| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright 2020 Xillybus Ltd, http://xillybus.com |
| * |
| * Driver for the XillyUSB FPGA/host framework. |
| * |
| * This driver interfaces with a special IP core in an FPGA, setting up |
| * a pipe between a hardware FIFO in the programmable logic and a device |
| * file in the host. The number of such pipes and their attributes are |
| * set up on the logic. This driver detects these automatically and |
| * creates the device files accordingly. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/slab.h> |
| #include <linux/list.h> |
| #include <linux/device.h> |
| #include <linux/module.h> |
| #include <asm/byteorder.h> |
| #include <linux/io.h> |
| #include <linux/interrupt.h> |
| #include <linux/sched.h> |
| #include <linux/fs.h> |
| #include <linux/spinlock.h> |
| #include <linux/mutex.h> |
| #include <linux/workqueue.h> |
| #include <linux/crc32.h> |
| #include <linux/poll.h> |
| #include <linux/delay.h> |
| #include <linux/usb.h> |
| |
| #include "xillybus_class.h" |
| |
| MODULE_DESCRIPTION("Driver for XillyUSB FPGA IP Core"); |
| MODULE_AUTHOR("Eli Billauer, Xillybus Ltd."); |
| MODULE_ALIAS("xillyusb"); |
| MODULE_LICENSE("GPL v2"); |
| |
| #define XILLY_RX_TIMEOUT (10 * HZ / 1000) |
| #define XILLY_RESPONSE_TIMEOUT (500 * HZ / 1000) |
| |
| #define BUF_SIZE_ORDER 4 |
| #define BUFNUM 8 |
| #define LOG2_IDT_FIFO_SIZE 16 |
| #define LOG2_INITIAL_FIFO_BUF_SIZE 16 |
| |
| #define MSG_EP_NUM 1 |
| #define IN_EP_NUM 1 |
| |
| static const char xillyname[] = "xillyusb"; |
| |
| static unsigned int fifo_buf_order; |
| |
| #define USB_VENDOR_ID_XILINX 0x03fd |
| #define USB_VENDOR_ID_ALTERA 0x09fb |
| |
| #define USB_PRODUCT_ID_XILLYUSB 0xebbe |
| |
| static const struct usb_device_id xillyusb_table[] = { |
| { USB_DEVICE(USB_VENDOR_ID_XILINX, USB_PRODUCT_ID_XILLYUSB) }, |
| { USB_DEVICE(USB_VENDOR_ID_ALTERA, USB_PRODUCT_ID_XILLYUSB) }, |
| { } |
| }; |
| |
| MODULE_DEVICE_TABLE(usb, xillyusb_table); |
| |
| struct xillyusb_dev; |
| |
| struct xillyfifo { |
| unsigned int bufsize; /* In bytes, always a power of 2 */ |
| unsigned int bufnum; |
| unsigned int size; /* Lazy: Equals bufsize * bufnum */ |
| unsigned int buf_order; |
| |
| int fill; /* Number of bytes in the FIFO */ |
| spinlock_t lock; |
| wait_queue_head_t waitq; |
| |
| unsigned int readpos; |
| unsigned int readbuf; |
| unsigned int writepos; |
| unsigned int writebuf; |
| char **mem; |
| }; |
| |
| struct xillyusb_channel; |
| |
| struct xillyusb_endpoint { |
| struct xillyusb_dev *xdev; |
| |
| struct mutex ep_mutex; /* serialize operations on endpoint */ |
| |
| struct list_head buffers; |
| struct list_head filled_buffers; |
| spinlock_t buffers_lock; /* protect these two lists */ |
| |
| unsigned int order; |
| unsigned int buffer_size; |
| |
| unsigned int fill_mask; |
| |
| int outstanding_urbs; |
| |
| struct usb_anchor anchor; |
| |
| struct xillyfifo fifo; |
| |
| struct work_struct workitem; |
| |
| bool shutting_down; |
| bool drained; |
| bool wake_on_drain; |
| |
| u8 ep_num; |
| }; |
| |
| struct xillyusb_channel { |
| struct xillyusb_dev *xdev; |
| |
| struct xillyfifo *in_fifo; |
| struct xillyusb_endpoint *out_ep; |
| struct mutex lock; /* protect @out_ep, @in_fifo, bit fields below */ |
| |
| struct mutex in_mutex; /* serialize fops on FPGA to host stream */ |
| struct mutex out_mutex; /* serialize fops on host to FPGA stream */ |
| wait_queue_head_t flushq; |
| |
| int chan_idx; |
| |
| u32 in_consumed_bytes; |
| u32 in_current_checkpoint; |
| u32 out_bytes; |
| |
| unsigned int in_log2_element_size; |
| unsigned int out_log2_element_size; |
| unsigned int in_log2_fifo_size; |
| unsigned int out_log2_fifo_size; |
| |
| unsigned int read_data_ok; /* EOF not arrived (yet) */ |
| unsigned int poll_used; |
| unsigned int flushing; |
| unsigned int flushed; |
| unsigned int canceled; |
| |
| /* Bit fields protected by @lock except for initialization */ |
| unsigned readable:1; |
| unsigned writable:1; |
| unsigned open_for_read:1; |
| unsigned open_for_write:1; |
| unsigned in_synchronous:1; |
| unsigned out_synchronous:1; |
| unsigned in_seekable:1; |
| unsigned out_seekable:1; |
| }; |
| |
| struct xillybuffer { |
| struct list_head entry; |
| struct xillyusb_endpoint *ep; |
| void *buf; |
| unsigned int len; |
| }; |
| |
| struct xillyusb_dev { |
| struct xillyusb_channel *channels; |
| |
| struct usb_device *udev; |
| struct device *dev; /* For dev_err() and such */ |
| struct kref kref; |
| struct workqueue_struct *workq; |
| |
| int error; |
| spinlock_t error_lock; /* protect @error */ |
| struct work_struct wakeup_workitem; |
| |
| int num_channels; |
| |
| struct xillyusb_endpoint *msg_ep; |
| struct xillyusb_endpoint *in_ep; |
| |
| struct mutex msg_mutex; /* serialize opcode transmission */ |
| int in_bytes_left; |
| int leftover_chan_num; |
| unsigned int in_counter; |
| struct mutex process_in_mutex; /* synchronize wakeup_all() */ |
| }; |
| |
| /* FPGA to host opcodes */ |
| enum { |
| OPCODE_DATA = 0, |
| OPCODE_QUIESCE_ACK = 1, |
| OPCODE_EOF = 2, |
| OPCODE_REACHED_CHECKPOINT = 3, |
| OPCODE_CANCELED_CHECKPOINT = 4, |
| }; |
| |
| /* Host to FPGA opcodes */ |
| enum { |
| OPCODE_QUIESCE = 0, |
| OPCODE_REQ_IDT = 1, |
| OPCODE_SET_CHECKPOINT = 2, |
| OPCODE_CLOSE = 3, |
| OPCODE_SET_PUSH = 4, |
| OPCODE_UPDATE_PUSH = 5, |
| OPCODE_CANCEL_CHECKPOINT = 6, |
| OPCODE_SET_ADDR = 7, |
| }; |
| |
| /* |
| * fifo_write() and fifo_read() are NOT reentrant (i.e. concurrent multiple |
| * calls to each on the same FIFO is not allowed) however it's OK to have |
| * threads calling each of the two functions once on the same FIFO, and |
| * at the same time. |
| */ |
| |
| static int fifo_write(struct xillyfifo *fifo, |
| const void *data, unsigned int len, |
| int (*copier)(void *, const void *, int)) |
| { |
| unsigned int done = 0; |
| unsigned int todo = len; |
| unsigned int nmax; |
| unsigned int writepos = fifo->writepos; |
| unsigned int writebuf = fifo->writebuf; |
| unsigned long flags; |
| int rc; |
| |
| nmax = fifo->size - READ_ONCE(fifo->fill); |
| |
| while (1) { |
| unsigned int nrail = fifo->bufsize - writepos; |
| unsigned int n = min(todo, nmax); |
| |
| if (n == 0) { |
| spin_lock_irqsave(&fifo->lock, flags); |
| fifo->fill += done; |
| spin_unlock_irqrestore(&fifo->lock, flags); |
| |
| fifo->writepos = writepos; |
| fifo->writebuf = writebuf; |
| |
| return done; |
| } |
| |
| if (n > nrail) |
| n = nrail; |
| |
| rc = (*copier)(fifo->mem[writebuf] + writepos, data + done, n); |
| |
| if (rc) |
| return rc; |
| |
| done += n; |
| todo -= n; |
| |
| writepos += n; |
| nmax -= n; |
| |
| if (writepos == fifo->bufsize) { |
| writepos = 0; |
| writebuf++; |
| |
| if (writebuf == fifo->bufnum) |
| writebuf = 0; |
| } |
| } |
| } |
| |
| static int fifo_read(struct xillyfifo *fifo, |
| void *data, unsigned int len, |
| int (*copier)(void *, const void *, int)) |
| { |
| unsigned int done = 0; |
| unsigned int todo = len; |
| unsigned int fill; |
| unsigned int readpos = fifo->readpos; |
| unsigned int readbuf = fifo->readbuf; |
| unsigned long flags; |
| int rc; |
| |
| /* |
| * The spinlock here is necessary, because otherwise fifo->fill |
