_has_feature(CPU_FTR_ARCH_207S)) { |
| if (old_thread->bescr != new_thread->bescr) |
| mtspr(SPRN_BESCR, new_thread->bescr); |
| if (old_thread->ebbhr != new_thread->ebbhr) |
| mtspr(SPRN_EBBHR, new_thread->ebbhr); |
| if (old_thread->ebbrr != new_thread->ebbrr) |
| mtspr(SPRN_EBBRR, new_thread->ebbrr); |
| |
| if (old_thread->fscr != new_thread->fscr) |
| mtspr(SPRN_FSCR, new_thread->fscr); |
| |
| if (old_thread->tar != new_thread->tar) |
| mtspr(SPRN_TAR, new_thread->tar); |
| } |
| |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) { |
| /* Conditionally restore Load Monitor registers, if enabled */ |
| if (new_thread->fscr & FSCR_LM) { |
| if (old_thread->lmrr != new_thread->lmrr) |
| mtspr(SPRN_LMRR, new_thread->lmrr); |
| if (old_thread->lmser != new_thread->lmser) |
| mtspr(SPRN_LMSER, new_thread->lmser); |
| } |
| } |
| #endif |
| } |
| |
| struct task_struct *__switch_to(struct task_struct *prev, |
| struct task_struct *new) |
| { |
| struct thread_struct *new_thread, *old_thread; |
| struct task_struct *last; |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| struct ppc64_tlb_batch *batch; |
| #endif |
| |
| new_thread = &new->thread; |
| old_thread = ¤t->thread; |
| |
| WARN_ON(!irqs_disabled()); |
| |
| #ifdef CONFIG_PPC64 |
| /* |
| * Collect processor utilization data per process |
| */ |
| if (firmware_has_feature(FW_FEATURE_SPLPAR)) { |
| struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array); |
| long unsigned start_tb, current_tb; |
| start_tb = old_thread->start_tb; |
| cu->current_tb = current_tb = mfspr(SPRN_PURR); |
| old_thread->accum_tb += (current_tb - start_tb); |
| new_thread->start_tb = current_tb; |
| } |
| #endif /* CONFIG_PPC64 */ |
| |
| #ifdef CONFIG_PPC_STD_MMU_64 |
| batch = this_cpu_ptr(&ppc64_tlb_batch); |
| if (batch->active) { |
| current_thread_info()->local_flags |= _TLF_LAZY_MMU; |
| if (batch->index) |
| __flush_tlb_pending(batch); |
| batch->active = 0; |
| } |
| #endif /* CONFIG_PPC_STD_MMU_64 */ |
| |
| #ifdef CONFIG_PPC_ADV_DEBUG_REGS |
| switch_booke_debug_regs(&new->thread.debug); |
| #else |
| /* |
| * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would |
| * schedule DABR |
| */ |
| #ifndef CONFIG_HAVE_HW_BREAKPOINT |
| if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk))) |
| __set_breakpoint(&new->thread.hw_brk); |
| #endif /* CONFIG_HAVE_HW_BREAKPOINT */ |
| #endif |
| |
| /* |
| * We need to save SPRs before treclaim/trecheckpoint as these will |
| * change a number of them. |
| */ |
| save_sprs(&prev->thread); |
| |
| __switch_to_tm(prev); |
| |
| /* Save FPU, Altivec, VSX and SPE state */ |
| giveup_all(prev); |
| |
| /* |
| * We can't take a PMU exception inside _switch() since there is a |
| * window where the kernel stack SLB and the kernel stack are out |
| * of sync. Hard disable here. |
| */ |
| hard_irq_disable(); |
| |
| tm_recheckpoint_new_task(new); |
| |
| /* |
| * Call restore_sprs() before calling _switch(). If we move it after |
| * _switch() then we miss out on calling it for new tasks. The reason |
| * for this is we manually create a stack frame for new tasks that |
| * directly returns through ret_from_fork() or |
| * ret_from_kernel_thread(). See copy_thread() for details. |
| */ |
| restore_sprs(old_thread, new_thread); |
| |
| last = _switch(old_thread, new_thread); |
| |
| #ifdef CONFIG_PPC_STD_MMU_64 |
| if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { |
| current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; |
| batch = this_cpu_ptr(&ppc64_tlb_batch); |
| batch->active = 1; |
| } |
| |
| if (current_thread_info()->task->thread.regs) |
| restore_math(current_thread_info()->task->thread.regs); |
| #endif /* CONFIG_PPC_STD_MMU_64 */ |
