|  | /* | 
|  | * Common SMP CPU bringup/teardown functions | 
|  | */ | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/task.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/smpboot.h> | 
|  |  | 
|  | #include "smpboot.h" | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD | 
|  | /* | 
|  | * For the hotplug case we keep the task structs around and reuse | 
|  | * them. | 
|  | */ | 
|  | static DEFINE_PER_CPU(struct task_struct *, idle_threads); | 
|  |  | 
|  | struct task_struct *idle_thread_get(unsigned int cpu) | 
|  | { | 
|  | struct task_struct *tsk = per_cpu(idle_threads, cpu); | 
|  |  | 
|  | if (!tsk) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | init_idle(tsk, cpu); | 
|  | return tsk; | 
|  | } | 
|  |  | 
|  | void __init idle_thread_set_boot_cpu(void) | 
|  | { | 
|  | per_cpu(idle_threads, smp_processor_id()) = current; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * idle_init - Initialize the idle thread for a cpu | 
|  | * @cpu:	The cpu for which the idle thread should be initialized | 
|  | * | 
|  | * Creates the thread if it does not exist. | 
|  | */ | 
|  | static inline void idle_init(unsigned int cpu) | 
|  | { | 
|  | struct task_struct *tsk = per_cpu(idle_threads, cpu); | 
|  |  | 
|  | if (!tsk) { | 
|  | tsk = fork_idle(cpu); | 
|  | if (IS_ERR(tsk)) | 
|  | pr_err("SMP: fork_idle() failed for CPU %u\n", cpu); | 
|  | else | 
|  | per_cpu(idle_threads, cpu) = tsk; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * idle_threads_init - Initialize idle threads for all cpus | 
|  | */ | 
|  | void __init idle_threads_init(void) | 
|  | { | 
|  | unsigned int cpu, boot_cpu; | 
|  |  | 
|  | boot_cpu = smp_processor_id(); | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | if (cpu != boot_cpu) | 
|  | idle_init(cpu); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #endif /* #ifdef CONFIG_SMP */ | 
|  |  | 
|  | static LIST_HEAD(hotplug_threads); | 
|  | static DEFINE_MUTEX(smpboot_threads_lock); | 
|  |  | 
|  | struct smpboot_thread_data { | 
|  | unsigned int			cpu; | 
|  | unsigned int			status; | 
|  | struct smp_hotplug_thread	*ht; | 
|  | }; | 
|  |  | 
|  | enum { | 
|  | HP_THREAD_NONE = 0, | 
|  | HP_THREAD_ACTIVE, | 
|  | HP_THREAD_PARKED, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * smpboot_thread_fn - percpu hotplug thread loop function | 
|  | * @data:	thread data pointer | 
|  | * | 
|  | * Checks for thread stop and park conditions. Calls the necessary | 
|  | * setup, cleanup, park and unpark functions for the registered | 
|  | * thread. | 
|  | * | 
|  | * Returns 1 when the thread should exit, 0 otherwise. | 
|  | */ | 
|  | static int smpboot_thread_fn(void *data) | 
|  | { | 
|  | struct smpboot_thread_data *td = data; | 
|  | struct smp_hotplug_thread *ht = td->ht; | 
|  |  | 
|  | while (1) { | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | preempt_disable(); | 
|  | if (kthread_should_stop()) { | 
|  | __set_current_state(TASK_RUNNING); | 
|  | preempt_enable(); | 
|  | /* cleanup must mirror setup */ | 
|  | if (ht->cleanup && td->status != HP_THREAD_NONE) | 
|  | ht->cleanup(td->cpu, cpu_online(td->cpu)); | 
|  | kfree(td); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (kthread_should_park()) { | 
|  | __set_current_state(TASK_RUNNING); | 
|  | preempt_enable(); | 
|  | if (ht->park && td->status == HP_THREAD_ACTIVE) { | 
|  | BUG_ON(td->cpu != smp_processor_id()); | 
|  | ht->park(td->cpu); | 
|  | td->status = HP_THREAD_PARKED; | 
|  | } | 
|  | kthread_parkme(); | 
|  | /* We might have been woken for stop */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | BUG_ON(td->cpu != smp_processor_id()); | 
|  |  | 
|  | /* Check for state change setup */ | 
|  | switch (td->status) { | 
|  | case HP_THREAD_NONE: | 
|  | __set_current_state(TASK_RUNNING); | 
|  | preempt_enable(); | 
|  | if (ht->setup) | 
|  | ht->setup(td->cpu); | 
|  | td->status = HP_THREAD_ACTIVE; | 
|  | continue; | 
|  |  | 
|  | case HP_THREAD_PARKED: | 
|  | __set_current_state(TASK_RUNNING); | 
|  | preempt_enable(); | 
|  | if (ht->unpark) | 