| * could have been increased by fifo_write() after writing data |
| * to the buffer, but this data would potentially not have been |
| * visible on this thread at the time the updated fifo->fill was. |
| * That could lead to reading invalid data. |
| */ |
| |
| spin_lock_irqsave(&fifo->lock, flags); |
| fill = fifo->fill; |
| spin_unlock_irqrestore(&fifo->lock, flags); |
| |
| while (1) { |
| unsigned int nrail = fifo->bufsize - readpos; |
| unsigned int n = min(todo, fill); |
| |
| if (n == 0) { |
| spin_lock_irqsave(&fifo->lock, flags); |
| fifo->fill -= done; |
| spin_unlock_irqrestore(&fifo->lock, flags); |
| |
| fifo->readpos = readpos; |
| fifo->readbuf = readbuf; |
| |
| return done; |
| } |
| |
| if (n > nrail) |
| n = nrail; |
| |
| rc = (*copier)(data + done, fifo->mem[readbuf] + readpos, n); |
| |
| if (rc) |
| return rc; |
| |
| done += n; |
| todo -= n; |
| |
| readpos += n; |
| fill -= n; |
| |
| if (readpos == fifo->bufsize) { |
| readpos = 0; |
| readbuf++; |
| |
| if (readbuf == fifo->bufnum) |
| readbuf = 0; |
| } |
| } |
| } |
| |
| /* |
| * These three wrapper functions are used as the @copier argument to |
| * fifo_write() and fifo_read(), so that they can work directly with |
| * user memory as well. |
| */ |
| |
| static int xilly_copy_from_user(void *dst, const void *src, int n) |
| { |
| if (copy_from_user(dst, (const void __user *)src, n)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int xilly_copy_to_user(void *dst, const void *src, int n) |
| { |
| if (copy_to_user((void __user *)dst, src, n)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int xilly_memcpy(void *dst, const void *src, int n) |
| { |
| memcpy(dst, src, n); |
| |
| return 0; |
| } |
| |
| static int fifo_init(struct xillyfifo *fifo, |
| unsigned int log2_size) |
| { |
| unsigned int log2_bufnum; |
| unsigned int buf_order; |
| int i; |
| |
| unsigned int log2_fifo_buf_size; |
| |
| retry: |
| log2_fifo_buf_size = fifo_buf_order + PAGE_SHIFT; |
| |
| if (log2_size > log2_fifo_buf_size) { |
| log2_bufnum = log2_size - log2_fifo_buf_size; |
| buf_order = fifo_buf_order; |
| fifo->bufsize = 1 << log2_fifo_buf_size; |
| } else { |
| log2_bufnum = 0; |
| buf_order = (log2_size > PAGE_SHIFT) ? |
| log2_size - PAGE_SHIFT : 0; |
| fifo->bufsize = 1 << log2_size; |
| } |
| |
| fifo->bufnum = 1 << log2_bufnum; |
| fifo->size = fifo->bufnum * fifo->bufsize; |
| fifo->buf_order = buf_order; |
| |
| fifo->mem = kmalloc_array(fifo->bufnum, sizeof(void *), GFP_KERNEL); |
| |
| if (!fifo->mem) |
| return -ENOMEM; |
| |
| for (i = 0; i < fifo->bufnum; i++) { |
| fifo->mem[i] = (void *) |
| __get_free_pages(GFP_KERNEL, buf_order); |
| |
| if (!fifo->mem[i]) |
| goto memfail; |
| } |
| |
| fifo->fill = 0; |
| fifo->readpos = 0; |
| fifo->readbuf = 0; |
| fifo->writepos = 0; |
| fifo->writebuf = 0; |
| spin_lock_init(&fifo->lock); |
| init_waitqueue_head(&fifo->waitq); |
| return 0; |
| |
| memfail: |
| for (i--; i >= 0; i--) |
| free_pages((unsigned long)fifo->mem[i], buf_order); |
| |
| kfree(fifo->mem); |
| fifo->mem = NULL; |
| |
| if (fifo_buf_order) { |
| fifo_buf_order--; |
| goto retry; |
| } else { |
| return -ENOMEM; |
| } |
| } |
| |
| static void fifo_mem_release(struct xillyfifo *fifo) |
| { |
| int i; |
| |
| if (!fifo->mem) |
| return; |
| |
| for (i = 0; i < fifo->bufnum; i++) |
| free_pages((unsigned long)fifo->mem[i], fifo->buf_order); |
| |
| kfree(fifo->mem); |
| } |
| |
| /* |
| * When endpoint_quiesce() returns, the endpoint has no URBs submitted, |
| * won't accept any new URB submissions, and its related work item doesn't |
| * and won't run anymore. |
| */ |
| |
| static void endpoint_quiesce(struct xillyusb_endpoint *ep) |
| { |
| mutex_lock(&ep->ep_mutex); |
| ep->shutting_down = true; |
| mutex_unlock(&ep->ep_mutex); |
| |
| usb_kill_anchored_urbs(&ep->anchor); |
| cancel_work_sync(&ep->workitem); |
| } |
| |
| /* |
| * Note that endpoint_dealloc() also frees fifo memory (if allocated), even |
| * though endpoint_alloc doesn't allocate that memory. |
| */ |
| |
| static void endpoint_dealloc(struct xillyusb_endpoint *ep) |
| { |
| struct list_head *this, *next; |
| |
| fifo_mem_release(&ep->fifo); |
| |
| /* Join @filled_buffers with @buffers to free these entries too */ |
| list_splice(&ep->filled_buffers, &ep->buffers); |
| |
| list_for_each_safe(this, next, &ep->buffers) { |
| struct xillybuffer *xb = |
| list_entry(this, struct xillybuffer, entry); |
| |
| free_pages((unsigned long)xb->buf, ep->order); |
| kfree(xb); |
| } |
| |
| kfree(ep); |
| } |
| |
| static struct xillyusb_endpoint |
| *endpoint_alloc(struct xillyusb_dev *xdev, |
| u8 ep_num, |
| void (*work)(struct work_struct *), |
| unsigned int order, |
| int bufnum) |
| { |
| int i; |
| |
| struct xillyusb_endpoint *ep; |
| |
| ep = kzalloc(sizeof(*ep), GFP_KERNEL); |
| |
| if (!ep) |
| return NULL; |
| |
| INIT_LIST_HEAD(&ep->buffers); |
| INIT_LIST_HEAD(&ep->filled_buffers); |
| |
| spin_lock_init(&ep->buffers_lock); |
| mutex_init(&ep->ep_mutex); |
| |
| init_usb_anchor(&ep->anchor); |
| INIT_WORK(&ep->workitem, work); |
| |
| ep->order = order; |
| ep->buffer_size = 1 << (PAGE_SHIFT + order); |
| ep->outstanding_urbs = 0; |
| ep->drained = true; |
| ep->wake_on_drain = false; |
| ep->xdev = xdev; |
| ep->ep_num = ep_num; |
| ep->shutting_down = false; |
| |
| for (i = 0; i < bufnum; i++) { |
| struct xillybuffer *xb; |
| unsigned long addr; |
| |
| xb = kzalloc(sizeof(*xb), GFP_KERNEL); |
| |
| if (!xb) { |
| endpoint_dealloc(ep); |
| return NULL; |
| } |
| |
| addr = __get_free_pages(GFP_KERNEL, order); |
| |
| if (!addr) { |
| kfree(xb); |
| endpoint_dealloc(ep); |
| return NULL; |
| } |
| |
| xb->buf = (void *)addr; |
| xb->ep = ep; |
| list_add_tail(&xb->entry, &ep->buffers); |
| } |
| return ep; |
| } |
| |
| static void cleanup_dev(struct kref *kref) |
| { |
| struct xillyusb_dev *xdev = |
| container_of(kref, struct xillyusb_dev, kref); |
| |
| if (xdev->in_ep) |
| endpoint_dealloc(xdev->in_ep); |
| |
| if (xdev->msg_ep) |
| endpoint_dealloc(xdev->msg_ep); |
| |
| if (xdev->workq) |
| destroy_workqueue(xdev->workq); |
| |
| kfree(xdev->channels); /* Argument may be NULL, and that's fine */ |
| kfree(xdev); |
| } |
| |
| /* |
| * @process_in_mutex is taken to ensure that bulk_in_work() won't call |
| * process_bulk_in() after wakeup_all()'s execution: The latter zeroes all |
| * @read_data_ok entries, which will make process_bulk_in() report false |
| * errors if executed. The mechanism relies on that xdev->error is assigned |
| * a non-zero value by report_io_error() prior to queueing wakeup_all(), |
| * which prevents bulk_in_work() from calling process_bulk_in(). |
| * |
| * The fact that wakeup_all() and bulk_in_work() are queued on the same |
| * workqueue makes their concurrent execution very unlikely, however the |
| * kernel's API doesn't seem to ensure this strictly. |
| */ |
| |
| static void wakeup_all(struct work_struct *work) |
| { |
| int i; |
| struct xillyusb_dev *xdev = container_of(work, struct xillyusb_dev, |
| wakeup_workitem); |
| |
| mutex_lock(&xdev->process_in_mutex); |
| |
| for (i = 0; i < xdev->num_channels; i++) { |
| struct xillyusb_channel *chan = &xdev->channels[i]; |
| |
| mutex_lock(&chan->lock); |
| |
| if (chan->in_fifo) { |
| /* |
| * Fake an EOF: Even if such arrives, it won't be |
| * processed. |
| */ |
| chan->read_data_ok = 0; |
| wake_up_interruptible(&chan->in_fifo->waitq); |
| } |
| |
| if (chan->out_ep) |
| wake_up_interruptible(&chan->out_ep->fifo.waitq); |
| |
| mutex_unlock(&chan->lock); |
| |
| wake_up_interruptible(&chan->flushq); |
| } |
| |
| mutex_unlock(&xdev->process_in_mutex); |
| |
| wake_up_interruptible(&xdev->msg_ep->fifo.waitq); |
| |
| kref_put(&xdev->kref, cleanup_dev); |
| } |
| |
| static void report_io_error(struct xillyusb_dev *xdev, |
| int errcode) |
| { |
| unsigned long flags; |
| bool do_once = false; |
| |
| spin_lock_irqsave(&xdev->error_lock, flags); |
| if (!xdev->error) { |
| xdev->error = errcode; |
| do_once = true; |
| } |
| spin_unlock_irqrestore(&xdev->error_lock, flags); |
| |
| if (do_once) { |
| kref_get(&xdev->kref); /* xdev is used by work item */ |
| queue_work(xdev->workq, &xdev->wakeup_workitem); |
| } |
| } |
| |
| /* |
| * safely_assign_in_fifo() changes the value of chan->in_fifo and ensures |
| * the previous pointer is never used after its return. |
| */ |
| |
| static void safely_assign_in_fifo(struct xillyusb_channel *chan, |
| struct xillyfifo *fifo) |
| { |
| mutex_lock(&chan->lock); |
| chan->in_fifo = fifo; |
| mutex_unlock(&chan->lock); |
| |
| flush_work(&chan->xdev->in_ep->workitem); |
| } |
| |
| static void bulk_in_completer(struct urb *urb) |
| { |
| struct xillybuffer *xb = urb->context; |
| struct xillyusb_endpoint *ep = xb->ep; |
| unsigned long flags; |
| |
| if (urb->status) { |
| if (!(urb->status == -ENOENT || |
| urb->status == -ECONNRESET || |
| urb->status == -ESHUTDOWN)) |
| report_io_error(ep->xdev, -EIO); |
| |
| spin_lock_irqsave(&ep->buffers_lock, flags); |
| list_add_tail(&xb->entry, &ep->buffers); |
| ep->outstanding_urbs--; |
| spin_unlock_irqrestore(&ep->buffers_lock, flags); |
| |
| return; |
| } |
| |
| xb->len = urb->actual_length; |
| |
| spin_lock_irqsave(&ep->buffers_lock, flags); |
| list_add_tail(&xb->entry, &ep->filled_buffers); |
| spin_unlock_irqrestore(&ep->buffers_lock, flags); |
| |
| if (!ep->shutting_down) |
| queue_work(ep->xdev->workq, &ep->workitem); |
| } |
| |
| static void bulk_out_completer(struct urb *urb) |
| { |
| struct xillybuffer *xb = urb->context; |
| struct xillyusb_endpoint *ep = xb->ep; |
| unsigned long flags; |
| |
| if (urb->status && |
| (!(urb->status == -ENOENT || |
| urb->status == -ECONNRESET || |
| urb->status == -ESHUTDOWN))) |
| report_io_error(ep->xdev, -EIO); |
| |
| spin_lock_irqsave(&ep->buffers_lock, flags); |
| list_add_tail(&xb->entry, &ep->buffers); |
| ep->outstanding_urbs--; |
| spin_unlock_irqrestore(&ep->buffers_lock, flags); |
| |
| if (!ep->shutting_down) |
| queue_work(ep->xdev->workq, &ep->workitem); |
| } |
| |
| static void try_queue_bulk_in(struct xillyusb_endpoint *ep) |
| { |
| struct xillyusb_dev *xdev = ep->xdev; |
| struct xillybuffer *xb; |
| struct urb *urb; |
| |
| int rc; |
| unsigned long flags; |
| unsigned int bufsize = ep->buffer_size; |
| |
| mutex_lock(&ep->ep_mutex); |
| |
| if (ep->shutting_down || xdev->error) |
| goto done; |
| |
| while (1) { |
| spin_lock_irqsave(&ep->buffers_lock, flags); |
| |
| if (list_empty(&ep->buffers)) { |
| spin_unlock_irqrestore(&ep->buffers_lock, flags); |
| goto done; |
| } |
| |
| xb = list_first_entry(&ep->buffers, struct xillybuffer, entry); |
| list_del(&xb->entry); |
| ep->outstanding_urbs++; |
| |
| spin_unlock_irqrestore(&ep->buffers_lock, flags); |
| |
| urb = usb_alloc_urb(0, GFP_KERNEL); |
| if (!urb) { |
| report_io_error(xdev, -ENOMEM); |
| goto relist; |
| } |
| |
| usb_fill_bulk_urb(urb, xdev->udev, |
| usb_rcvbulkpipe(xdev->udev, ep->ep_num), |
| xb->buf, bufsize, bulk_in_completer, xb); |
| |
| usb_anchor_urb(urb, &ep->anchor); |
| |
| rc = usb_submit_urb(urb, GFP_KERNEL); |
| |
| if (rc) { |
| report_io_error(xdev, (rc == -ENOMEM) ? -ENOMEM : |
| -EIO); |
| goto unanchor; |
| } |
| |
| usb_free_urb(urb); /* This just decrements reference count */ |
| } |
| |
| unanchor: |
| usb_unanchor_urb(urb); |
| usb_free_urb(urb); |
| |
| relist: |
| spin_lock_irqsave(&ep->buffers_lock, flags); |
| list_add_tail(&xb->entry, &ep->buffers); |
| ep->outstanding_urbs--; |
| spin_unlock_irqrestore(&ep->buffers_lock, flags); |
| |
| done: |
| mutex_unlock(&ep->ep_mutex); |
| } |
| |
| static void try_queue_bulk_out(struct xillyusb_endpoint *ep) |
| { |
| struct xillyfifo *fifo = &ep->fifo; |
| struct xillyusb_dev *xdev = ep->xdev; |
| struct xillybuffer *xb; |
| struct urb *urb; |
| |
| int rc; |
| unsigned int fill; |
| unsigned long flags; |
| bool do_wake = false; |
| |
| mutex_lock(&ep->ep_mutex); |
| |
| if (ep->shutting_down || xdev->error) |
| goto done; |
| |
| fill = READ_ONCE(fifo->fill) & ep->fill_mask; |
| |
| while (1) { |
| int count; |
| unsigned int max_read; |
| |
| spin_lock_irqsave(&ep->buffers_lock, flags); |
| |
| /* |
| * Race conditions might have the FIFO filled while the |
| * endpoint is marked as drained here. That doesn't matter, |
| * because the sole purpose of @drained is to ensure that |
| * certain data has been sent on the USB channel before |
| * shutting it down. Hence knowing that the FIFO appears |
| * to be empty with no outstanding URBs at some moment |
| * is good enough. |
| */ |
| |
| if (!fill) { |
| ep->drained = !ep->outstanding_urbs; |
| if (ep->drained && ep->wake_on_drain) |
| do_wake = true; |
| |
| spin_unlock_irqrestore(&ep->buffers_lock, flags); |
| goto done; |
| } |
| |
| ep->drained = false; |
| |
| if ((fill < ep->buffer_size && ep->outstanding_urbs) || |
| list_empty(&ep->buffers)) { |
| spin_unlock_irqrestore(&ep->buffers_lock, flags); |
| goto done; |
| } |
| |
| xb = list_first_entry(&ep->buffers, struct xillybuffer, entry); |
| list_del(&xb->entry); |
| ep->outstanding_urbs++; |
| |
| spin_unlock_irqrestore(&ep->buffers_lock, flags); |
| |
| max_read = min(fill, ep->buffer_size); |
| |
| count = fifo_read(&ep->fifo, xb->buf, max_read, xilly_memcpy); |
| |
| /* |
| * xilly_memcpy always returns 0 => fifo_read can't fail => |
| * count > 0 |
| */ |
| |
| urb = usb_alloc_urb(0, GFP_KERNEL); |
| if (!urb) { |
| report_io_error(xdev, -ENOMEM); |
| goto relist; |
| } |
| |
| usb_fill_bulk_urb(urb, xdev->udev, |
| usb_sndbulkpipe(xdev->udev, ep->ep_num), |
| xb->buf, count, bulk_out_completer, xb); |
| |
| usb_anchor_urb(urb, &ep->anchor); |
| |
| rc = usb_submit_urb(urb, GFP_KERNEL); |
| |
| if (rc) { |
| report_io_error(xdev, (rc == -ENOMEM) ? -ENOMEM : |
| -EIO); |
| goto unanchor; |
| } |
| |
| usb_free_urb(urb); /* This just decrements reference count */ |
| |
| fill -= count; |
| do_wake = true; |
| } |
| |
| unanchor: |
| usb_unanchor_urb(urb); |
| usb_free_urb(urb); |
| |
| relist: |
| spin_lock_irqsave(&ep->buffers_lock, flags); |
| list_add_tail(&xb->entry, &ep->buffers); |
| ep->outstanding_urbs--; |
| spin_unlock_irqrestore(&ep->buffers_lock, flags); |
| |
| done: |
| mutex_unlock(&ep->ep_mutex); |
| |
| if (do_wake) |
| wake_up_interruptible(&fifo->waitq); |
| } |
| |
| static void bulk_out_work(struct work_struct *work) |