| |
| return last; |
| } |
| |
| static int instructions_to_print = 16; |
| |
| static void show_instructions(struct pt_regs *regs) |
| { |
| int i; |
| unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * |
| sizeof(int)); |
| |
| printk("Instruction dump:"); |
| |
| for (i = 0; i < instructions_to_print; i++) { |
| int instr; |
| |
| if (!(i % 8)) |
| printk("\n"); |
| |
| #if !defined(CONFIG_BOOKE) |
| /* If executing with the IMMU off, adjust pc rather |
| * than print XXXXXXXX. |
| */ |
| if (!(regs->msr & MSR_IR)) |
| pc = (unsigned long)phys_to_virt(pc); |
| #endif |
| |
| if (!__kernel_text_address(pc) || |
| probe_kernel_address((unsigned int __user *)pc, instr)) { |
| printk(KERN_CONT "XXXXXXXX "); |
| } else { |
| if (regs->nip == pc) |
| printk(KERN_CONT "<%08x> ", instr); |
| else |
| printk(KERN_CONT "%08x ", instr); |
| } |
| |
| pc += sizeof(int); |
| } |
| |
| printk("\n"); |
| } |
| |
| struct regbit { |
| unsigned long bit; |
| const char *name; |
| }; |
| |
| static struct regbit msr_bits[] = { |
| #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) |
| {MSR_SF, "SF"}, |
| {MSR_HV, "HV"}, |
| #endif |
| {MSR_VEC, "VEC"}, |
| {MSR_VSX, "VSX"}, |
| #ifdef CONFIG_BOOKE |
| {MSR_CE, "CE"}, |
| #endif |
| {MSR_EE, "EE"}, |
| {MSR_PR, "PR"}, |
| {MSR_FP, "FP"}, |
| {MSR_ME, "ME"}, |
| #ifdef CONFIG_BOOKE |
| {MSR_DE, "DE"}, |
| #else |
| {MSR_SE, "SE"}, |
| {MSR_BE, "BE"}, |
| #endif |
| {MSR_IR, "IR"}, |
| {MSR_DR, "DR"}, |
| {MSR_PMM, "PMM"}, |
| #ifndef CONFIG_BOOKE |
| {MSR_RI, "RI"}, |
| {MSR_LE, "LE"}, |
| #endif |
| {0, NULL} |
| }; |
| |
| static void print_bits(unsigned long val, struct regbit *bits, const char *sep) |
| { |
| const char *s = ""; |
| |
| for (; bits->bit; ++bits) |
| if (val & bits->bit) { |
| printk("%s%s", s, bits->name); |
| s = sep; |
| } |
| } |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| static struct regbit msr_tm_bits[] = { |
| {MSR_TS_T, "T"}, |
| {MSR_TS_S, "S"}, |
| {MSR_TM, "E"}, |
| {0, NULL} |
| }; |
| |
| static void print_tm_bits(unsigned long val) |
| { |
| /* |
| * This only prints something if at least one of the TM bit is set. |
| * Inside the TM[], the output means: |
| * E: Enabled (bit 32) |
| * S: Suspended (bit 33) |
| * T: Transactional (bit 34) |
| */ |
| if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { |
| printk(",TM["); |
| print_bits(val, msr_tm_bits, ""); |
| printk("]"); |
| } |
| } |
| #else |
| static void print_tm_bits(unsigned long val) {} |
| #endif |
| |
| static void print_msr_bits(unsigned long val) |
| { |
| printk("<"); |
| print_bits(val, msr_bits, ","); |
| print_tm_bits(val); |
| printk(">"); |
| } |
| |
| #ifdef CONFIG_PPC64 |
| #define REG "%016lx" |
| #define REGS_PER_LINE 4 |
| #define LAST_VOLATILE 13 |
| #else |
| #define REG "%08lx" |
| #define REGS_PER_LINE 8 |
| #define LAST_VOLATILE 12 |
| #endif |
| |
| void show_regs(struct pt_regs * regs) |
| { |
| int i, trap; |
| |
| show_regs_print_info(KERN_DEFAULT); |
| |
| printk("NIP: "REG" LR: "REG" CTR: "REG"\n", |
| regs->nip, regs->link, regs->ctr); |
| printk("REGS: %p TRAP: %04lx %s (%s)\n", |
| regs, regs->trap, print_tainted(), init_utsname()->release); |
| printk("MSR: "REG" ", regs->msr); |
| print_msr_bits(regs->msr); |
| printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); |
| trap = TRAP(regs); |
| if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) |
| printk("CFAR: "REG" ", regs->orig_gpr3); |
| if (trap == 0x200 || trap == 0x300 || trap == 0x600) |
| #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) |
| printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); |
| #else |
| printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); |
| #endif |