|  | ht->unpark(td->cpu); | 
|  | td->status = HP_THREAD_ACTIVE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!ht->thread_should_run(td->cpu)) { | 
|  | preempt_enable_no_resched(); | 
|  | schedule(); | 
|  | } else { | 
|  | __set_current_state(TASK_RUNNING); | 
|  | preempt_enable(); | 
|  | ht->thread_fn(td->cpu); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu) | 
|  | { | 
|  | struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); | 
|  | struct smpboot_thread_data *td; | 
|  |  | 
|  | if (tsk) | 
|  | return 0; | 
|  |  | 
|  | td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu)); | 
|  | if (!td) | 
|  | return -ENOMEM; | 
|  | td->cpu = cpu; | 
|  | td->ht = ht; | 
|  |  | 
|  | tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu, | 
|  | ht->thread_comm); | 
|  | if (IS_ERR(tsk)) { | 
|  | kfree(td); | 
|  | return PTR_ERR(tsk); | 
|  | } | 
|  | /* | 
|  | * Park the thread so that it could start right on the CPU | 
|  | * when it is available. | 
|  | */ | 
|  | kthread_park(tsk); | 
|  | get_task_struct(tsk); | 
|  | *per_cpu_ptr(ht->store, cpu) = tsk; | 
|  | if (ht->create) { | 
|  | /* | 
|  | * Make sure that the task has actually scheduled out | 
|  | * into park position, before calling the create | 
|  | * callback. At least the migration thread callback | 
|  | * requires that the task is off the runqueue. | 
|  | */ | 
|  | if (!wait_task_inactive(tsk, TASK_PARKED)) | 
|  | WARN_ON(1); | 
|  | else | 
|  | ht->create(cpu); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int smpboot_create_threads(unsigned int cpu) | 
|  | { | 
|  | struct smp_hotplug_thread *cur; | 
|  | int ret = 0; | 
|  |  | 
|  | mutex_lock(&smpboot_threads_lock); | 
|  | list_for_each_entry(cur, &hotplug_threads, list) { | 
|  | ret = __smpboot_create_thread(cur, cpu); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | mutex_unlock(&smpboot_threads_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu) | 
|  | { | 
|  | struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); | 
|  |  | 
|  | if (!ht->selfparking) | 
|  | kthread_unpark(tsk); | 
|  | } | 
|  |  | 
|  | int smpboot_unpark_threads(unsigned int cpu) | 
|  | { | 
|  | struct smp_hotplug_thread *cur; | 
|  |  | 
|  | mutex_lock(&smpboot_threads_lock); | 
|  | list_for_each_entry(cur, &hotplug_threads, list) | 
|  | if (cpumask_test_cpu(cpu, cur->cpumask)) | 
|  | smpboot_unpark_thread(cur, cpu); | 
|  | mutex_unlock(&smpboot_threads_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu) | 
|  | { | 
|  | struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); | 
|  |  | 
|  | if (tsk && !ht->selfparking) | 
|  | kthread_park(tsk); | 
|  | } | 
|  |  | 
|  | int smpboot_park_threads(unsigned int cpu) | 
|  | { | 
|  | struct smp_hotplug_thread *cur; | 
|  |  | 
|  | mutex_lock(&smpboot_threads_lock); | 
|  | list_for_each_entry_reverse(cur, &hotplug_threads, list) | 
|  | smpboot_park_thread(cur, cpu); | 
|  | mutex_unlock(&smpboot_threads_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void smpboot_destroy_threads(struct smp_hotplug_thread *ht) | 
|  | { | 
|  | unsigned int cpu; | 
|  |  | 
|  | /* We need to destroy also the parked threads of offline cpus */ | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); | 
|  |  | 
|  | if (tsk) { | 
|  | kthread_stop(tsk); | 
|  | put_task_struct(tsk); | 
|  | *per_cpu_ptr(ht->store, cpu) = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * smpboot_register_percpu_thread_cpumask - Register a per_cpu thread related | 
|  | * 					    to hotplug | 
|  | * @plug_thread:	Hotplug thread descriptor | 
|  | * @cpumask:		The cpumask where threads run | 
|  | * | 
|  | * Creates and starts the threads on all online cpus. | 
|  | */ | 
|  | int smpboot_register_percpu_thread_cpumask(struct smp_hotplug_thread *plug_thread, | 
|  | const struct cpumask *cpumask) | 
|  | { | 
|  | unsigned int cpu; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!alloc_cpumask_var(&plug_thread->cpumask, GFP_KERNEL)) | 
|  | return -ENOMEM; | 
|  | cpumask_copy(plug_thread->cpumask, cpumask); | 
|  |  | 
|  | get_online_cpus(); | 