| { |
| struct xillyusb_endpoint *ep = container_of(work, |
| struct xillyusb_endpoint, |
| workitem); |
| try_queue_bulk_out(ep); |
| } |
| |
| static int process_in_opcode(struct xillyusb_dev *xdev, |
| int opcode, |
| int chan_num) |
| { |
| struct xillyusb_channel *chan; |
| struct device *dev = xdev->dev; |
| int chan_idx = chan_num >> 1; |
| |
| if (chan_idx >= xdev->num_channels) { |
| dev_err(dev, "Received illegal channel ID %d from FPGA\n", |
| chan_num); |
| return -EIO; |
| } |
| |
| chan = &xdev->channels[chan_idx]; |
| |
| switch (opcode) { |
| case OPCODE_EOF: |
| if (!chan->read_data_ok) { |
| dev_err(dev, "Received unexpected EOF for channel %d\n", |
| chan_num); |
| return -EIO; |
| } |
| |
| /* |
| * A write memory barrier ensures that the FIFO's fill level |
| * is visible before read_data_ok turns zero, so the data in |
| * the FIFO isn't missed by the consumer. |
| */ |
| smp_wmb(); |
| WRITE_ONCE(chan->read_data_ok, 0); |
| wake_up_interruptible(&chan->in_fifo->waitq); |
| break; |
| |
| case OPCODE_REACHED_CHECKPOINT: |
| chan->flushing = 0; |
| wake_up_interruptible(&chan->flushq); |
| break; |
| |
| case OPCODE_CANCELED_CHECKPOINT: |
| chan->canceled = 1; |
| wake_up_interruptible(&chan->flushq); |
| break; |
| |
| default: |
| dev_err(dev, "Received illegal opcode %d from FPGA\n", |
| opcode); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static int process_bulk_in(struct xillybuffer *xb) |
| { |
| struct xillyusb_endpoint *ep = xb->ep; |
| struct xillyusb_dev *xdev = ep->xdev; |
| struct device *dev = xdev->dev; |
| int dws = xb->len >> 2; |
| __le32 *p = xb->buf; |
| u32 ctrlword; |
| struct xillyusb_channel *chan; |
| struct xillyfifo *fifo; |
| int chan_num = 0, opcode; |
| int chan_idx; |
| int bytes, count, dwconsume; |
| int in_bytes_left = 0; |
| int rc; |
| |
| if ((dws << 2) != xb->len) { |
| dev_err(dev, "Received BULK IN transfer with %d bytes, not a multiple of 4\n", |
| xb->len); |
| return -EIO; |
| } |
| |
| if (xdev->in_bytes_left) { |
| bytes = min(xdev->in_bytes_left, dws << 2); |
| in_bytes_left = xdev->in_bytes_left - bytes; |
| chan_num = xdev->leftover_chan_num; |
| goto resume_leftovers; |
| } |
| |
| while (dws) { |
| ctrlword = le32_to_cpu(*p++); |
| dws--; |
| |
| chan_num = ctrlword & 0xfff; |
| count = (ctrlword >> 12) & 0x3ff; |
| opcode = (ctrlword >> 24) & 0xf; |
| |
| if (opcode != OPCODE_DATA) { |
| unsigned int in_counter = xdev->in_counter++ & 0x3ff; |
| |
| if (count != in_counter) { |
| dev_err(dev, "Expected opcode counter %d, got %d\n", |
| in_counter, count); |
| return -EIO; |
| } |
| |
| rc = process_in_opcode(xdev, opcode, chan_num); |
| |
| if (rc) |
| return rc; |
| |
| continue; |
| } |
| |
| bytes = min(count + 1, dws << 2); |
| in_bytes_left = count + 1 - bytes; |
| |
| resume_leftovers: |
| chan_idx = chan_num >> 1; |
| |
| if (!(chan_num & 1) || chan_idx >= xdev->num_channels || |
| !xdev->channels[chan_idx].read_data_ok) { |
| dev_err(dev, "Received illegal channel ID %d from FPGA\n", |
| chan_num); |
| return -EIO; |
| } |
| chan = &xdev->channels[chan_idx]; |
| |
| fifo = chan->in_fifo; |
| |
| if (unlikely(!fifo)) |
| return -EIO; /* We got really unexpected data */ |
| |
| if (bytes != fifo_write(fifo, p, bytes, xilly_memcpy)) { |
| dev_err(dev, "Misbehaving FPGA overflowed an upstream FIFO!\n"); |
| return -EIO; |
| } |
| |
| wake_up_interruptible(&fifo->waitq); |
| |
| dwconsume = (bytes + 3) >> 2; |
| dws -= dwconsume; |
| p += dwconsume; |
| } |
| |
| xdev->in_bytes_left = in_bytes_left; |
| xdev->leftover_chan_num = chan_num; |
| return 0; |
| } |
| |
| static void bulk_in_work(struct work_struct *work) |
| { |
| struct xillyusb_endpoint *ep = |
| container_of(work, struct xillyusb_endpoint, workitem); |
| struct xillyusb_dev *xdev = ep->xdev; |
| unsigned long flags; |
| struct xillybuffer *xb; |
| bool consumed = false; |
| int rc = 0; |
| |
| mutex_lock(&xdev->process_in_mutex); |
| |
| spin_lock_irqsave(&ep->buffers_lock, flags); |
| |
| while (1) { |
| if (rc || list_empty(&ep->filled_buffers)) { |
| spin_unlock_irqrestore(&ep->buffers_lock, flags); |
| mutex_unlock(&xdev->process_in_mutex); |
| |
| if (rc) |
| report_io_error(xdev, rc); |
| else if (consumed) |
| try_queue_bulk_in(ep); |
| |
| return; |
| } |
| |
| xb = list_first_entry(&ep->filled_buffers, struct xillybuffer, |
| entry); |
| list_del(&xb->entry); |
| |
| spin_unlock_irqrestore(&ep->buffers_lock, flags); |
| |
| consumed = true; |
| |
| if (!xdev->error) |
| rc = process_bulk_in(xb); |
| |
| spin_lock_irqsave(&ep->buffers_lock, flags); |
| list_add_tail(&xb->entry, &ep->buffers); |
| ep->outstanding_urbs--; |
| } |
| } |
| |
| static int xillyusb_send_opcode(struct xillyusb_dev *xdev, |
| int chan_num, char opcode, u32 data) |
| { |
| struct xillyusb_endpoint *ep = xdev->msg_ep; |
| struct xillyfifo *fifo = &ep->fifo; |
| __le32 msg[2]; |
| |
| int rc = 0; |
| |
| msg[0] = cpu_to_le32((chan_num & 0xfff) | |
| ((opcode & 0xf) << 24)); |
| msg[1] = cpu_to_le32(data); |
| |
| mutex_lock(&xdev->msg_mutex); |
| |
| /* |
| * The wait queue is woken with the interruptible variant, so the |
| * wait function matches, however returning because of an interrupt |
| * will mess things up considerably, in particular when the caller is |
| * the release method. And the xdev->error part prevents being stuck |
| * forever in the event of a bizarre hardware bug: Pull the USB plug. |
| */ |
| |
| while (wait_event_interruptible(fifo->waitq, |
| fifo->fill <= (fifo->size - 8) || |
| xdev->error)) |
| ; /* Empty loop */ |
| |
| if (xdev->error) { |
| rc = xdev->error; |
| goto unlock_done; |
| } |
| |
| fifo_write(fifo, (void *)msg, 8, xilly_memcpy); |
| |
| try_queue_bulk_out(ep); |
| |
| unlock_done: |
| mutex_unlock(&xdev->msg_mutex); |
| |
| return rc; |
| } |
| |
| /* |
| * Note that flush_downstream() merely waits for the data to arrive to |
| * the application logic at the FPGA -- unlike PCIe Xillybus' counterpart, |
| * it does nothing to make it happen (and neither is it necessary). |
| * |
| * This function is not reentrant for the same @chan, but this is covered |
| * by the fact that for any given @chan, it's called either by the open, |
| * write, llseek and flush fops methods, which can't run in parallel (and the |
| * write + flush and llseek method handlers are protected with out_mutex). |
| * |
| * chan->flushed is there to avoid multiple flushes at the same position, |
| * in particular as a result of programs that close the file descriptor |
| * e.g. after a dup2() for redirection. |
| */ |
| |
| static int flush_downstream(struct xillyusb_channel *chan, |
| long timeout, |
| bool interruptible) |
| { |
| struct xillyusb_dev *xdev = chan->xdev; |
| int chan_num = chan->chan_idx << 1; |
| long deadline, left_to_sleep; |
| int rc; |
| |
| if (chan->flushed) |
| return 0; |
| |
| deadline = jiffies + 1 + timeout; |
| |
| if (chan->flushing) { |
| long cancel_deadline = jiffies + 1 + XILLY_RESPONSE_TIMEOUT; |
| |
| chan->canceled = 0; |
| rc = xillyusb_send_opcode(xdev, chan_num, |
| OPCODE_CANCEL_CHECKPOINT, 0); |
| |
| if (rc) |
| return rc; /* Only real error, never -EINTR */ |
| |
| /* Ignoring interrupts. Cancellation must be handled */ |
| while (!chan->canceled) { |
| left_to_sleep = cancel_deadline - ((long)jiffies); |
| |
| if (left_to_sleep <= 0) { |
| report_io_error(xdev, -EIO); |
| return -EIO; |
| } |
| |
| rc = wait_event_interruptible_timeout(chan->flushq, |
| chan->canceled || |
| xdev->error, |
| left_to_sleep); |
| |
| if (xdev->error) |
| return xdev->error; |
| } |
| } |
| |
| chan->flushing = 1; |
| |
| /* |
| * The checkpoint is given in terms of data elements, not bytes. As |
| * a result, if less than an element's worth of data is stored in the |
| * FIFO, it's not flushed, including the flush before closing, which |
| * means that such data is lost. This is consistent with PCIe Xillybus. |
| */ |
| |
| rc = xillyusb_send_opcode(xdev, chan_num, |
| OPCODE_SET_CHECKPOINT, |
| chan->out_bytes >> |
| chan->out_log2_element_size); |
| |
| if (rc) |
| return rc; /* Only real error, never -EINTR */ |
| |
| if (!timeout) { |
| while (chan->flushing) { |
| rc = wait_event_interruptible(chan->flushq, |
| !chan->flushing || |
| xdev->error); |
| if (xdev->error) |
| return xdev->error; |
| |
| if (interruptible && rc) |
| return -EINTR; |
| } |
| |
| goto done; |
| } |
| |
| while (chan->flushing) { |
| left_to_sleep = deadline - ((long)jiffies); |
| |
| if (left_to_sleep <= 0) |
| return -ETIMEDOUT; |
| |
| rc = wait_event_interruptible_timeout(chan->flushq, |
| !chan->flushing || |
| xdev->error, |
| left_to_sleep); |
| |
| if (xdev->error) |
| return xdev->error; |
| |
| if (interruptible && rc < 0) |
| return -EINTR; |
| } |
| |
| done: |
| chan->flushed = 1; |
| return 0; |
| } |
| |
| /* request_read_anything(): Ask the FPGA for any little amount of data */ |
| static int request_read_anything(struct xillyusb_channel *chan, |
| char opcode) |
| { |
| struct xillyusb_dev *xdev = chan->xdev; |
| unsigned int sh = chan->in_log2_element_size; |
| int chan_num = (chan->chan_idx << 1) | 1; |
| u32 mercy = chan->in_consumed_bytes + (2 << sh) - 1; |
| |
| return xillyusb_send_opcode(xdev, chan_num, opcode, mercy >> sh); |
| } |
| |
| static int xillyusb_open(struct inode *inode, struct file *filp) |
| { |
| struct xillyusb_dev *xdev; |
| struct xillyusb_channel *chan; |
| struct xillyfifo *in_fifo = NULL; |
| struct xillyusb_endpoint *out_ep = NULL; |
| int rc; |
| int index; |
| |
| rc = xillybus_find_inode(inode, (void **)&xdev, &index); |
| if (rc) |
| return rc; |
| |
| chan = &xdev->channels[index]; |
| filp->private_data = chan; |
| |
| mutex_lock(&chan->lock); |
| |
| rc = -ENODEV; |
| |
| if (xdev->error) |
| goto unmutex_fail; |
| |
| if (((filp->f_mode & FMODE_READ) && !chan->readable) || |
| ((filp->f_mode & FMODE_WRITE) && !chan->writable)) |
| goto unmutex_fail; |
| |
| if ((filp->f_flags & O_NONBLOCK) && (filp->f_mode & FMODE_READ) && |
| chan->in_synchronous) { |
| dev_err(xdev->dev, |
| "open() failed: O_NONBLOCK not allowed for read on this device\n"); |
| goto unmutex_fail; |
| } |
| |
| if ((filp->f_flags & O_NONBLOCK) && (filp->f_mode & FMODE_WRITE) && |
| chan->out_synchronous) { |
| dev_err(xdev->dev, |
| "open() failed: O_NONBLOCK not allowed for write on this device\n"); |
| goto unmutex_fail; |
| } |
| |
| rc = -EBUSY; |
| |
| if (((filp->f_mode & FMODE_READ) && chan->open_for_read) || |
| ((filp->f_mode & FMODE_WRITE) && chan->open_for_write)) |
| goto unmutex_fail; |
| |
| kref_get(&xdev->kref); |
| |
| if (filp->f_mode & FMODE_READ) |
| chan->open_for_read = 1; |
| |
| if (filp->f_mode & FMODE_WRITE) |
| chan->open_for_write = 1; |
| |
| mutex_unlock(&chan->lock); |
| |
| if (filp->f_mode & FMODE_WRITE) { |
| out_ep = endpoint_alloc(xdev, |
| (chan->chan_idx + 2) | USB_DIR_OUT, |
| bulk_out_work, BUF_SIZE_ORDER, BUFNUM); |
| |
| if (!out_ep) { |
| rc = -ENOMEM; |
| goto unopen; |
| } |
| |
| rc = fifo_init(&out_ep->fifo, chan->out_log2_fifo_size); |
| |
| if (rc) |
| goto late_unopen; |
| |
| out_ep->fill_mask = -(1 << chan->out_log2_element_size); |
| chan->out_bytes = 0; |
| chan->flushed = 0; |
| |
| /* |
| * Sending a flush request to a previously closed stream |
| * effectively opens it, and also waits until the command is |
| * confirmed by the FPGA. The latter is necessary because the |
| * data is sent through a separate BULK OUT endpoint, and the |
| * xHCI controller is free to reorder transmissions. |
| * |
| * This can't go wrong unless there's a serious hardware error |
| * (or the computer is stuck for 500 ms?) |
| */ |
| rc = flush_downstream(chan, XILLY_RESPONSE_TIMEOUT, false); |
| |
| if (rc == -ETIMEDOUT) { |
| rc = -EIO; |
| report_io_error(xdev, rc); |
| } |
| |
| if (rc) |
| goto late_unopen; |
| } |
| |
| if (filp->f_mode & FMODE_READ) { |
| in_fifo = kzalloc(sizeof(*in_fifo), GFP_KERNEL); |
| |
| if (!in_fifo) { |
| rc = -ENOMEM; |
| goto late_unopen; |
| } |
| |
| rc = fifo_init(in_fifo, chan->in_log2_fifo_size); |
| |
| if (rc) { |
| kfree(in_fifo); |
| goto late_unopen; |
| } |
| } |
| |
| mutex_lock(&chan->lock); |
| if (in_fifo) { |
| chan->in_fifo = in_fifo; |
| chan->read_data_ok = 1; |
| } |
| if (out_ep) |
| chan->out_ep = out_ep; |
| mutex_unlock(&chan->lock); |
| |
| if (in_fifo) { |
| u32 in_checkpoint = 0; |
| |
| if (!chan->in_synchronous) |
| in_checkpoint = in_fifo->size >> |
| chan->in_log2_element_size; |
| |
| chan->in_consumed_bytes = 0; |
| chan->poll_used = 0; |
| chan->in_current_checkpoint = in_checkpoint; |
| rc = xillyusb_send_opcode(xdev, (chan->chan_idx << 1) | 1, |
| OPCODE_SET_CHECKPOINT, |
| in_checkpoint); |
| |
| if (rc) /* Failure guarantees that opcode wasn't sent */ |
| goto unfifo; |
| |
| /* |
| * In non-blocking mode, request the FPGA to send any data it |
| * has right away. Otherwise, the first read() will always |
| * return -EAGAIN, which is OK strictly speaking, but ugly. |
| * Checking and unrolling if this fails isn't worth the |
| * effort -- the error is propagated to the first read() |
| * anyhow. |
| */ |
| if (filp->f_flags & O_NONBLOCK) |
| request_read_anything(chan, OPCODE_SET_PUSH); |
| } |
| |
| return 0; |
| |
| unfifo: |
| chan->read_data_ok = 0; |
| safely_assign_in_fifo(chan, NULL); |
| fifo_mem_release(in_fifo); |
| kfree(in_fifo); |
| |
| if (out_ep) { |
| mutex_lock(&chan->lock); |
| chan->out_ep = NULL; |
| mutex_unlock(&chan->lock); |
| } |
| |
| late_unopen: |
| if (out_ep) |
| endpoint_dealloc(out_ep); |
| |
| unopen: |
| mutex_lock(&chan->lock); |
| |
| if (filp->f_mode & FMODE_READ) |
| chan->open_for_read = 0; |
| |
| if (filp->f_mode & FMODE_WRITE) |
| chan->open_for_write = 0; |
| |
| mutex_unlock(&chan->lock); |
| |
| kref_put(&xdev->kref, cleanup_dev); |
| |
| return rc; |
| |
| unmutex_fail: |
| mutex_unlock(&chan->lock); |
| return rc; |
| } |
| |
| static ssize_t xillyusb_read(struct file *filp, char __user *userbuf, |
| size_t count, loff_t *f_pos) |
| { |
| struct xillyusb_channel *chan = filp->private_data; |
| struct xillyusb_dev *xdev = chan->xdev; |
| struct xillyfifo *fifo = chan->in_fifo; |
| int chan_num = (chan->chan_idx << 1) | 1; |
| |
| long deadline, left_to_sleep; |
| int bytes_done = 0; |
| bool sent_set_push = false; |
| int rc; |
| |
| deadline = jiffies + 1 + XILLY_RX_TIMEOUT; |
| |
| rc = mutex_lock_interruptible(&chan->in_mutex); |
| |
| if (rc) |
| return rc; |
| |
| while (1) { |
| u32 fifo_checkpoint_bytes, complete_checkpoint_bytes; |
| u32 complete_checkpoint, fifo_checkpoint; |
| u32 checkpoint; |
| s32 diff, leap; |
| unsigned int sh = chan->in_log2_element_size; |
| bool checkpoint_for_complete; |
| |
| rc = fifo_read(fifo, (__force void *)userbuf + bytes_done, |
| count - bytes_done, xilly_copy_to_user); |
| |
| if (rc < 0) |
| break; |
| |
| bytes_done += rc; |
| chan->in_consumed_bytes += rc; |
| |
| left_to_sleep = deadline - ((long)jiffies); |
| |
| /* |
| * Some 32-bit arithmetic that may wrap. Note that |
| * complete_checkpoint is rounded up to the closest element |
| * boundary, because the read() can't be completed otherwise. |
| * fifo_checkpoint_bytes is rounded down, because it protects |
| * in_fifo from overflowing. |
| */ |
| |
| fifo_checkpoint_bytes = chan->in_consumed_bytes + fifo->size; |
| complete_checkpoint_bytes = |
| chan->in_consumed_bytes + count - bytes_done; |
| |
| fifo_checkpoint = fifo_checkpoint_bytes >> sh; |
| complete_checkpoint = |
| (complete_checkpoint_bytes + (1 << sh) - 1) >> sh; |
| |
| diff = (fifo_checkpoint - complete_checkpoint) << sh; |
| |
| if (chan->in_synchronous && diff >= 0) { |
| checkpoint = complete_checkpoint; |
| checkpoint_for_complete = true; |
| } else { |
| checkpoint = fifo_checkpoint; |
| checkpoint_for_complete = false; |
| } |
| |
| leap = (checkpoint - chan->in_current_checkpoint) << sh; |
| |
| /* |
| * To prevent flooding of OPCODE_SET_CHECKPOINT commands as |
| * data is consumed, it's issued only if it moves the |
| * checkpoint by at least an 8th of the FIFO's size, or if |
| * it's necessary to complete the number of bytes requested by |
| * the read() call. |
| * |
| * chan->read_data_ok is checked to spare an unnecessary |
| * submission after receiving EOF, however it's harmless if |
| * such slips away. |
| */ |
| |
| if (chan->read_data_ok && |
| (leap > (fifo->size >> 3) || |
| (checkpoint_for_complete && leap > 0))) { |
| chan->in_current_checkpoint = checkpoint; |
| rc = xillyusb_send_opcode(xdev, chan_num, |
| OPCODE_SET_CHECKPOINT, |
| checkpoint); |
| |
| if (rc) |
| break; |
| } |
| |
| if (bytes_done == count || |
| (left_to_sleep <= 0 && bytes_done)) |
| break; |
| |
| /* |
| * Reaching here means that the FIFO was empty when |
| * fifo_read() returned, but not necessarily right now. Error |
| * and EOF are checked and reported only now, so that no data |
| * that managed its way to the FIFO is lost. |
| */ |
| |
| if (!READ_ONCE(chan->read_data_ok)) { /* FPGA has sent EOF */ |
| /* Has data slipped into the FIFO since fifo_read()? */ |
| smp_rmb(); |
| if (READ_ONCE(fifo->fill)) |
| continue; |
| |
| rc = 0; |
| break; |
| } |
| |
| if (xdev->error) { |
| rc = xdev->error; |
| break; |
| } |
| |
| if (filp->f_flags & O_NONBLOCK) { |
| rc = -EAGAIN; |
| break; |
| } |
| |
| if (!sent_set_push) { |
| rc = xillyusb_send_opcode(xdev, chan_num, |
| OPCODE_SET_PUSH, |
| complete_checkpoint); |
| |
| if (rc) |
| break; |
| |
| sent_set_push = true; |
| } |
| |
| if (left_to_sleep > 0) { |
| /* |
| * Note that when xdev->error is set (e.g. when the |
| * device is unplugged), read_data_ok turns zero and |
| * fifo->waitq is awaken. |
| * Therefore no special attention to xdev->error. |
| */ |
| |
| rc = wait_event_interruptible_timeout |
| (fifo->waitq, |
| fifo->fill || !chan->read_data_ok, |
| left_to_sleep); |
| } else { /* bytes_done == 0 */ |
| /* Tell FPGA to send anything it has */ |
| rc = request_read_anything(chan, OPCODE_UPDATE_PUSH); |
| |
| if (rc) |
| break; |
| |
| rc = wait_event_interruptible |
| (fifo->waitq, |
| fifo->fill || !chan->read_data_ok); |
| } |
| |
| if (rc < 0) { |
| rc = -EINTR; |
| break; |
| } |
| } |
| |
| if (((filp->f_flags & O_NONBLOCK) || chan->poll_used) && |
| !READ_ONCE(fifo->fill)) |
| request_read_anything(chan, OPCODE_SET_PUSH); |
| |
| mutex_unlock(&chan->in_mutex); |
| |
| if (bytes_done) |
| return bytes_done; |
| |
| return rc; |
| } |
| |
| static int xillyusb_flush(struct file *filp, fl_owner_t id) |
| { |
| struct xillyusb_channel *chan = filp->private_data; |
| int rc; |
| |
| if (!(filp->f_mode & FMODE_WRITE)) |
| return 0; |
| |
| rc = mutex_lock_interruptible(&chan->out_mutex); |
| |
| if (rc) |
| return rc; |
| |
| /* |
| * One second's timeout on flushing. Interrupts are ignored, because if |
| * the user pressed CTRL-C, that interrupt will still be in flight by |
| * the time we reach here, and the opportunity to flush is lost. |
| */ |
| rc = flush_downstream(chan, HZ, false); |
| |
| mutex_unlock(&chan->out_mutex); |
| |
| if (rc == -ETIMEDOUT) { |
| /* The things you do to use dev_warn() and not pr_warn() */ |
| struct xillyusb_dev *xdev = chan->xdev; |
| |
| mutex_lock(&chan->lock); |
| if (!xdev->error) |
| dev_warn(xdev->dev, |
| "Timed out while flushing. Output data may be lost.\n"); |
| mutex_unlock(&chan->lock); |
| } |
| |
| return rc; |
| } |
| |
| static ssize_t xillyusb_write(struct file *filp, const char __user *userbuf, |
| size_t count, loff_t *f_pos) |
| { |
| struct xillyusb_channel *chan = filp->private_data; |
| struct xillyusb_dev *xdev = chan->xdev; |
| struct xillyfifo *fifo = &chan->out_ep->fifo; |
| int rc; |
| |
| rc = mutex_lock_interruptible(&chan->out_mutex); |
| |
| if (rc) |
| return rc; |
| |
| while (1) { |
| if (xdev->error) { |
| rc = xdev->error; |
| break; |
| } |
| |
| if (count == 0) |
| break; |
| |
| rc = fifo_write(fifo, (__force void *)userbuf, count, |
| xilly_copy_from_user); |
| |
| if (rc != 0) |
| break; |
| |
| if (filp->f_flags & O_NONBLOCK) { |
| rc = -EAGAIN; |
| break; |
| } |
| |
| if (wait_event_interruptible |
| (fifo->waitq, |
| fifo->fill != fifo->size || xdev->error)) { |
| rc = -EINTR; |
| break; |
| } |
| } |
| |
| if (rc < 0) |
| goto done; |
| |
| chan->out_bytes += rc; |
| |
| if (rc) { |
| try_queue_bulk_out(chan->out_ep); |
| chan->flushed = 0; |
| } |
| |
| if (chan->out_synchronous) { |
| int flush_rc = flush_downstream(chan, 0, true); |
| |
| if (flush_rc && !rc) |
| rc = flush_rc; |
| } |
| |
| done: |
| mutex_unlock(&chan->out_mutex); |
| |
| return rc; |
| } |
| |
| static int xillyusb_release(struct inode *inode, struct file *filp) |
| { |
| struct xillyusb_channel *chan = filp->private_data; |
| struct xillyusb_dev *xdev = chan->xdev; |
| int rc_read = 0, rc_write = 0; |
| |
| if (filp->f_mode & FMODE_READ) { |
| struct xillyfifo *in_fifo = chan->in_fifo; |
| |
| rc_read = xillyusb_send_opcode(xdev, (chan->chan_idx << 1) | 1, |
| OPCODE_CLOSE, 0); |
| /* |
| * If rc_read is nonzero, xdev->error indicates a global |
| * device error. The error is reported later, so that |
| * resources are freed. |
| * |
| * Looping on wait_event_interruptible() kinda breaks the idea |
| * of being interruptible, and this should have been |
| * wait_event(). Only it's being waken with |
| * wake_up_interruptible() for the sake of other uses. If |
| * there's a global device error, chan->read_data_ok is |
| * deasserted and the wait queue is awaken, so this is covered. |
| */ |
| |
| while (wait_event_interruptible(in_fifo->waitq, |
| !chan->read_data_ok)) |
| ; /* Empty loop */ |
| |
| safely_assign_in_fifo(chan, NULL); |
| fifo_mem_release(in_fifo); |
| kfree(in_fifo); |
| |
| mutex_lock(&chan->lock); |
| chan->open_for_read = 0; |
| mutex_unlock(&chan->lock); |
| } |
| |
| if (filp->f_mode & FMODE_WRITE) { |
| struct xillyusb_endpoint *ep = chan->out_ep; |
| /* |
| * chan->flushing isn't zeroed. If the pre-release flush timed |
| * out, a cancel request will be sent before the next |
| * OPCODE_SET_CHECKPOINT (i.e. when the file is opened again). |
| * This is despite that the FPGA forgets about the checkpoint |
| * request as the file closes. Still, in an exceptional race |
| * condition, the FPGA could send an OPCODE_REACHED_CHECKPOINT |
| * just before closing that would reach the host after the |
| * file has re-opened. |
| */ |
| |
| mutex_lock(&chan->lock); |
| chan->out_ep = NULL; |
| mutex_unlock(&chan->lock); |
| |
| endpoint_quiesce(ep); |
| endpoint_dealloc(ep); |
| |
| /* See comments on rc_read above */ |
| rc_write = xillyusb_send_opcode(xdev, chan->chan_idx << 1, |
| OPCODE_CLOSE, 0); |
| |
| mutex_lock(&chan->lock); |
| chan->open_for_write = 0; |
| mutex_unlock(&chan->lock); |
| } |
| |
| kref_put(&xdev->kref, cleanup_dev); |
| |
| return rc_read ? rc_read : rc_write; |
| } |
| |
| /* |
| * Xillybus' API allows device nodes to be seekable, giving the user |
| * application access to a RAM array on the FPGA (or logic emulating it). |
| */ |
| |
| static loff_t xillyusb_llseek(struct file *filp, loff_t offset, int whence) |
| { |
| struct xillyusb_channel *chan = filp->private_data; |
| struct xillyusb_dev *xdev = chan->xdev; |
| loff_t pos = filp->f_pos; |
| int rc = 0; |
| unsigned int log2_element_size = chan->readable ? |
| chan->in_log2_element_size : chan->out_log2_element_size; |
| |
| /* |
| * Take both mutexes not allowing interrupts, since it seems like |
| * common applications don't expect an -EINTR here. Besides, multiple |
| * access to a single file descriptor on seekable devices is a mess |
| * anyhow. |
| */ |
| |
| mutex_lock(&chan->out_mutex); |
| mutex_lock(&chan->in_mutex); |
| |
| switch (whence) { |
| case SEEK_SET: |
| pos = offset; |
| break; |
| case SEEK_CUR: |
| pos += offset; |
| break; |
| case SEEK_END: |
| pos = offset; /* Going to the end => to the beginning */ |
| break; |
| default: |
| rc = -EINVAL; |
| goto end; |
| } |
| |
| /* In any case, we must finish on an element boundary */ |
| if (pos & ((1 << log2_element_size) - 1)) { |
| rc = -EINVAL; |
| goto end; |
| } |
| |
| rc = xillyusb_send_opcode(xdev, chan->chan_idx << 1, |
| OPCODE_SET_ADDR, |
| pos >> log2_element_size); |
| |
| if (rc) |
| goto end; |
| |
| if (chan->writable) { |
| chan->flushed = 0; |
| rc = flush_downstream(chan, HZ, false); |
| } |
| |
| end: |
| mutex_unlock(&chan->out_mutex); |
| mutex_unlock(&chan->in_mutex); |
| |
| if (rc) /* Return error after releasing mutexes */ |
| return rc; |
| |
| filp->f_pos = pos; |
| |
| return pos; |
| } |
| |
| static __poll_t xillyusb_poll(struct file *filp, poll_table *wait) |
| { |
| struct xillyusb_channel *chan = filp->private_data; |
| __poll_t mask = 0; |
| |
| if (chan->in_fifo) |
| poll_wait(filp, &chan->in_fifo->waitq, wait); |
| |
| if (chan->out_ep) |
| poll_wait(filp, &chan->out_ep->fifo.waitq, wait); |
| |
| /* |
| * If this is the first time poll() is called, and the file is |
| * readable, set the relevant flag. Also tell the FPGA to send all it |
| * has, to kickstart the mechanism that ensures there's always some |
| * data in in_fifo unless the stream is dry end-to-end. Note that the |
| * first poll() may not return a EPOLLIN, even if there's data on the |
| * FPGA. Rather, the data will arrive soon, and trigger the relevant |
| * wait queue. |
| */ |
| |
| if (!chan->poll_used && chan->in_fifo) { |
| chan->poll_used = 1; |
| request_read_anything(chan, OPCODE_SET_PUSH); |
| } |
| |
| /* |
| * poll() won't play ball regarding read() channels which |
| * are synchronous. Allowing that will create situations where data has |
| * been delivered at the FPGA, and users expecting select() to wake up, |
| * which it may not. So make it never work. |
| */ |
| |
| if (chan->in_fifo && !chan->in_synchronous && |
| (READ_ONCE(chan->in_fifo->fill) || !chan->read_data_ok)) |
| mask |= EPOLLIN | EPOLLRDNORM; |
| |
| if (chan->out_ep && |
| (READ_ONCE(chan->out_ep->fifo.fill) != chan->out_ep->fifo.size)) |
| mask |= EPOLLOUT | EPOLLWRNORM; |
| |
| if (chan->xdev->error) |
| mask |= EPOLLERR; |
| |
| return mask; |
| } |
| |
| static const struct file_operations xillyusb_fops = { |
| .owner = THIS_MODULE, |
| .read = xillyusb_read, |
| .write = xillyusb_write, |
| .open = xillyusb_open, |
| .flush = xillyusb_flush, |
| .release = xillyusb_release, |
| .llseek = xillyusb_llseek, |
| .poll = xillyusb_poll, |
| }; |
| |
| static int xillyusb_setup_base_eps(struct xillyusb_dev *xdev) |
| { |
| xdev->msg_ep = endpoint_alloc(xdev, MSG_EP_NUM | USB_DIR_OUT, |
| bulk_out_work, 1, 2); |
| if (!xdev->msg_ep) |
| return -ENOMEM; |
| |
| if (fifo_init(&xdev->msg_ep->fifo, 13)) /* 8 kiB */ |
| goto dealloc; |
| |
| xdev->msg_ep->fill_mask = -8; /* 8 bytes granularity */ |
| |
| xdev->in_ep = endpoint_alloc(xdev, IN_EP_NUM | USB_DIR_IN, |
| bulk_in_work, BUF_SIZE_ORDER, BUFNUM); |
| if (!xdev->in_ep) |
| goto dealloc; |
| |
| try_queue_bulk_in(xdev->in_ep); |
| |
| return 0; |
| |
| dealloc: |
| endpoint_dealloc(xdev->msg_ep); /* Also frees FIFO mem if allocated */ |
| xdev->msg_ep = NULL; |
| return -ENOMEM; |
| } |
| |
| static int setup_channels(struct xillyusb_dev *xdev, |
| __le16 *chandesc, |
| int num_channels) |
| { |
| struct xillyusb_channel *chan; |
| int i; |
| |
| chan = kcalloc(num_channels, sizeof(*chan), GFP_KERNEL); |
| if (!chan) |
| return -ENOMEM; |
| |
| xdev->channels = chan; |
| |
| for (i = 0; i < num_channels; i++, chan++) { |
| unsigned int in_desc = le16_to_cpu(*chandesc++); |
| unsigned int out_desc = le16_to_cpu(*chandesc++); |
| |
| chan->xdev = xdev; |
| mutex_init(&chan->in_mutex); |
| mutex_init(&chan->out_mutex); |
| mutex_init(&chan->lock); |
| init_waitqueue_head(&chan->flushq); |
| |
| chan->chan_idx = i; |
| |
| if (in_desc & 0x80) { /* Entry is valid */ |
| chan->readable = 1; |
| chan->in_synchronous = !!(in_desc & 0x40); |
| chan->in_seekable = !!(in_desc & 0x20); |
| chan->in_log2_element_size = in_desc & 0x0f; |
| chan->in_log2_fifo_size = ((in_desc >> 8) & 0x1f) + 16; |
| } |
| |
| /* |
| * A downstream channel should never exist above index 13, |
| * as it would request a nonexistent BULK endpoint > 15. |
| * In the peculiar case that it does, it's ignored silently. |
| */ |
| |
| if ((out_desc & 0x80) && i < 14) { /* Entry is valid */ |
| chan->writable = 1; |
| chan->out_synchronous = !!(out_desc & 0x40); |
| chan->out_seekable = !!(out_desc & 0x20); |
| chan->out_log2_element_size = out_desc & 0x0f; |
| chan->out_log2_fifo_size = |
| ((out_desc >> 8) & 0x1f) + 16; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int xillyusb_discovery(struct usb_interface *interface) |
| { |
| int rc; |
| struct xillyusb_dev *xdev = usb_get_intfdata(interface); |
| __le16 bogus_chandesc[2]; |
| struct xillyfifo idt_fifo; |
| struct xillyusb_channel *chan; |
| unsigned int idt_len, names_offset; |
| unsigned char *idt; |
| int num_channels; |
| |
| rc = xillyusb_send_opcode(xdev, ~0, OPCODE_QUIESCE, 0); |
| |
| if (rc) { |
| dev_err(&interface->dev, "Failed to send quiesce request. Aborting.\n"); |
| return rc; |
| } |
| |
| /* Phase I: Set up one fake upstream channel and obtain IDT */ |
| |
| /* Set up a fake IDT with one async IN stream */ |
| bogus_chandesc[0] = cpu_to_le16(0x80); |
| bogus_chandesc[1] = cpu_to_le16(0); |
| |
| rc = setup_channels(xdev, bogus_chandesc, 1); |
| |
| if (rc) |
| return rc; |
| |
| rc = fifo_init(&idt_fifo, LOG2_IDT_FIFO_SIZE); |
| |
| if (rc) |
| return rc; |
| |
| chan = xdev->channels; |
| |
| chan->in_fifo = &idt_fifo; |
| chan->read_data_ok = 1; |
| |
| xdev->num_channels = 1; |
| |
| rc = xillyusb_send_opcode(xdev, ~0, OPCODE_REQ_IDT, 0); |
| |
| if (rc) { |
| dev_err(&interface->dev, "Failed to send IDT request. Aborting.\n"); |
| goto unfifo; |
| } |
| |
| rc = wait_event_interruptible_timeout(idt_fifo.waitq, |
| !chan->read_data_ok, |
| XILLY_RESPONSE_TIMEOUT); |
| |
| if (xdev->error) { |
| rc = xdev->error; |
| goto unfifo; |
| } |
| |
| if (rc < 0) { |
| rc = -EINTR; /* Interrupt on probe method? Interesting. */ |
| goto unfifo; |
| } |
| |
| if (chan->read_data_ok) { |
| rc = -ETIMEDOUT; |
| dev_err(&interface->dev, "No response from FPGA. Aborting.\n"); |
| goto unfifo; |
| } |
| |
| idt_len = READ_ONCE(idt_fifo.fill); |
| idt = kmalloc(idt_len, GFP_KERNEL); |
| |
| if (!idt) { |
| rc = -ENOMEM; |
| goto unfifo; |
| } |
| |
| fifo_read(&idt_fifo, idt, idt_len, xilly_memcpy); |
| |
| if (crc32_le(~0, idt, idt_len) != 0) { |
| dev_err(&interface->dev, "IDT failed CRC check. Aborting.\n"); |
| rc = -ENODEV; |
| goto unidt; |
| } |
| |
| if (*idt > 0x90) { |
| dev_err(&interface->dev, "No support for IDT version 0x%02x. Maybe the xillyusb driver needs an upgrade. Aborting.\n", |
| (int)*idt); |
| rc = -ENODEV; |
| goto unidt; |
| } |
| |
| /* Phase II: Set up the streams as defined in IDT */ |
| |
| num_channels = le16_to_cpu(*((__le16 *)(idt + 1))); |
| names_offset = 3 + num_channels * 4; |
| idt_len -= 4; /* Exclude CRC */ |
| |
| if (idt_len < names_offset) { |
| dev_err(&interface->dev, "IDT too short. This is exceptionally weird, because its CRC is OK\n"); |
| rc = -ENODEV; |
| goto unidt; |
| } |
| |
| rc = setup_channels(xdev, (void *)idt + 3, num_channels); |
| |
| if (rc) |
| goto unidt; |
| |
| /* |
| * Except for wildly misbehaving hardware, or if it was disconnected |
| * just after responding with the IDT, there is no reason for any |
| * work item to be running now. To be sure that xdev->channels |
| * is updated on anything that might run in parallel, flush the |
| * workqueue, which rarely does anything. |
| */ |
| flush_workqueue(xdev->workq); |
| |
| xdev->num_channels = num_channels; |
| |
| fifo_mem_release(&idt_fifo); |
| kfree(chan); |
| |
| rc = xillybus_init_chrdev(&interface->dev, &xillyusb_fops, |
| THIS_MODULE, xdev, |
| idt + names_offset, |
| idt_len - names_offset, |
| num_channels, |
| xillyname, true); |
| |
| kfree(idt); |
| |
| return rc; |
| |
| unidt: |
| kfree(idt); |
| |
| unfifo: |
| safely_assign_in_fifo(chan, NULL); |
| fifo_mem_release(&idt_fifo); |
| |
| return rc; |
| } |
| |
| static int xillyusb_probe(struct usb_interface *interface, |
| const struct usb_device_id *id) |
| { |
| struct xillyusb_dev *xdev; |
| int rc; |
| |
| xdev = kzalloc(sizeof(*xdev), GFP_KERNEL); |
| if (!xdev) |
| return -ENOMEM; |
| |
| kref_init(&xdev->kref); |
| mutex_init(&xdev->process_in_mutex); |
| mutex_init(&xdev->msg_mutex); |
| |
| xdev->udev = usb_get_dev(interface_to_usbdev(interface)); |
| xdev->dev = &interface->dev; |
| xdev->error = 0; |
| spin_lock_init(&xdev->error_lock); |
| xdev->in_counter = 0; |
| xdev->in_bytes_left = 0; |
| xdev->workq = alloc_workqueue(xillyname, WQ_HIGHPRI, 0); |
| |
| if (!xdev->workq) { |
| dev_err(&interface->dev, "Failed to allocate work queue\n"); |
| rc = -ENOMEM; |
| goto fail; |
| } |
| |
| INIT_WORK(&xdev->wakeup_workitem, wakeup_all); |
| |
| usb_set_intfdata(interface, xdev); |
| |
| rc = xillyusb_setup_base_eps(xdev); |
| if (rc) |
| goto fail; |
| |
| rc = xillyusb_discovery(interface); |
| if (rc) |
| goto latefail; |
| |
| return 0; |
| |
| latefail: |
| endpoint_quiesce(xdev->in_ep); |
| endpoint_quiesce(xdev->msg_ep); |
| |
| fail: |
| usb_set_intfdata(interface, NULL); |
| kref_put(&xdev->kref, cleanup_dev); |
| return rc; |
| } |
| |
| static void xillyusb_disconnect(struct usb_interface *interface) |
| { |
| struct xillyusb_dev *xdev = usb_get_intfdata(interface); |
| struct xillyusb_endpoint *msg_ep = xdev->msg_ep; |
| struct xillyfifo *fifo = &msg_ep->fifo; |
| int rc; |
| int i; |
| |
| xillybus_cleanup_chrdev(xdev, &interface->dev); |
| |
| /* |
| * Try to send OPCODE_QUIESCE, which will fail silently if the device |
| * was disconnected, but makes sense on module unload. |
| */ |
| |
| msg_ep->wake_on_drain = true; |
| xillyusb_send_opcode(xdev, ~0, OPCODE_QUIESCE, 0); |
| |
| /* |
| * If the device has been disconnected, sending the opcode causes |
| * a global device error with xdev->error, if such error didn't |
| * occur earlier. Hence timing out means that the USB link is fine, |
| * but somehow the message wasn't sent. Should never happen. |
| */ |
| |
| rc = wait_event_interruptible_timeout(fifo->waitq, |
| msg_ep->drained || xdev->error, |
| XILLY_RESPONSE_TIMEOUT); |
| |
| if (!rc) |
| dev_err(&interface->dev, |
| "Weird timeout condition on sending quiesce request.\n"); |
| |
| report_io_error(xdev, -ENODEV); /* Discourage further activity */ |
| |
| /* |
| * This device driver is declared with soft_unbind set, or else |
| * sending OPCODE_QUIESCE above would always fail. The price is |
| * that the USB framework didn't kill outstanding URBs, so it has |
| * to be done explicitly before returning from this call. |
| */ |
| |
| for (i = 0; i < xdev->num_channels; i++) { |
| struct xillyusb_channel *chan = &xdev->channels[i]; |
| |
| /* |
| * Lock taken to prevent chan->out_ep from changing. It also |
| * ensures xillyusb_open() and xillyusb_flush() don't access |
| * xdev->dev after being nullified below. |
| */ |
| mutex_lock(&chan->lock); |
| if (chan->out_ep) |
| endpoint_quiesce(chan->out_ep); |
| mutex_unlock(&chan->lock); |
| } |
| |
| endpoint_quiesce(xdev->in_ep); |
| endpoint_quiesce(xdev->msg_ep); |
| |
| usb_set_intfdata(interface, NULL); |
| |
| xdev->dev = NULL; |
| |
| kref_put(&xdev->kref, cleanup_dev); |
| } |
| |
| static struct usb_driver xillyusb_driver = { |
| .name = xillyname, |
| .id_table = xillyusb_table, |
| .probe = xillyusb_probe, |
| .disconnect = xillyusb_disconnect, |
| .soft_unbind = 1, |
| }; |
| |
| static int __init xillyusb_init(void) |
| { |
| int rc = 0; |
| |
| if (LOG2_INITIAL_FIFO_BUF_SIZE > PAGE_SHIFT) |
| fifo_buf_order = LOG2_INITIAL_FIFO_BUF_SIZE - PAGE_SHIFT; |
| else |
| fifo_buf_order = 0; |
| |
| rc = usb_register(&xillyusb_driver); |
| |
| return rc; |
| } |
| |
| static void __exit xillyusb_exit(void) |
| { |
| usb_deregister(&xillyusb_driver); |
| } |
| |
| module_init(xillyusb_init); |
| module_exit(xillyusb_exit); |