| #ifdef CONFIG_PPC64 |
| printk("SOFTE: %ld ", regs->softe); |
| #endif |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| if (MSR_TM_ACTIVE(regs->msr)) |
| printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); |
| #endif |
| |
| for (i = 0; i < 32; i++) { |
| if ((i % REGS_PER_LINE) == 0) |
| printk("\nGPR%02d: ", i); |
| printk(REG " ", regs->gpr[i]); |
| if (i == LAST_VOLATILE && !FULL_REGS(regs)) |
| break; |
| } |
| printk("\n"); |
| #ifdef CONFIG_KALLSYMS |
| /* |
| * Lookup NIP late so we have the best change of getting the |
| * above info out without failing |
| */ |
| printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); |
| printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); |
| #endif |
| show_stack(current, (unsigned long *) regs->gpr[1]); |
| if (!user_mode(regs)) |
| show_instructions(regs); |
| } |
| |
| void flush_thread(void) |
| { |
| #ifdef CONFIG_HAVE_HW_BREAKPOINT |
| flush_ptrace_hw_breakpoint(current); |
| #else /* CONFIG_HAVE_HW_BREAKPOINT */ |
| set_debug_reg_defaults(¤t->thread); |
| #endif /* CONFIG_HAVE_HW_BREAKPOINT */ |
| } |
| |
| void |
| release_thread(struct task_struct *t) |
| { |
| } |
| |
| /* |
| * this gets called so that we can store coprocessor state into memory and |
| * copy the current task into the new thread. |
| */ |
| int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) |
| { |
| flush_all_to_thread(src); |
| /* |
| * Flush TM state out so we can copy it. __switch_to_tm() does this |
| * flush but it removes the checkpointed state from the current CPU and |
| * transitions the CPU out of TM mode. Hence we need to call |
| * tm_recheckpoint_new_task() (on the same task) to restore the |
| * checkpointed state back and the TM mode. |
| */ |
| __switch_to_tm(src); |
| tm_recheckpoint_new_task(src); |
| |
| *dst = *src; |
| |
| clear_task_ebb(dst); |
| |
| return 0; |
| } |
| |
| static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) |
| { |
| #ifdef CONFIG_PPC_STD_MMU_64 |
| unsigned long sp_vsid; |
| unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; |
| |
| if (radix_enabled()) |
| return; |
| |
| if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) |
| sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) |
| << SLB_VSID_SHIFT_1T; |
| else |
| sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) |
| << SLB_VSID_SHIFT; |
| sp_vsid |= SLB_VSID_KERNEL | llp; |
| p->thread.ksp_vsid = sp_vsid; |
| #endif |
| } |
| |
| /* |
| * Copy a thread.. |
| */ |
| |
| /* |
| * Copy architecture-specific thread state |
| */ |
| int copy_thread(unsigned long clone_flags, unsigned long usp, |
| unsigned long kthread_arg, struct task_struct *p) |
| { |
| struct pt_regs *childregs, *kregs; |
| extern void ret_from_fork(void); |
| extern void ret_from_kernel_thread(void); |
| void (*f)(void); |
| unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; |
| struct thread_info *ti = task_thread_info(p); |
| |
| klp_init_thread_info(ti); |
| |
| /* Copy registers */ |
| sp -= sizeof(struct pt_regs); |
| childregs = (struct pt_regs *) sp; |
| if (unlikely(p->flags & PF_KTHREAD)) { |
| /* kernel thread */ |
| memset(childregs, 0, sizeof(struct pt_regs)); |
| childregs->gpr[1] = sp + sizeof(struct pt_regs); |
| /* function */ |
| if (usp) |
| childregs->gpr[14] = ppc_function_entry((void *)usp); |
| #ifdef CONFIG_PPC64 |
| clear_tsk_thread_flag(p, TIF_32BIT); |
| childregs->softe = 1; |
| #endif |
| childregs->gpr[15] = kthread_arg; |
| p->thread.regs = NULL; /* no user register state */ |
| ti->flags |= _TIF_RESTOREALL; |
| f = ret_from_kernel_thread; |
| } else { |
| /* user thread */ |
| struct pt_regs *regs = current_pt_regs(); |
| CHECK_FULL_REGS(regs); |
| *childregs = *regs; |
| if (usp) |
| childregs->gpr[1] = usp; |
| p->thread.regs = childregs; |
| childregs->gpr[3] = 0; /* Result from fork() */ |
| if (clone_flags & CLONE_SETTLS) { |
| #ifdef CONFIG_PPC64 |
| if (!is_32bit_task()) |
| childregs->gpr[13] = childregs->gpr[6]; |
| else |
| #endif |
| childregs->gpr[2] = childregs->gpr[6]; |
| } |
| |
| f = ret_from_fork; |
| } |
| childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); |
| sp -= STACK_FRAME_OVERHEAD; |
| |
| /* |
| * The way this works is that at some point in the future |
| * some task will call _switch to switch to the new task. |
| * That will pop off the stack frame created below and start |
| * the new task running at ret_from_fork. The new task will |
| * do some house keeping and then return from the fork or clone |
| * system call, using the stack frame created above. |
| */ |
| ((unsigned long *)sp)[0] = 0; |
| sp -= sizeof(struct pt_regs); |
| kregs = (struct pt_regs *) sp; |
| sp -= STACK_FRAME_OVERHEAD; |
| p->thread.ksp = sp; |
| #ifdef CONFIG_PPC32 |
| p->thread.ksp_limit = (unsigned long)task_stack_page(p) + |
| _ALIGN_UP(sizeof(struct thread_info), 16); |
| #endif |
| #ifdef CONFIG_HAVE_HW_BREAKPOINT |
| p->thread.ptrace_bps[0] = NULL; |
| #endif |
| |
| p->thread.fp_save_area = NULL; |
| #ifdef CONFIG_ALTIVEC |
| p->thread.vr_save_area = NULL; |
| #endif |
| |
| setup_ksp_vsid(p, sp); |
| |
| #ifdef CONFIG_PPC64 |
| if (cpu_has_feature(CPU_FTR_DSCR)) { |
| p->thread.dscr_inherit = current->thread.dscr_inherit; |
| p->thread.dscr = mfspr(SPRN_DSCR); |
| } |
| if (cpu_has_feature(CPU_FTR_HAS_PPR)) |
| p->thread.ppr = INIT_PPR; |
| #endif |
| kregs->nip = ppc_function_entry(f); |
| return 0; |
| } |
| |
| /* |
| * Set up a thread for executing a new program |
| */ |
| void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) |
| { |
| #ifdef CONFIG_PPC64 |
| unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ |
| #endif |
| |
| /* |
| * If we exec out of a kernel thread then thread.regs will not be |
| * set. Do it now. |
| */ |
| if (!current->thread.regs) { |
| struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; |
| current->thread.regs = regs - 1; |
| } |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| /* |
| * Clear any transactional state, we're exec()ing. The cause is |
| * not important as there will never be a recheckpoint so it's not |
| * user visible. |
| */ |
| if (MSR_TM_SUSPENDED(mfmsr())) |
| tm_reclaim_current(0); |
| #endif |
| |
| memset(regs->gpr, 0, sizeof(regs->gpr)); |
| regs->ctr = 0; |
| regs->link = 0; |
| regs->xer = 0; |
| regs->ccr = 0; |
| regs->gpr[1] = sp; |
| |
| /* |
| * We have just cleared all the nonvolatile GPRs, so make |
| * FULL_REGS(regs) return true. This is necessary to allow |
| * ptrace to examine the thread immediately after exec. |
| */ |
| regs->trap &= ~1UL; |
| |
| #ifdef CONFIG_PPC32 |
| regs->mq = 0; |
| regs->nip = start; |
| regs->msr = MSR_USER; |
| #else |
| if (!is_32bit_task()) { |
| unsigned long entry; |
| |
| if (is_elf2_task()) { |
| /* Look ma, no function descriptors! */ |
| entry = start; |
| |
| /* |
| * Ulrich says: |
| * The latest iteration of the ABI requires that when |
| * calling a function (at its global entry point), |
| * the caller must ensure r12 holds the entry point |
| * address (so that the function can quickly |
| * establish addressability). |
| */ |
| regs->gpr[12] = start; |
| /* Make sure that's restored on entry to userspace. */ |
| set_thread_flag(TIF_RESTOREALL); |
| } else { |
| unsigned long toc; |
| |
| /* start is a relocated pointer to the function |
| * descriptor for the elf _start routine. The first |
| * entry in the function descriptor is the entry |
| * address of _start and the second entry is the TOC |
| * value we need to use. |
| */ |
| __get_user(entry, (unsigned long __user *)start); |
| __get_user(toc, (unsigned long __user *)start+1); |
| |
| /* Check whether the e_entry function descriptor entries |
| * need to be relocated before we can use them. |
| */ |
| if (load_addr != 0) { |
| entry += load_addr; |
| toc += load_addr; |
| } |
| regs->gpr[2] = toc; |
| } |
| regs->nip = entry; |
| regs->msr = MSR_USER64; |
| } else { |
| regs->nip = start; |
| regs->gpr[2] = 0; |
| regs->msr = MSR_USER32; |
| } |
| #endif |
| #ifdef CONFIG_VSX |
| current->thread.used_vsr = 0; |
| #endif |
| memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); |
| current->thread.fp_save_area = NULL; |
| #ifdef CONFIG_ALTIVEC |
| memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); |
| current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ |
| current->thread.vr_save_area = NULL; |
| current->thread.vrsave = 0; |
| current->thread.used_vr = 0; |
| #endif /* CONFIG_ALTIVEC */ |
| #ifdef CONFIG_SPE |
| memset(current->thread.evr, 0, sizeof(current->thread.evr)); |
| current->thread.acc = 0; |
| current->thread.spefscr = 0; |
| current->thread.used_spe = 0; |
| #endif /* CONFIG_SPE */ |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| if (cpu_has_feature(CPU_FTR_TM)) |
| regs->msr |= MSR_TM; |
| current->thread.tm_tfhar = 0; |
| current->thread.tm_texasr = 0; |
| current->thread.tm_tfiar = 0; |
| #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ |
| } |
| EXPORT_SYMBOL(start_thread); |
| |
| #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ |
| | PR_FP_EXC_RES | PR_FP_EXC_INV) |
| |
| int set_fpexc_mode(struct task_struct *tsk, unsigned int val) |
| { |
| struct pt_regs *regs = tsk->thread.regs; |
| |
| /* This is a bit hairy. If we are an SPE enabled processor |
| * (have embedded fp) we store the IEEE exception enable flags in |
| * fpexc_mode. fpexc_mode is also used for setting FP exception |
| * mode (asyn, precise, disabled) for 'Classic' FP. */ |
| if (val & PR_FP_EXC_SW_ENABLE) { |
| #ifdef CONFIG_SPE |
| if (cpu_has_feature(CPU_FTR_SPE)) { |
| /* |
| * When the sticky exception bits are set |
| * directly by userspace, it must call prctl |
| * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE |
| * in the existing prctl settings) or |
| * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in |
| * the bits being set). <fenv.h> functions |
| * saving and restoring the whole |
| * floating-point environment need to do so |
| * anyway to restore the prctl settings from |
| * the saved environment. |
| */ |
| tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); |
| tsk->thread.fpexc_mode = val & |
| (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); |
| return 0; |
| } else { |
| return -EINVAL; |
| } |
| #else |
| return -EINVAL; |
| #endif |
| } |
| |
| /* on a CONFIG_SPE this does not hurt us. The bits that |
| * __pack_fe01 use do not overlap with bits used for |
| * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits |
| * on CONFIG_SPE implementations are reserved so writing to |
| * them does not change anything */ |
| if (val > PR_FP_EXC_PRECISE) |
| return -EINVAL; |
| tsk->thread.fpexc_mode = __pack_fe01(val); |
| if (regs != NULL && (regs->msr & MSR_FP) != 0) |
| regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) |
| | tsk->thread.fpexc_mode; |
| return 0; |
| } |
| |
| int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) |
| { |
| unsigned int val; |
| |
| if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) |
| #ifdef CONFIG_SPE |
| if (cpu_has_feature(CPU_FTR_SPE)) { |
| /* |
| * When the sticky exception bits are set |
| * directly by userspace, it must call prctl |
| * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE |
| * in the existing prctl settings) or |
| * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in |
| * the bits being set). <fenv.h> functions |
| * saving and restoring the whole |
| * floating-point environment need to do so |
| * anyway to restore the prctl settings from |
| * the saved environment. |
| */ |
| tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); |
| val = tsk->thread.fpexc_mode; |
| } else |
| return -EINVAL; |
| #else |
| return -EINVAL; |
| #endif |
| else |
| val = __unpack_fe01(tsk->thread.fpexc_mode); |
| return put_user(val, (unsigned int __user *) adr); |
| } |
| |
| int set_endian(struct task_struct *tsk, unsigned int val) |
| { |
| struct pt_regs *regs = tsk->thread.regs; |
| |
| if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || |
| (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) |
| return -EINVAL; |
| |
| if (regs == NULL) |
| return -EINVAL; |
| |
| if (val == PR_ENDIAN_BIG) |
| regs->msr &= ~MSR_LE; |
| else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) |
| regs->msr |= MSR_LE; |
| else |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| int get_endian(struct task_struct *tsk, unsigned long adr) |
| { |
| struct pt_regs *regs = tsk->thread.regs; |
| unsigned int val; |
| |
| if (!cpu_has_feature(CPU_FTR_PPC_LE) && |
| !cpu_has_feature(CPU_FTR_REAL_LE)) |
| return -EINVAL; |
| |
| if (regs == NULL) |
| return -EINVAL; |
| |
| if (regs->msr & MSR_LE) { |
| if (cpu_has_feature(CPU_FTR_REAL_LE)) |
| val = PR_ENDIAN_LITTLE; |
| else |
| val = PR_ENDIAN_PPC_LITTLE; |
| } else |
| val = PR_ENDIAN_BIG; |
| |
| return put_user(val, (unsigned int __user *)adr); |
| } |
| |
| int set_unalign_ctl(struct task_struct *tsk, unsigned int val) |
| { |
| tsk->thread.align_ctl = val; |
| return 0; |
| } |
| |
| int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) |
| { |
| return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); |
| } |
| |
| static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, |
| unsigned long nbytes) |
| { |
| unsigned long stack_page; |
| unsigned long cpu = task_cpu(p); |
| |
| /* |
| * Avoid crashing if the stack has overflowed and corrupted |
| * task_cpu(p), which is in the thread_info struct. |
| */ |
| if (cpu < NR_CPUS && cpu_possible(cpu)) { |
| stack_page = (unsigned long) hardirq_ctx[cpu]; |
| if (sp >= stack_page + sizeof(struct thread_struct) |
| && sp <= stack_page + THREAD_SIZE - nbytes) |
| return 1; |
| |
| stack_page = (unsigned long) softirq_ctx[cpu]; |
| if (sp >= stack_page + sizeof(struct thread_struct) |
| && sp <= stack_page + THREAD_SIZE - nbytes) |
| return 1; |
| } |
| return 0; |
| } |
| |
| int validate_sp(unsigned long sp, struct task_struct *p, |
| unsigned long nbytes) |
| { |
| unsigned long stack_page = (unsigned long)task_stack_page(p); |
| |
| if (sp >= stack_page + sizeof(struct thread_struct) |
| && sp <= stack_page + THREAD_SIZE - nbytes) |
| return 1; |
| |
| return valid_irq_stack(sp, p, nbytes); |
| } |
| |
| EXPORT_SYMBOL(validate_sp); |
| |
| unsigned long get_wchan(struct task_struct *p) |
| { |
| unsigned long ip, sp; |
| int count = 0; |
| |
| if (!p || p == current || p->state == TASK_RUNNING) |
| return 0; |
| |
| sp = p->thread.ksp; |
| if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) |
| return 0; |
| |
| do { |
| sp = *(unsigned long *)sp; |
| if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) |
| return 0; |
| if (count > 0) { |
| ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; |
| if (!in_sched_functions(ip)) |
| return ip; |
| } |
| } while (count++ < 16); |
| return 0; |
| } |
| |
| static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; |
| |
| void show_stack(struct task_struct *tsk, unsigned long *stack) |
| { |
| unsigned long sp, ip, lr, newsp; |
| int count = 0; |
| int firstframe = 1; |
| #ifdef CONFIG_FUNCTION_GRAPH_TRACER |
| int curr_frame = current->curr_ret_stack; |
| extern void return_to_handler(void); |
| unsigned long rth = (unsigned long)return_to_handler; |
| #endif |
| |
| sp = (unsigned long) stack; |
| if (tsk == NULL) |
| tsk = current; |
| if (sp == 0) { |
| if (tsk == current) |
| sp = current_stack_pointer(); |
| else |
| sp = tsk->thread.ksp; |
| } |
| |
| lr = 0; |
| printk("Call Trace:\n"); |
| do { |
| if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) |
| return; |
| |
| stack = (unsigned long *) sp; |
| newsp = stack[0]; |
| ip = stack[STACK_FRAME_LR_SAVE]; |
| if (!firstframe || ip != lr) { |
| printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); |
| #ifdef CONFIG_FUNCTION_GRAPH_TRACER |
| if ((ip == rth) && curr_frame >= 0) { |
| printk(" (%pS)", |
| (void *)current->ret_stack[curr_frame].ret); |
| curr_frame--; |
| } |
| #endif |
| if (firstframe) |
| printk(" (unreliable)"); |
| printk("\n"); |
| } |
| firstframe = 0; |
| |
| /* |
| * See if this is an exception frame. |
| * We look for the "regshere" marker in the current frame. |
| */ |
| if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) |
| && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { |
| struct pt_regs *regs = (struct pt_regs *) |
| (sp + STACK_FRAME_OVERHEAD); |
| lr = regs->link; |
| printk("--- interrupt: %lx at %pS\n LR = %pS\n", |
| regs->trap, (void *)regs->nip, (void *)lr); |
| firstframe = 1; |
| } |
| |
| sp = newsp; |
| } while (count++ < kstack_depth_to_print); |
| } |
| |
| #ifdef CONFIG_PPC64 |
| /* Called with hard IRQs off */ |
| void notrace __ppc64_runlatch_on(void) |
| { |
| struct thread_info *ti = current_thread_info(); |
| unsigned long ctrl; |
| |
| ctrl = mfspr(SPRN_CTRLF); |
| ctrl |= CTRL_RUNLATCH; |
| mtspr(SPRN_CTRLT, ctrl); |
| |
| ti->local_flags |= _TLF_RUNLATCH; |
| } |
| |
| /* Called with hard IRQs off */ |
| void notrace __ppc64_runlatch_off(void) |
| { |
| struct thread_info *ti = current_thread_info(); |
| unsigned long ctrl; |
| |
| ti->local_flags &= ~_TLF_RUNLATCH; |
| |
| ctrl = mfspr(SPRN_CTRLF); |
| ctrl &= ~CTRL_RUNLATCH; |
| mtspr(SPRN_CTRLT, ctrl); |
| } |
| #endif /* CONFIG_PPC64 */ |
| |
| unsigned long arch_align_stack(unsigned long sp) |
| { |
| if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) |
| sp -= get_random_int() & ~PAGE_MASK; |
| return sp & ~0xf; |
| } |
| |
| static inline unsigned long brk_rnd(void) |
| { |
| unsigned long rnd = 0; |
| |
| /* 8MB for 32bit, 1GB for 64bit */ |
| if (is_32bit_task()) |
| rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); |
| else |
| rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); |
| |
| return rnd << PAGE_SHIFT; |
| } |
| |
| unsigned long arch_randomize_brk(struct mm_struct *mm) |
| { |
| unsigned long base = mm->brk; |
| unsigned long ret; |
| |
| #ifdef CONFIG_PPC_STD_MMU_64 |
| /* |
| * If we are using 1TB segments and we are allowed to randomise |
| * the heap, we can put it above 1TB so it is backed by a 1TB |
| * segment. Otherwise the heap will be in the bottom 1TB |
| * which always uses 256MB segments and this may result in a |
| * performance penalty. We don't need to worry about radix. For |
| * radix, mmu_highuser_ssize remains unchanged from 256MB. |
| */ |
| if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) |
| base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); |
| #endif |
| |
| ret = PAGE_ALIGN(base + brk_rnd()); |
| |
| if (ret < mm->brk) |
| return mm->brk; |
| |
| return ret; |
| } |
| |