|  | mutex_lock(&smpboot_threads_lock); | 
|  | for_each_online_cpu(cpu) { | 
|  | ret = __smpboot_create_thread(plug_thread, cpu); | 
|  | if (ret) { | 
|  | smpboot_destroy_threads(plug_thread); | 
|  | free_cpumask_var(plug_thread->cpumask); | 
|  | goto out; | 
|  | } | 
|  | if (cpumask_test_cpu(cpu, cpumask)) | 
|  | smpboot_unpark_thread(plug_thread, cpu); | 
|  | } | 
|  | list_add(&plug_thread->list, &hotplug_threads); | 
|  | out: | 
|  | mutex_unlock(&smpboot_threads_lock); | 
|  | put_online_cpus(); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread_cpumask); | 
|  |  | 
|  | /** | 
|  | * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug | 
|  | * @plug_thread:	Hotplug thread descriptor | 
|  | * | 
|  | * Stops all threads on all possible cpus. | 
|  | */ | 
|  | void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread) | 
|  | { | 
|  | get_online_cpus(); | 
|  | mutex_lock(&smpboot_threads_lock); | 
|  | list_del(&plug_thread->list); | 
|  | smpboot_destroy_threads(plug_thread); | 
|  | mutex_unlock(&smpboot_threads_lock); | 
|  | put_online_cpus(); | 
|  | free_cpumask_var(plug_thread->cpumask); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread); | 
|  |  | 
|  | /** | 
|  | * smpboot_update_cpumask_percpu_thread - Adjust which per_cpu hotplug threads stay parked | 
|  | * @plug_thread:	Hotplug thread descriptor | 
|  | * @new:		Revised mask to use | 
|  | * | 
|  | * The cpumask field in the smp_hotplug_thread must not be updated directly | 
|  | * by the client, but only by calling this function. | 
|  | * This function can only be called on a registered smp_hotplug_thread. | 
|  | */ | 
|  | int smpboot_update_cpumask_percpu_thread(struct smp_hotplug_thread *plug_thread, | 
|  | const struct cpumask *new) | 
|  | { | 
|  | struct cpumask *old = plug_thread->cpumask; | 
|  | cpumask_var_t tmp; | 
|  | unsigned int cpu; | 
|  |  | 
|  | if (!alloc_cpumask_var(&tmp, GFP_KERNEL)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | get_online_cpus(); | 
|  | mutex_lock(&smpboot_threads_lock); | 
|  |  | 
|  | /* Park threads that were exclusively enabled on the old mask. */ | 
|  | cpumask_andnot(tmp, old, new); | 
|  | for_each_cpu_and(cpu, tmp, cpu_online_mask) | 
|  | smpboot_park_thread(plug_thread, cpu); | 
|  |  | 
|  | /* Unpark threads that are exclusively enabled on the new mask. */ | 
|  | cpumask_andnot(tmp, new, old); | 
|  | for_each_cpu_and(cpu, tmp, cpu_online_mask) | 
|  | smpboot_unpark_thread(plug_thread, cpu); | 
|  |  | 
|  | cpumask_copy(old, new); | 
|  |  | 
|  | mutex_unlock(&smpboot_threads_lock); | 
|  | put_online_cpus(); | 
|  |  | 
|  | free_cpumask_var(tmp); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(smpboot_update_cpumask_percpu_thread); | 
|  |  | 
|  | static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD); | 
|  |  | 
|  | /* | 
|  | * Called to poll specified CPU's state, for example, when waiting for | 
|  | * a CPU to come online. | 
|  | */ | 
|  | int cpu_report_state(int cpu) | 
|  | { | 
|  | return atomic_read(&per_cpu(cpu_hotplug_state, cpu)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If CPU has died properly, set its state to CPU_UP_PREPARE and | 
|  | * return success.  Otherwise, return -EBUSY if the CPU died after | 
|  | * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN | 
|  | * if cpu_wait_death() timed out and the CPU still hasn't gotten around | 
|  | * to dying.  In the latter two cases, the CPU might not be set up | 
|  | * properly, but it is up to the arch-specific code to decide. | 
|  | * Finally, -EIO indicates an unanticipated problem. | 
|  | * | 
|  | * Note that it is permissible to omit this call entirely, as is | 
|  | * done in architectures that do no CPU-hotplug error checking. | 
|  | */ | 
|  | int cpu_check_up_prepare(int cpu) | 
|  | { | 
|  | if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) { | 
|  | atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) { | 
|  |  | 
|  | case CPU_POST_DEAD: | 
|  |  | 
|  | /* The CPU died properly, so just start it up again. */ | 
|  | atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE); | 
|  | return 0; | 
|  |  | 
|  | case CPU_DEAD_FROZEN: | 
|  |  | 
|  | /* | 
|  | * Timeout during CPU death, so let caller know. | 
|  | * The outgoing CPU completed its processing, but after | 
|  | * cpu_wait_death() timed out and reported the error. The | 
|  | * caller is free to proceed, in which case the state | 
|  | * will be reset properly by cpu_set_state_online(). | 
|  | * Proceeding despite this -EBUSY return makes sense | 
|  | * for systems where the outgoing CPUs take themselves | 
|  | * offline, with no post-death manipulation required from | 
|  | * a surviving CPU. | 
|  | */ | 
|  | return -EBUSY; | 
|  |  | 
|  | case CPU_BROKEN: | 
|  |  | 
|  | /* | 
|  | * The most likely reason we got here is that there was | 
|  | * a timeout during CPU death, and the outgoing CPU never | 
|  | * did complete its processing.  This could happen on | 
|  | * a virtualized system if the outgoing VCPU gets preempted | 
|  | * for more than five seconds, and the user attempts to | 
|  | * immediately online that same CPU.  Trying again later | 
|  | * might return -EBUSY above, hence -EAGAIN. | 
|  | */ | 
|  | return -EAGAIN; | 
|  |  | 
|  | default: | 
|  |  | 
|  | /* Should not happen.  Famous last words. */ | 
|  | return -EIO; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mark the specified CPU online. | 
|  | * | 
|  | * Note that it is permissible to omit this call entirely, as is | 
|  | * done in architectures that do no CPU-hotplug error checking. | 
|  | */ | 
|  | void cpu_set_state_online(int cpu) | 
|  | { | 
|  | (void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  |  | 
|  | /* | 
|  | * Wait for the specified CPU to exit the idle loop and die. | 
|  | */ | 
|  | bool cpu_wait_death(unsigned int cpu, int seconds) | 
|  | { | 
|  | int jf_left = seconds * HZ; | 
|  | int oldstate; | 
|  | bool ret = true; | 
|  | int sleep_jf = 1; | 
|  |  | 
|  | might_sleep(); | 
|  |  | 
|  | /* The outgoing CPU will normally get done quite quickly. */ | 
|  | if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD) | 
|  | goto update_state; | 
|  | udelay(5); | 
|  |  | 
|  | /* But if the outgoing CPU dawdles, wait increasingly long times. */ | 
|  | while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) { | 
|  | schedule_timeout_uninterruptible(sleep_jf); | 
|  | jf_left -= sleep_jf; | 
|  | if (jf_left <= 0) | 
|  | break; | 
|  | sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10); | 
|  | } | 
|  | update_state: | 
|  | oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu)); | 
|  | if (oldstate == CPU_DEAD) { | 
|  | /* Outgoing CPU died normally, update state. */ | 
|  | smp_mb(); /* atomic_read() before update. */ | 
|  | atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD); | 
|  | } else { | 
|  | /* Outgoing CPU still hasn't died, set state accordingly. */ | 
|  | if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu), | 
|  | oldstate, CPU_BROKEN) != oldstate) | 
|  | goto update_state; | 
|  | ret = false; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called by the outgoing CPU to report its successful death.  Return | 
|  | * false if this report follows the surviving CPU's timing out. | 
|  | * | 
|  | * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU | 
|  | * timed out.  This approach allows architectures to omit calls to | 
|  | * cpu_check_up_prepare() and cpu_set_state_online() without defeating | 
|  | * the next cpu_wait_death()'s polling loop. | 
|  | */ | 
|  | bool cpu_report_death(void) | 
|  | { | 
|  | int oldstate; | 
|  | int newstate; | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | do { | 
|  | oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu)); | 
|  | if (oldstate != CPU_BROKEN) | 
|  | newstate = CPU_DEAD; | 
|  | else | 
|  | newstate = CPU_DEAD_FROZEN; | 
|  | } while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu), | 
|  | oldstate, newstate) != oldstate); | 
|  | return newstate == CPU_DEAD; | 
|  | } | 
|  |  | 
|  | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ |