| // SPDX-License-Identifier: GPL-2.0-only |
| /* Copyright (C) 2020 Marvell. */ |
| |
| #include <crypto/aes.h> |
| #include <crypto/authenc.h> |
| #include <crypto/cryptd.h> |
| #include <crypto/des.h> |
| #include <crypto/internal/aead.h> |
| #include <crypto/sha1.h> |
| #include <crypto/sha2.h> |
| #include <crypto/xts.h> |
| #include <crypto/gcm.h> |
| #include <crypto/scatterwalk.h> |
| #include <linux/rtnetlink.h> |
| #include <linux/sort.h> |
| #include <linux/module.h> |
| #include "otx2_cptvf.h" |
| #include "otx2_cptvf_algs.h" |
| #include "otx2_cpt_reqmgr.h" |
| |
| /* Size of salt in AES GCM mode */ |
| #define AES_GCM_SALT_SIZE 4 |
| /* Size of IV in AES GCM mode */ |
| #define AES_GCM_IV_SIZE 8 |
| /* Size of ICV (Integrity Check Value) in AES GCM mode */ |
| #define AES_GCM_ICV_SIZE 16 |
| /* Offset of IV in AES GCM mode */ |
| #define AES_GCM_IV_OFFSET 8 |
| #define CONTROL_WORD_LEN 8 |
| #define KEY2_OFFSET 48 |
| #define DMA_MODE_FLAG(dma_mode) \ |
| (((dma_mode) == OTX2_CPT_DMA_MODE_SG) ? (1 << 7) : 0) |
| |
| /* Truncated SHA digest size */ |
| #define SHA1_TRUNC_DIGEST_SIZE 12 |
| #define SHA256_TRUNC_DIGEST_SIZE 16 |
| #define SHA384_TRUNC_DIGEST_SIZE 24 |
| #define SHA512_TRUNC_DIGEST_SIZE 32 |
| |
| static DEFINE_MUTEX(mutex); |
| static int is_crypto_registered; |
| |
| struct cpt_device_desc { |
| struct pci_dev *dev; |
| int num_queues; |
| }; |
| |
| struct cpt_device_table { |
| atomic_t count; |
| struct cpt_device_desc desc[OTX2_CPT_MAX_LFS_NUM]; |
| }; |
| |
| static struct cpt_device_table se_devices = { |
| .count = ATOMIC_INIT(0) |
| }; |
| |
| static inline int get_se_device(struct pci_dev **pdev, int *cpu_num) |
| { |
| int count; |
| |
| count = atomic_read(&se_devices.count); |
| if (count < 1) |
| return -ENODEV; |
| |
| *cpu_num = get_cpu(); |
| /* |
| * On OcteonTX2 platform CPT instruction queue is bound to each |
| * local function LF, in turn LFs can be attached to PF |
| * or VF therefore we always use first device. We get maximum |
| * performance if one CPT queue is available for each cpu |
| * otherwise CPT queues need to be shared between cpus. |
| */ |
| if (*cpu_num >= se_devices.desc[0].num_queues) |
| *cpu_num %= se_devices.desc[0].num_queues; |
| *pdev = se_devices.desc[0].dev; |
| |
| put_cpu(); |
| |
| return 0; |
| } |
| |
| static inline int validate_hmac_cipher_null(struct otx2_cpt_req_info *cpt_req) |
| { |
| struct otx2_cpt_req_ctx *rctx; |
| struct aead_request *req; |
| struct crypto_aead *tfm; |
| |
| req = container_of(cpt_req->areq, struct aead_request, base); |
| tfm = crypto_aead_reqtfm(req); |
| rctx = aead_request_ctx_dma(req); |
| if (memcmp(rctx->fctx.hmac.s.hmac_calc, |
| rctx->fctx.hmac.s.hmac_recv, |
| crypto_aead_authsize(tfm)) != 0) |
| return -EBADMSG; |
| |
| return 0; |
| } |
| |
| static void otx2_cpt_aead_callback(int status, void *arg1, void *arg2) |
| { |
| struct otx2_cpt_inst_info *inst_info = arg2; |
| struct crypto_async_request *areq = arg1; |
| struct otx2_cpt_req_info *cpt_req; |
| struct pci_dev *pdev; |
| |
| if (inst_info) { |
| cpt_req = inst_info->req; |
| if (!status) { |
| /* |
| * When selected cipher is NULL we need to manually |
| * verify whether calculated hmac value matches |
| * received hmac value |
| */ |
| if (cpt_req->req_type == |
| OTX2_CPT_AEAD_ENC_DEC_NULL_REQ && |
| !cpt_req->is_enc) |
| status = validate_hmac_cipher_null(cpt_req); |
| } |
| pdev = inst_info->pdev; |
| otx2_cpt_info_destroy(pdev, inst_info); |
| } |
| if (areq) |
| crypto_request_complete(areq, status); |
| } |
| |
| static void output_iv_copyback(struct crypto_async_request *areq) |
| { |
| struct otx2_cpt_req_info *req_info; |
| struct otx2_cpt_req_ctx *rctx; |
| struct skcipher_request *sreq; |
| struct crypto_skcipher *stfm; |
| struct otx2_cpt_enc_ctx *ctx; |
| u32 start, ivsize; |
| |
| sreq = container_of(areq, struct skcipher_request, base); |
| stfm = crypto_skcipher_reqtfm(sreq); |
| ctx = crypto_skcipher_ctx(stfm); |
| if (ctx->cipher_type == OTX2_CPT_AES_CBC || |
| ctx->cipher_type == OTX2_CPT_DES3_CBC) { |
| rctx = skcipher_request_ctx_dma(sreq); |
| req_info = &rctx->cpt_req; |
| ivsize = crypto_skcipher_ivsize(stfm); |
| start = sreq->cryptlen - ivsize; |
| |
| if (req_info->is_enc) { |
| scatterwalk_map_and_copy(sreq->iv, sreq->dst, start, |
| ivsize, 0); |
| } else { |
| if (sreq->src != sreq->dst) { |
| scatterwalk_map_and_copy(sreq->iv, sreq->src, |
| start, ivsize, 0); |
| } else { |
| memcpy(sreq->iv, req_info->iv_out, ivsize); |
| kfree(req_info->iv_out); |
| } |
| } |
| } |
| } |
| |
| static void otx2_cpt_skcipher_callback(int status, void *arg1, void *arg2) |
| { |
| struct otx2_cpt_inst_info *inst_info = arg2; |
| struct crypto_async_request *areq = arg1; |
| struct pci_dev *pdev; |
| |
| if (areq) { |
| if (!status) |
| output_iv_copyback(areq); |
| if (inst_info) { |
| pdev = inst_info->pdev; |
| otx2_cpt_info_destroy(pdev, inst_info); |
| } |
| crypto_request_complete(areq, status); |
| } |
| } |
| |
| static inline void update_input_data(struct otx2_cpt_req_info *req_info, |
| struct scatterlist *inp_sg, |
| u32 nbytes, u32 *argcnt) |
| { |
| req_info->req.dlen += nbytes; |
| |
| while (nbytes) { |
| u32 len = (nbytes < inp_sg->length) ? nbytes : inp_sg->length; |
| u8 *ptr = sg_virt(inp_sg); |
| |
| req_info->in[*argcnt].vptr = (void *)ptr; |
| req_info->in[*argcnt].size = len; |
| nbytes -= len; |
| ++(*argcnt); |
| inp_sg = sg_next(inp_sg); |
| } |
| } |
| |
| static inline void update_output_data(struct otx2_cpt_req_info *req_info, |
| struct scatterlist *outp_sg, |
| u32 offset, u32 nbytes, u32 *argcnt) |
| { |
| u32 len, sg_len; |
| u8 *ptr; |
| |
| req_info->rlen += nbytes; |
| |
| while (nbytes) { |
| sg_len = outp_sg->length - offset; |
| len = (nbytes < sg_len) ? nbytes : sg_len; |
| ptr = sg_virt(outp_sg); |
| |
| req_info->out[*argcnt].vptr = (void *) (ptr + offset); |
| req_info->out[*argcnt].size = len; |
| nbytes -= len; |
| ++(*argcnt); |
| offset = 0; |
| outp_sg = sg_next(outp_sg); |
| } |
| } |
| |
| static inline int create_ctx_hdr(struct skcipher_request *req, u32 enc, |
| u32 *argcnt) |
| { |
| struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req); |
| struct otx2_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req); |
| struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(stfm); |
| struct otx2_cpt_req_info *req_info = &rctx->cpt_req; |
| struct otx2_cpt_fc_ctx *fctx = &rctx->fctx; |
| int ivsize = crypto_skcipher_ivsize(stfm); |
| u32 start = req->cryptlen - ivsize; |
| gfp_t flags; |
| |
| flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? |
| GFP_KERNEL : GFP_ATOMIC; |
| req_info->ctrl.s.dma_mode = OTX2_CPT_DMA_MODE_SG; |
| req_info->ctrl.s.se_req = 1; |
| |
| req_info->req.opcode.s.major = OTX2_CPT_MAJOR_OP_FC | |
| DMA_MODE_FLAG(OTX2_CPT_DMA_MODE_SG); |
| if (enc) { |
| req_info->req.opcode.s.minor = 2; |
| } else { |
| req_info->req.opcode.s.minor = 3; |
| if ((ctx->cipher_type == OTX2_CPT_AES_CBC || |
| ctx->cipher_type == OTX2_CPT_DES3_CBC) && |
| req->src == req->dst) { |
| req_info->iv_out = kmalloc(ivsize, flags); |
| if (!req_info->iv_out) |
| return -ENOMEM; |
| |
| scatterwalk_map_and_copy(req_info->iv_out, req->src, |
| start, ivsize, 0); |
| } |
| } |
| /* Encryption data length */ |
| req_info->req.param1 = req->cryptlen; |
| /* Authentication data length */ |
| req_info->req.param2 = 0; |
| |
| fctx->enc.enc_ctrl.e.enc_cipher = ctx->cipher_type; |
| fctx->enc.enc_ctrl.e.aes_key = ctx->key_type; |
| fctx->enc.enc_ctrl.e.iv_source = OTX2_CPT_FROM_CPTR; |
| |
| if (ctx->cipher_type == OTX2_CPT_AES_XTS) |
| memcpy(fctx->enc.encr_key, ctx->enc_key, ctx->key_len * 2); |
| else |
| memcpy(fctx->enc.encr_key, ctx->enc_key, ctx->key_len); |
| |
| memcpy(fctx->enc.encr_iv, req->iv, crypto_skcipher_ivsize(stfm)); |
| |
| cpu_to_be64s(&fctx->enc.enc_ctrl.u); |
| |
| /* |
| * Storing Packet Data Information in offset |
| * Control Word First 8 bytes |
| */ |
| req_info->in[*argcnt].vptr = (u8 *)&rctx->ctrl_word; |
| req_info->in[*argcnt].size = CONTROL_WORD_LEN; |
| req_info->req.dlen += CONTROL_WORD_LEN; |
| ++(*argcnt); |
| |
| req_info->in[*argcnt].vptr = (u8 *)fctx; |
| req_info->in[*argcnt].size = sizeof(struct otx2_cpt_fc_ctx); |
| req_info->req.dlen += sizeof(struct otx2_cpt_fc_ctx); |
| |
| ++(*argcnt); |
| |
| return 0; |
| } |
| |
| static inline int create_input_list(struct skcipher_request *req, u32 enc, |
| u32 enc_iv_len) |
| { |
| struct otx2_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req); |
| struct otx2_cpt_req_info *req_info = &rctx->cpt_req; |
| u32 argcnt = 0; |
| int ret; |
| |
| ret = create_ctx_hdr(req, enc, &argcnt); |
| if (ret) |
| return ret; |
| |
| update_input_data(req_info, req->src, req->cryptlen, &argcnt); |
| req_info->in_cnt = argcnt; |
| |
| return 0; |
| } |
| |
| static inline void create_output_list(struct skcipher_request *req, |
| u32 enc_iv_len) |
| { |
| struct otx2_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req); |
| struct otx2_cpt_req_info *req_info = &rctx->cpt_req; |
| u32 argcnt = 0; |
| |
| /* |
| * OUTPUT Buffer Processing |
| * AES encryption/decryption output would be |
| * received in the following format |
| * |
| * ------IV--------|------ENCRYPTED/DECRYPTED DATA-----| |
| * [ 16 Bytes/ [ Request Enc/Dec/ DATA Len AES CBC ] |
| */ |
| update_output_data(req_info, req->dst, 0, req->cryptlen, &argcnt); |
| req_info->out_cnt = argcnt; |
| } |
| |
| static int skcipher_do_fallback(struct skcipher_request *req, bool is_enc) |
| { |
| struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req); |
| struct otx2_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req); |
| struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(stfm); |
| int ret; |
| |
| if (ctx->fbk_cipher) { |
| skcipher_request_set_tfm(&rctx->sk_fbk_req, ctx->fbk_cipher); |
| skcipher_request_set_callback(&rctx->sk_fbk_req, |
| req->base.flags, |
| req->base.complete, |
| req->base.data); |
| skcipher_request_set_crypt(&rctx->sk_fbk_req, req->src, |
| req->dst, req->cryptlen, req->iv); |
| ret = is_enc ? crypto_skcipher_encrypt(&rctx->sk_fbk_req) : |
| crypto_skcipher_decrypt(&rctx->sk_fbk_req); |
| } else { |
| ret = -EINVAL; |
| } |
| return ret; |
| } |
| |
| static inline int cpt_enc_dec(struct skcipher_request *req, u32 enc) |
| { |
| struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req); |
| struct otx2_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req); |
| struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(stfm); |
| struct otx2_cpt_req_info *req_info = &rctx->cpt_req; |
| u32 enc_iv_len = crypto_skcipher_ivsize(stfm); |
| struct pci_dev *pdev; |
| int status, cpu_num; |
| |
| if (req->cryptlen == 0) |
| return 0; |
| |
| if (!IS_ALIGNED(req->cryptlen, ctx->enc_align_len)) |
| return -EINVAL; |
| |
| if (req->cryptlen > OTX2_CPT_MAX_REQ_SIZE) |
| return skcipher_do_fallback(req, enc); |
| |
| /* Clear control words */ |
| rctx->ctrl_word.flags = 0; |
| rctx->fctx.enc.enc_ctrl.u = 0; |
| |
| status = create_input_list(req, enc, enc_iv_len); |
| if (status) |
| return status; |
| create_output_list(req, enc_iv_len); |
| |
| status = get_se_device(&pdev, &cpu_num); |
| if (status) |
| return status; |
| |
| req_info->callback = otx2_cpt_skcipher_callback; |
| req_info->areq = &req->base; |
| req_info->req_type = OTX2_CPT_ENC_DEC_REQ; |
| req_info->is_enc = enc; |
| req_info->is_trunc_hmac = false; |
| req_info->ctrl.s.grp = otx2_cpt_get_kcrypto_eng_grp_num(pdev); |
| |
| /* |
| * We perform an asynchronous send and once |
| * the request is completed the driver would |
| * intimate through registered call back functions |
| */ |
| status = otx2_cpt_do_request(pdev, req_info, cpu_num); |
| |
| return status; |
| } |
| |
| static int otx2_cpt_skcipher_encrypt(struct skcipher_request *req) |
| { |
| return cpt_enc_dec(req, true); |
| } |
| |
| static int otx2_cpt_skcipher_decrypt(struct skcipher_request *req) |
| { |
| return cpt_enc_dec(req, false); |
| } |
| |
| static int otx2_cpt_skcipher_xts_setkey(struct crypto_skcipher *tfm, |
| const u8 *key, u32 keylen) |
| { |
| struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm); |
| const u8 *key2 = key + (keylen / 2); |
| const u8 *key1 = key; |
| int ret; |
| |
| ret = xts_verify_key(tfm, key, keylen); |
| if (ret) |
| return ret; |
| ctx->key_len = keylen; |
| ctx->enc_align_len = 1; |
| memcpy(ctx->enc_key, key1, keylen / 2); |
| memcpy(ctx->enc_key + KEY2_OFFSET, key2, keylen / 2); |
| ctx->cipher_type = OTX2_CPT_AES_XTS; |
| switch (ctx->key_len) { |
| case 2 * AES_KEYSIZE_128: |
| ctx->key_type = OTX2_CPT_AES_128_BIT; |
| break; |
| case 2 * AES_KEYSIZE_192: |
| ctx->key_type = OTX2_CPT_AES_192_BIT; |
| break; |
| case 2 * AES_KEYSIZE_256: |
| ctx->key_type = OTX2_CPT_AES_256_BIT; |
| break; |
| default: |
| return -EINVAL; |
| } |
| return crypto_skcipher_setkey(ctx->fbk_cipher, key, keylen); |
| } |
| |
| static int cpt_des_setkey(struct crypto_skcipher *tfm, const u8 *key, |
| u32 keylen, u8 cipher_type) |
| { |
| struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm); |
| |
| if (keylen != DES3_EDE_KEY_SIZE) |
| return -EINVAL; |
| |
| ctx->key_len = keylen; |
| ctx->cipher_type = cipher_type; |
| ctx->enc_align_len = 8; |
| |
| memcpy(ctx->enc_key, key, keylen); |
| |
| return crypto_skcipher_setkey(ctx->fbk_cipher, key, keylen); |
| } |
| |
| static int cpt_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, |
| u32 keylen, u8 cipher_type) |
| { |
| struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm); |
| |
| switch (keylen) { |
| case AES_KEYSIZE_128: |
| ctx->key_type = OTX2_CPT_AES_128_BIT; |
| break; |
| case AES_KEYSIZE_192: |
| ctx->key_type = OTX2_CPT_AES_192_BIT; |
| break; |
| case AES_KEYSIZE_256: |
| ctx->key_type = OTX2_CPT_AES_256_BIT; |
| break; |
| default: |
| return -EINVAL; |
| } |
| if (cipher_type == OTX2_CPT_AES_CBC || cipher_type == OTX2_CPT_AES_ECB) |
| ctx->enc_align_len = 16; |
| else |
| ctx->enc_align_len = 1; |
| |
| ctx->key_len = keylen; |
| ctx->cipher_type = cipher_type; |
| |
| memcpy(ctx->enc_key, key, keylen); |
| |
| return crypto_skcipher_setkey(ctx->fbk_cipher, key, keylen); |
| } |
| |
| static int otx2_cpt_skcipher_cbc_aes_setkey(struct crypto_skcipher *tfm, |
| const u8 *key, u32 keylen) |
| { |
| return cpt_aes_setkey(tfm, key, keylen, OTX2_CPT_AES_CBC); |
| } |
| |
| static int otx2_cpt_skcipher_ecb_aes_setkey(struct crypto_skcipher *tfm, |
| const u8 *key, u32 keylen) |
| { |
| return cpt_aes_setkey(tfm, key, keylen, OTX2_CPT_AES_ECB); |
| } |
| |
| static int otx2_cpt_skcipher_cbc_des3_setkey(struct crypto_skcipher *tfm, |
| const u8 *key, u32 keylen) |
| { |
| return cpt_des_setkey(tfm, key, keylen, OTX2_CPT_DES3_CBC); |
| } |
| |
| static int otx2_cpt_skcipher_ecb_des3_setkey(struct crypto_skcipher *tfm, |
| const u8 *key, u32 keylen) |
| { |
| return cpt_des_setkey(tfm, key, keylen, OTX2_CPT_DES3_ECB); |
| } |
| |
| static int cpt_skcipher_fallback_init(struct otx2_cpt_enc_ctx *ctx, |
| struct crypto_alg *alg) |
| { |
| if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) { |
| ctx->fbk_cipher = |
| crypto_alloc_skcipher(alg->cra_name, 0, |
| CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_NEED_FALLBACK); |
| if (IS_ERR(ctx->fbk_cipher)) { |
| pr_err("%s() failed to allocate fallback for %s\n", |
| __func__, alg->cra_name); |
| return PTR_ERR(ctx->fbk_cipher); |
| } |
| } |
| return 0; |
| } |
| |
| static int otx2_cpt_enc_dec_init(struct crypto_skcipher *stfm) |
| { |
| struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(stfm); |
| struct crypto_tfm *tfm = crypto_skcipher_tfm(stfm); |
| struct crypto_alg *alg = tfm->__crt_alg; |
| |
| memset(ctx, 0, sizeof(*ctx)); |
| /* |
| * Additional memory for skcipher_request is |
| * allocated since the cryptd daemon uses |
| * this memory for request_ctx information |
| */ |
| crypto_skcipher_set_reqsize_dma( |
| stfm, sizeof(struct otx2_cpt_req_ctx) + |
| sizeof(struct skcipher_request)); |
| |
| return cpt_skcipher_fallback_init(ctx, alg); |
| } |
| |
| static void otx2_cpt_skcipher_exit(struct crypto_skcipher *tfm) |
| { |
| struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm); |
| |
| if (ctx->fbk_cipher) { |
| crypto_free_skcipher(ctx->fbk_cipher); |
| ctx->fbk_cipher = NULL; |
| } |
| } |
| |
| static int cpt_aead_fallback_init(struct otx2_cpt_aead_ctx *ctx, |
| struct crypto_alg *alg) |
| { |
| if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) { |
| ctx->fbk_cipher = |
| crypto_alloc_aead(alg->cra_name, 0, |
| CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_NEED_FALLBACK); |
| if (IS_ERR(ctx->fbk_cipher)) { |
| pr_err("%s() failed to allocate fallback for %s\n", |
| __func__, alg->cra_name); |
| return PTR_ERR(ctx->fbk_cipher); |
| } |
| } |
| return 0; |
| } |
| |
| static int cpt_aead_init(struct crypto_aead *atfm, u8 cipher_type, u8 mac_type) |
| { |
| struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(atfm); |
| struct crypto_tfm *tfm = crypto_aead_tfm(atfm); |
| struct crypto_alg *alg = tfm->__crt_alg; |
| |
| ctx->cipher_type = cipher_type; |
| ctx->mac_type = mac_type; |
| |
| /* |
| * When selected cipher is NULL we use HMAC opcode instead of |
| * FLEXICRYPTO opcode therefore we don't need to use HASH algorithms |
| * for calculating ipad and opad |
| */ |
| if (ctx->cipher_type != OTX2_CPT_CIPHER_NULL) { |
| switch (ctx->mac_type) { |
| case OTX2_CPT_SHA1: |
| ctx->hashalg = crypto_alloc_shash("sha1", 0, |
| CRYPTO_ALG_ASYNC); |
| if (IS_ERR(ctx->hashalg)) |
| return PTR_ERR(ctx->hashalg); |
| break; |
| |
| case OTX2_CPT_SHA256: |
| ctx->hashalg = crypto_alloc_shash("sha256", 0, |
| CRYPTO_ALG_ASYNC); |
| if (IS_ERR(ctx->hashalg)) |
| return PTR_ERR(ctx->hashalg); |
| break; |
| |
| case OTX2_CPT_SHA384: |
| ctx->hashalg = crypto_alloc_shash("sha384", 0, |
| CRYPTO_ALG_ASYNC); |
| if (IS_ERR(ctx->hashalg)) |
| return PTR_ERR(ctx->hashalg); |
| break; |
| |
| case OTX2_CPT_SHA512: |
| ctx->hashalg = crypto_alloc_shash("sha512", 0, |
| CRYPTO_ALG_ASYNC); |
| if (IS_ERR(ctx->hashalg)) |
| return PTR_ERR(ctx->hashalg); |
| break; |
| } |
| } |
| switch (ctx->cipher_type) { |
| case OTX2_CPT_AES_CBC: |
| case OTX2_CPT_AES_ECB: |
| ctx->enc_align_len = 16; |
| break; |
| case OTX2_CPT_DES3_CBC: |
| case OTX2_CPT_DES3_ECB: |
| ctx->enc_align_len = 8; |
| break; |
| case OTX2_CPT_AES_GCM: |
| case OTX2_CPT_CIPHER_NULL: |
| ctx->enc_align_len = 1; |
| break; |
| } |
| crypto_aead_set_reqsize_dma(atfm, sizeof(struct otx2_cpt_req_ctx)); |
| |
| return cpt_aead_fallback_init(ctx, alg); |
| } |
| |
| static int otx2_cpt_aead_cbc_aes_sha1_init(struct crypto_aead *tfm) |
| { |
| return cpt_aead_init(tfm, OTX2_CPT_AES_CBC, OTX2_CPT_SHA1); |
| } |
| |
| static int otx2_cpt_aead_cbc_aes_sha256_init(struct crypto_aead *tfm) |
| { |
| return cpt_aead_init(tfm, OTX2_CPT_AES_CBC, OTX2_CPT_SHA256); |
| } |
| |
| static int otx2_cpt_aead_cbc_aes_sha384_init(struct crypto_aead *tfm) |
| { |
| return cpt_aead_init(tfm, OTX2_CPT_AES_CBC, OTX2_CPT_SHA384); |
| } |
| |
| static int otx2_cpt_aead_cbc_aes_sha512_init(struct crypto_aead *tfm) |
| { |
| return cpt_aead_init(tfm, OTX2_CPT_AES_CBC, OTX2_CPT_SHA512); |
| } |
| |
| static int otx2_cpt_aead_ecb_null_sha1_init(struct crypto_aead *tfm) |
| { |
| return cpt_aead_init(tfm, OTX2_CPT_CIPHER_NULL, OTX2_CPT_SHA1); |
| } |
| |
| static int otx2_cpt_aead_ecb_null_sha256_init(struct crypto_aead *tfm) |
| { |
| return cpt_aead_init(tfm, OTX2_CPT_CIPHER_NULL, OTX2_CPT_SHA256); |
| } |
| |
| static int otx2_cpt_aead_ecb_null_sha384_init(struct crypto_aead *tfm) |
| { |
| return cpt_aead_init(tfm, OTX2_CPT_CIPHER_NULL, OTX2_CPT_SHA384); |
| } |
| |
| static int otx2_cpt_aead_ecb_null_sha512_init(struct crypto_aead *tfm) |
| { |
| return cpt_aead_init(tfm, OTX2_CPT_CIPHER_NULL, OTX2_CPT_SHA512); |
| } |
| |
| static int otx2_cpt_aead_gcm_aes_init(struct crypto_aead *tfm) |
| { |
| return cpt_aead_init(tfm, OTX2_CPT_AES_GCM, OTX2_CPT_MAC_NULL); |
| } |
| |
| static void otx2_cpt_aead_exit(struct crypto_aead *tfm) |
| { |
| struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm); |
| |
| kfree(ctx->ipad); |
| kfree(ctx->opad); |
| if (ctx->hashalg) |
| crypto_free_shash(ctx->hashalg); |
| kfree(ctx->sdesc); |
| |
| if (ctx->fbk_cipher) { |
| crypto_free_aead(ctx->fbk_cipher); |
| ctx->fbk_cipher = NULL; |
| } |
| } |
| |
| static int otx2_cpt_aead_gcm_set_authsize(struct crypto_aead *tfm, |
| unsigned int authsize) |
| { |
| struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm); |
| |
| if (crypto_rfc4106_check_authsize(authsize)) |
| return -EINVAL; |
| |
| tfm->authsize = authsize; |
| /* Set authsize for fallback case */ |
| if (ctx->fbk_cipher) |
| ctx->fbk_cipher->authsize = authsize; |
| |
| return 0; |
| } |
| |
| static int otx2_cpt_aead_set_authsize(struct crypto_aead *tfm, |
| unsigned int authsize) |
| { |
| tfm->authsize = authsize; |
| |
| return 0; |
| } |
| |
| static int otx2_cpt_aead_null_set_authsize(struct crypto_aead *tfm, |
| unsigned int authsize) |
| { |
| struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm); |
| |
| ctx->is_trunc_hmac = true; |
| tfm->authsize = authsize; |
| |
| return 0; |
| } |
| |
| static struct otx2_cpt_sdesc *alloc_sdesc(struct crypto_shash *alg) |
| { |
| struct otx2_cpt_sdesc *sdesc; |
| int size; |
| |
| size = sizeof(struct shash_desc) + crypto_shash_descsize(alg); |
| sdesc = kmalloc(size, GFP_KERNEL); |
| if (!sdesc) |
| return NULL; |
| |
| sdesc->shash.tfm = alg; |
| |
| return sdesc; |
| } |
| |
| static inline void swap_data32(void *buf, u32 len) |
| { |
| cpu_to_be32_array(buf, buf, len / 4); |
| } |
| |
| static inline void swap_data64(void *buf, u32 len) |
| { |
| u64 *src = buf; |
| int i = 0; |
| |
| for (i = 0 ; i < len / 8; i++, src++) |
| cpu_to_be64s(src); |
| } |
| |
| static int copy_pad(u8 mac_type, u8 *out_pad, u8 *in_pad) |
| { |
| struct sha512_state *sha512; |
| struct sha256_state *sha256; |
| struct sha1_state *sha1; |
| |
| switch (mac_type) { |
| case OTX2_CPT_SHA1: |
| sha1 = (struct sha1_state *) in_pad; |
| swap_data32(sha1->state, SHA1_DIGEST_SIZE); |
| memcpy(out_pad, &sha1->state, SHA1_DIGEST_SIZE); |
| break; |
| |
| case OTX2_CPT_SHA256: |
| sha256 = (struct sha256_state *) in_pad; |
| swap_data32(sha256->state, SHA256_DIGEST_SIZE); |
| memcpy(out_pad, &sha256->state, SHA256_DIGEST_SIZE); |
| break; |
| |
| case OTX2_CPT_SHA384: |
| case OTX2_CPT_SHA512: |
| sha512 = (struct sha512_state *) in_pad; |
| swap_data64(sha512->state, SHA512_DIGEST_SIZE); |
| memcpy(out_pad, &sha512->state, SHA512_DIGEST_SIZE); |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int aead_hmac_init(struct crypto_aead *cipher) |
| { |
| struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(cipher); |
| int state_size = crypto_shash_statesize(ctx->hashalg); |
| int ds = crypto_shash_digestsize(ctx->hashalg); |
| int bs = crypto_shash_blocksize(ctx->hashalg); |
| int authkeylen = ctx->auth_key_len; |
| u8 *ipad = NULL, *opad = NULL; |
| int ret = 0, icount = 0; |
| |
| ctx->sdesc = alloc_sdesc(ctx->hashalg); |
| if (!ctx->sdesc) |
| return -ENOMEM; |
| |
| ctx->ipad = kzalloc(bs, GFP_KERNEL); |
| if (!ctx->ipad) { |
| ret = -ENOMEM; |
| goto calc_fail; |
| } |
| |
| ctx->opad = kzalloc(bs, GFP_KERNEL); |
| if (!ctx->opad) { |
| ret = -ENOMEM; |
| goto calc_fail; |
| } |
| |
| ipad = kzalloc(state_size, GFP_KERNEL); |
| if (!ipad) { |
| ret = -ENOMEM; |
| goto calc_fail; |
| } |
| |
| opad = kzalloc(state_size, GFP_KERNEL); |
| if (!opad) { |
| ret = -ENOMEM; |
| goto calc_fail; |
| } |
| |
| if (authkeylen > bs) { |
| ret = crypto_shash_digest(&ctx->sdesc->shash, ctx->key, |
| authkeylen, ipad); |
| if (ret) |
| goto calc_fail; |
| |
| authkeylen = ds; |
| } else { |
| memcpy(ipad, ctx->key, authkeylen); |
| } |
| |
| memset(ipad + authkeylen, 0, bs - authkeylen); |
| memcpy(opad, ipad, bs); |
| |
| for (icount = 0; icount < bs; icount++) { |
| ipad[icount] ^= 0x36; |
| opad[icount] ^= 0x5c; |
| } |
| |
| /* |
| * Partial Hash calculated from the software |
| * algorithm is retrieved for IPAD & OPAD |
| */ |
| |
| /* IPAD Calculation */ |
| crypto_shash_init(&ctx->sdesc->shash); |
| crypto_shash_update(&ctx->sdesc->shash, ipad, bs); |
| crypto_shash_export(&ctx->sdesc->shash, ipad); |
| ret = copy_pad(ctx->mac_type, ctx->ipad, ipad); |
| if (ret) |
| goto calc_fail; |
| |
| /* OPAD Calculation */ |
| crypto_shash_init(&ctx->sdesc->shash); |
| crypto_shash_update(&ctx->sdesc->shash, opad, bs); |
| crypto_shash_export(&ctx->sdesc->shash, opad); |
| ret = copy_pad(ctx->mac_type, ctx->opad, opad); |
| if (ret) |
| goto calc_fail; |
| |
| kfree(ipad); |
| kfree(opad); |
| |
| return 0; |
| |
| calc_fail: |
| kfree(ctx->ipad); |
| ctx->ipad = NULL; |
| kfree(ctx->opad); |
| ctx->opad = NULL; |
| kfree(ipad); |
| kfree(opad); |
| kfree(ctx->sdesc); |
| ctx->sdesc = NULL; |
| |
| return ret; |
| } |
| |
| static int otx2_cpt_aead_cbc_aes_sha_setkey(struct crypto_aead *cipher, |
| const unsigned char *key, |
| unsigned int keylen) |
| { |
| struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(cipher); |
| struct crypto_authenc_key_param *param; |
| int enckeylen = 0, authkeylen = 0; |
| struct rtattr *rta = (void *)key; |
| |
| if (!RTA_OK(rta, keylen)) |
| return -EINVAL; |
| |
| if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM) |
| return -EINVAL; |
| |
| if (RTA_PAYLOAD(rta) < sizeof(*param)) |
| return -EINVAL; |
| |
| param = RTA_DATA(rta); |
| enckeylen = be32_to_cpu(param->enckeylen); |
| key += RTA_ALIGN(rta->rta_len); |
| keylen -= RTA_ALIGN(rta->rta_len); |
| if (keylen < enckeylen) |
| return -EINVAL; |
| |
| if (keylen > OTX2_CPT_MAX_KEY_SIZE) |
| return -EINVAL; |
| |
| authkeylen = keylen - enckeylen; |
| memcpy(ctx->key, key, keylen); |
| |
| switch (enckeylen) { |
| case AES_KEYSIZE_128: |
| ctx->key_type = OTX2_CPT_AES_128_BIT; |
| break; |
| case AES_KEYSIZE_192: |
| ctx->key_type = OTX2_CPT_AES_192_BIT; |
| break; |
| case AES_KEYSIZE_256: |
| ctx->key_type = OTX2_CPT_AES_256_BIT; |
| break; |
| default: |
| /* Invalid key length */ |
| return -EINVAL; |
| } |
| |
| ctx->enc_key_len = enckeylen; |
| ctx->auth_key_len = authkeylen; |
| |
| return aead_hmac_init(cipher); |
| } |
| |
| static int otx2_cpt_aead_ecb_null_sha_setkey(struct crypto_aead *cipher, |
| const unsigned char *key, |
| unsigned int keylen) |
| { |
| struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(cipher); |
| struct crypto_authenc_key_param *param; |
| struct rtattr *rta = (void *)key; |
| int enckeylen = 0; |
| |
| if (!RTA_OK(rta, keylen)) |
| return -EINVAL; |
| |
| if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM) |
| return -EINVAL; |
| |
| if (RTA_PAYLOAD(rta) < sizeof(*param)) |
| return -EINVAL; |
| |
| param = RTA_DATA(rta); |
| enckeylen = be32_to_cpu(param->enckeylen); |
| key += RTA_ALIGN(rta->rta_len); |
| keylen -= RTA_ALIGN(rta->rta_len); |
| if (enckeylen != 0) |
| return -EINVAL; |
| |
| if (keylen > OTX2_CPT_MAX_KEY_SIZE) |
| return -EINVAL; |
| |
| memcpy(ctx->key, key, keylen); |
| ctx->enc_key_len = enckeylen; |
| ctx->auth_key_len = keylen; |
| |
| return 0; |
| } |
| |
| static int otx2_cpt_aead_gcm_aes_setkey(struct crypto_aead *cipher, |
| const unsigned char *key, |
| unsigned int keylen) |
| { |
| struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(cipher); |
| |
| /* |
| * For aes gcm we expect to get encryption key (16, 24, 32 bytes) |
| * and salt (4 bytes) |
| */ |
| switch (keylen) { |
| case AES_KEYSIZE_128 + AES_GCM_SALT_SIZE: |
| ctx->key_type = OTX2_CPT_AES_128_BIT; |
| ctx->enc_key_len = AES_KEYSIZE_128; |
| break; |
| case AES_KEYSIZE_192 + AES_GCM_SALT_SIZE: |
| ctx->key_type = OTX2_CPT_AES_192_BIT; |
| ctx->enc_key_len = AES_KEYSIZE_192; |
| break; |
| case AES_KEYSIZE_256 + AES_GCM_SALT_SIZE: |
| ctx->key_type = OTX2_CPT_AES_256_BIT; |
| ctx->enc_key_len = AES_KEYSIZE_256; |
| break; |
| default: |
| /* Invalid key and salt length */ |
| return -EINVAL; |
| } |
| |
| /* Store encryption key and salt */ |
| memcpy(ctx->key, key, keylen); |
| |
| return crypto_aead_setkey(ctx->fbk_cipher, key, keylen); |
| } |
| |
| static inline int create_aead_ctx_hdr(struct aead_request *req, u32 enc, |
| u32 *argcnt) |
| { |
| struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req); |
| struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
| struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm); |
| struct otx2_cpt_req_info *req_info = &rctx->cpt_req; |
| struct otx2_cpt_fc_ctx *fctx = &rctx->fctx; |
| int mac_len = crypto_aead_authsize(tfm); |
| int ds; |
| |
| rctx->ctrl_word.e.enc_data_offset = req->assoclen; |
| |
| switch (ctx->cipher_type) { |
| case OTX2_CPT_AES_CBC: |
| if (req->assoclen > 248 || !IS_ALIGNED(req->assoclen, 8)) |
| return -EINVAL; |
| |
| fctx->enc.enc_ctrl.e.iv_source = OTX2_CPT_FROM_CPTR; |
| /* Copy encryption key to context */ |
| memcpy(fctx->enc.encr_key, ctx->key + ctx->auth_key_len, |
| ctx->enc_key_len); |
| /* Copy IV to context */ |
| memcpy(fctx->enc.encr_iv, req->iv, crypto_aead_ivsize(tfm)); |
| |
| ds = crypto_shash_digestsize(ctx->hashalg); |
| if (ctx->mac_type == OTX2_CPT_SHA384) |
| ds = SHA512_DIGEST_SIZE; |
| if (ctx->ipad) |
| memcpy(fctx->hmac.e.ipad, ctx->ipad, ds); |
| if (ctx->opad) |
| memcpy(fctx->hmac.e.opad, ctx->opad, ds); |
| break; |
| |
| case OTX2_CPT_AES_GCM: |
| if (crypto_ipsec_check_assoclen(req->assoclen)) |
| return -EINVAL; |
| |
| fctx->enc.enc_ctrl.e.iv_source = OTX2_CPT_FROM_DPTR; |
| /* Copy encryption key to context */ |
| memcpy(fctx->enc.encr_key, ctx->key, ctx->enc_key_len); |
| /* Copy salt to context */ |
| memcpy(fctx->enc.encr_iv, ctx->key + ctx->enc_key_len, |
| AES_GCM_SALT_SIZE); |
| |
| rctx->ctrl_word.e.iv_offset = req->assoclen - AES_GCM_IV_OFFSET; |
| break; |
| |
| default: |
| /* Unknown cipher type */ |
| return -EINVAL; |
| } |
| cpu_to_be64s(&rctx->ctrl_word.flags); |
| |
| req_info->ctrl.s.dma_mode = OTX2_CPT_DMA_MODE_SG; |
| req_info->ctrl.s.se_req = 1; |
| req_info->req.opcode.s.major = OTX2_CPT_MAJOR_OP_FC | |
| DMA_MODE_FLAG(OTX2_CPT_DMA_MODE_SG); |
| if (enc) { |
| req_info->req.opcode.s.minor = 2; |
| req_info->req.param1 = req->cryptlen; |
| req_info->req.param2 = req->cryptlen + req->assoclen; |
| } else { |
| req_info->req.opcode.s.minor = 3; |
| req_info->req.param1 = req->cryptlen - mac_len; |
| req_info->req.param2 = req->cryptlen + req->assoclen - mac_len; |
| } |
| |
| fctx->enc.enc_ctrl.e.enc_cipher = ctx->cipher_type; |
| fctx->enc.enc_ctrl.e.aes_key = ctx->key_type; |
| fctx->enc.enc_ctrl.e.mac_type = ctx->mac_type; |
| fctx->enc.enc_ctrl.e.mac_len = mac_len; |
| cpu_to_be64s(&fctx->enc.enc_ctrl.u); |
| |
| /* |
| * Storing Packet Data Information in offset |
| * Control Word First 8 bytes |
| */ |
| req_info->in[*argcnt].vptr = (u8 *)&rctx->ctrl_word; |
| req_info->in[*argcnt].size = CONTROL_WORD_LEN; |
| req_info->req.dlen += CONTROL_WORD_LEN; |
| ++(*argcnt); |
| |
| req_info->in[*argcnt].vptr = (u8 *)fctx; |
| req_info->in[*argcnt].size = sizeof(struct otx2_cpt_fc_ctx); |
| req_info->req.dlen += sizeof(struct otx2_cpt_fc_ctx); |
| ++(*argcnt); |
| |
| return 0; |
| } |
| |
| static inline void create_hmac_ctx_hdr(struct aead_request *req, u32 *argcnt, |
| u32 enc) |
| { |
| struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req); |
| struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
| struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm); |
| struct otx2_cpt_req_info *req_info = &rctx->cpt_req; |
| |
| req_info->ctrl.s.dma_mode = OTX2_CPT_DMA_MODE_SG; |
| req_info->ctrl.s.se_req = 1; |
| req_info->req.opcode.s.major = OTX2_CPT_MAJOR_OP_HMAC | |
| DMA_MODE_FLAG(OTX2_CPT_DMA_MODE_SG); |
| req_info->is_trunc_hmac = ctx->is_trunc_hmac; |
| |
| req_info->req.opcode.s.minor = 0; |
| req_info->req.param1 = ctx->auth_key_len; |
| req_info->req.param2 = ctx->mac_type << 8; |
| |
| /* Add authentication key */ |
| req_info->in[*argcnt].vptr = ctx->key; |
| req_info->in[*argcnt].size = round_up(ctx->auth_key_len, 8); |
| req_info->req.dlen += round_up(ctx->auth_key_len, 8); |
| ++(*argcnt); |
| } |
| |
| static inline int create_aead_input_list(struct aead_request *req, u32 enc) |
| { |
| struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req); |
| struct otx2_cpt_req_info *req_info = &rctx->cpt_req; |
| u32 inputlen = req->cryptlen + req->assoclen; |
| u32 status, argcnt = 0; |
| |
| status = create_aead_ctx_hdr(req, enc, &argcnt); |
| if (status) |
| return status; |
| update_input_data(req_info, req->src, inputlen, &argcnt); |
| req_info->in_cnt = argcnt; |
| |
| return 0; |
| } |
| |
| static inline void create_aead_output_list(struct aead_request *req, u32 enc, |
| u32 mac_len) |
| { |
| struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req); |
| struct otx2_cpt_req_info *req_info = &rctx->cpt_req; |
| u32 argcnt = 0, outputlen = 0; |
| |
| if (enc) |
| outputlen = req->cryptlen + req->assoclen + mac_len; |
| else |
| outputlen = req->cryptlen + req->assoclen - mac_len; |
| |
| update_output_data(req_info, req->dst, 0, outputlen, &argcnt); |
| req_info->out_cnt = argcnt; |
| } |
| |
| static inline void create_aead_null_input_list(struct aead_request *req, |
| u32 enc, u32 mac_len) |
| { |
| struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req); |
| struct otx2_cpt_req_info *req_info = &rctx->cpt_req; |
| u32 inputlen, argcnt = 0; |
| |
| if (enc) |
| inputlen = req->cryptlen + req->assoclen; |
| else |
| inputlen = req->cryptlen + req->assoclen - mac_len; |
| |
| create_hmac_ctx_hdr(req, &argcnt, enc); |
| update_input_data(req_info, req->src, inputlen, &argcnt); |
| req_info->in_cnt = argcnt; |
| } |
| |
| static inline int create_aead_null_output_list(struct aead_request *req, |
| u32 enc, u32 mac_len) |
| { |
| struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req); |
| struct otx2_cpt_req_info *req_info = &rctx->cpt_req; |
| struct scatterlist *dst; |
| u8 *ptr = NULL; |
| int argcnt = 0, status, offset; |
| u32 inputlen; |
| |
| if (enc) |
| inputlen = req->cryptlen + req->assoclen; |
| else |
| inputlen = req->cryptlen + req->assoclen - mac_len; |
| |
| /* |
| * If source and destination are different |
| * then copy payload to destination |
| */ |
| if (req->src != req->dst) { |
| |
| ptr = kmalloc(inputlen, (req_info->areq->flags & |
| CRYPTO_TFM_REQ_MAY_SLEEP) ? |
| GFP_KERNEL : GFP_ATOMIC); |
| if (!ptr) |
| return -ENOMEM; |
| |
| status = sg_copy_to_buffer(req->src, sg_nents(req->src), ptr, |
| inputlen); |
| if (status != inputlen) { |
| status = -EINVAL; |
| goto error_free; |
| } |
| status = sg_copy_from_buffer(req->dst, sg_nents(req->dst), ptr, |
| inputlen); |
| if (status != inputlen) { |
| status = -EINVAL; |
| goto error_free; |
| } |
| kfree(ptr); |
| } |
| |
| if (enc) { |
| /* |
| * In an encryption scenario hmac needs |
| * to be appended after payload |
| */ |
| dst = req->dst; |
| offset = inputlen; |
| while (offset >= dst->length) { |
| offset -= dst->length; |
| dst = sg_next(dst); |
| if (!dst) |
| return -ENOENT; |
| } |
| |
| update_output_data(req_info, dst, offset, mac_len, &argcnt); |
| } else { |
| /* |
| * In a decryption scenario calculated hmac for received |
| * payload needs to be compare with hmac received |
| */ |
| status = sg_copy_buffer(req->src, sg_nents(req->src), |
| rctx->fctx.hmac.s.hmac_recv, mac_len, |
| inputlen, true); |
| if (status != mac_len) |
| return -EINVAL; |
| |
| req_info->out[argcnt].vptr = rctx->fctx.hmac.s.hmac_calc; |
| req_info->out[argcnt].size = mac_len; |
| argcnt++; |
| } |
| |
| req_info->out_cnt = argcnt; |
| return 0; |
| |
| error_free: |
| kfree(ptr); |
| return status; |
| } |
| |
| static int aead_do_fallback(struct aead_request *req, bool is_enc) |
| { |
| struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req); |
| struct crypto_aead *aead = crypto_aead_reqtfm(req); |
| struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(aead); |
| int ret; |
| |
| if (ctx->fbk_cipher) { |
| /* Store the cipher tfm and then use the fallback tfm */ |
| aead_request_set_tfm(&rctx->fbk_req, ctx->fbk_cipher); |
| aead_request_set_callback(&rctx->fbk_req, req->base.flags, |
| req->base.complete, req->base.data); |
| aead_request_set_crypt(&rctx->fbk_req, req->src, |
| req->dst, req->cryptlen, req->iv); |
| aead_request_set_ad(&rctx->fbk_req, req->assoclen); |
| ret = is_enc ? crypto_aead_encrypt(&rctx->fbk_req) : |
| crypto_aead_decrypt(&rctx->fbk_req); |
| } else { |
| ret = -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| static int cpt_aead_enc_dec(struct aead_request *req, u8 reg_type, u8 enc) |
| { |
| struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req); |
| struct otx2_cpt_req_info *req_info = &rctx->cpt_req; |
| struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
| struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm); |
| struct pci_dev *pdev; |
| int status, cpu_num; |
| |
| /* Clear control words */ |
| rctx->ctrl_word.flags = 0; |
| rctx->fctx.enc.enc_ctrl.u = 0; |
| |
| req_info->callback = otx2_cpt_aead_callback; |
| req_info->areq = &req->base; |
| req_info->req_type = reg_type; |
| req_info->is_enc = enc; |
| req_info->is_trunc_hmac = false; |
| |
| switch (reg_type) { |
| case OTX2_CPT_AEAD_ENC_DEC_REQ: |
| status = create_aead_input_list(req, enc); |
| if (status) |
| return status; |
| create_aead_output_list(req, enc, crypto_aead_authsize(tfm)); |
| break; |
| |
| case OTX2_CPT_AEAD_ENC_DEC_NULL_REQ: |
| create_aead_null_input_list(req, enc, |
| crypto_aead_authsize(tfm)); |
| status = create_aead_null_output_list(req, enc, |
| crypto_aead_authsize(tfm)); |
| if (status) |
| return status; |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| if (!IS_ALIGNED(req_info->req.param1, ctx->enc_align_len)) |
| return -EINVAL; |
| |
| if (!req_info->req.param2 || |
| (req_info->req.param1 > OTX2_CPT_MAX_REQ_SIZE) || |
| (req_info->req.param2 > OTX2_CPT_MAX_REQ_SIZE)) |
| return aead_do_fallback(req, enc); |
| |
| status = get_se_device(&pdev, &cpu_num); |
| if (status) |
| return status; |
| |
| req_info->ctrl.s.grp = otx2_cpt_get_kcrypto_eng_grp_num(pdev); |
| |
| /* |
| * We perform an asynchronous send and once |
| * the request is completed the driver would |
| * intimate through registered call back functions |
| */ |
| return otx2_cpt_do_request(pdev, req_info, cpu_num); |
| } |
| |
| static int otx2_cpt_aead_encrypt(struct aead_request *req) |
| { |
| return cpt_aead_enc_dec(req, OTX2_CPT_AEAD_ENC_DEC_REQ, true); |
| } |
| |
| static int otx2_cpt_aead_decrypt(struct aead_request *req) |
| { |
| return cpt_aead_enc_dec(req, OTX2_CPT_AEAD_ENC_DEC_REQ, false); |
| } |
| |
| static int otx2_cpt_aead_null_encrypt(struct aead_request *req) |
| { |
| return cpt_aead_enc_dec(req, OTX2_CPT_AEAD_ENC_DEC_NULL_REQ, true); |
| } |
| |
| static int otx2_cpt_aead_null_decrypt(struct aead_request *req) |
| { |
| return cpt_aead_enc_dec(req, OTX2_CPT_AEAD_ENC_DEC_NULL_REQ, false); |
| } |
| |
| static struct skcipher_alg otx2_cpt_skciphers[] = { { |
| .base.cra_name = "xts(aes)", |
| .base.cra_driver_name = "cpt_xts_aes", |
| .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, |
| .base.cra_blocksize = AES_BLOCK_SIZE, |
| .base.cra_ctxsize = sizeof(struct otx2_cpt_enc_ctx), |
| .base.cra_alignmask = 7, |
| .base.cra_priority = 4001, |
| .base.cra_module = THIS_MODULE, |
| |
| .init = otx2_cpt_enc_dec_init, |
| .exit = otx2_cpt_skcipher_exit, |
| .ivsize = AES_BLOCK_SIZE, |
| .min_keysize = 2 * AES_MIN_KEY_SIZE, |
| .max_keysize = 2 * AES_MAX_KEY_SIZE, |
| .setkey = otx2_cpt_skcipher_xts_setkey, |
| .encrypt = otx2_cpt_skcipher_encrypt, |
| .decrypt = otx2_cpt_skcipher_decrypt, |
| }, { |
| .base.cra_name = "cbc(aes)", |
| .base.cra_driver_name = "cpt_cbc_aes", |
| .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, |
| .base.cra_blocksize = AES_BLOCK_SIZE, |
| .base.cra_ctxsize = sizeof(struct otx2_cpt_enc_ctx), |
| .base.cra_alignmask = 7, |
| .base.cra_priority = 4001, |
| .base.cra_module = THIS_MODULE, |
| |
| .init = otx2_cpt_enc_dec_init, |
| .exit = otx2_cpt_skcipher_exit, |
| .ivsize = AES_BLOCK_SIZE, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .setkey = otx2_cpt_skcipher_cbc_aes_setkey, |
| .encrypt = otx2_cpt_skcipher_encrypt, |
| .decrypt = otx2_cpt_skcipher_decrypt, |
| }, { |
| .base.cra_name = "ecb(aes)", |
| .base.cra_driver_name = "cpt_ecb_aes", |
| .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, |
| .base.cra_blocksize = AES_BLOCK_SIZE, |
| .base.cra_ctxsize = sizeof(struct otx2_cpt_enc_ctx), |
| .base.cra_alignmask = 7, |
| .base.cra_priority = 4001, |
| .base.cra_module = THIS_MODULE, |
| |
| .init = otx2_cpt_enc_dec_init, |
| .exit = otx2_cpt_skcipher_exit, |
| .ivsize = 0, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .setkey = otx2_cpt_skcipher_ecb_aes_setkey, |
| .encrypt = otx2_cpt_skcipher_encrypt, |
| .decrypt = otx2_cpt_skcipher_decrypt, |
| }, { |
| .base.cra_name = "cbc(des3_ede)", |
| .base.cra_driver_name = "cpt_cbc_des3_ede", |
| .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, |
| .base.cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| .base.cra_ctxsize = sizeof(struct otx2_cpt_enc_ctx), |
| .base.cra_alignmask = 7, |
| .base.cra_priority = 4001, |
| .base.cra_module = THIS_MODULE, |
| |
| .init = otx2_cpt_enc_dec_init, |
| .exit = otx2_cpt_skcipher_exit, |
| .min_keysize = DES3_EDE_KEY_SIZE, |
| .max_keysize = DES3_EDE_KEY_SIZE, |
| .ivsize = DES_BLOCK_SIZE, |
| .setkey = otx2_cpt_skcipher_cbc_des3_setkey, |
| .encrypt = otx2_cpt_skcipher_encrypt, |
| .decrypt = otx2_cpt_skcipher_decrypt, |
| }, { |
| .base.cra_name = "ecb(des3_ede)", |
| .base.cra_driver_name = "cpt_ecb_des3_ede", |
| .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, |
| .base.cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| .base.cra_ctxsize = sizeof(struct otx2_cpt_enc_ctx), |
| .base.cra_alignmask = 7, |
| .base.cra_priority = 4001, |
| .base.cra_module = THIS_MODULE, |
| |
| .init = otx2_cpt_enc_dec_init, |
| .exit = otx2_cpt_skcipher_exit, |
| .min_keysize = DES3_EDE_KEY_SIZE, |
| .max_keysize = DES3_EDE_KEY_SIZE, |
| .ivsize = 0, |
| .setkey = otx2_cpt_skcipher_ecb_des3_setkey, |
| .encrypt = otx2_cpt_skcipher_encrypt, |
| .decrypt = otx2_cpt_skcipher_decrypt, |
| } }; |
| |
| static struct aead_alg otx2_cpt_aeads[] = { { |
| .base = { |
| .cra_name = "authenc(hmac(sha1),cbc(aes))", |
| .cra_driver_name = "cpt_hmac_sha1_cbc_aes", |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, |
| .cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING, |
| .cra_priority = 4001, |
| .cra_alignmask = 0, |
| .cra_module = THIS_MODULE, |
| }, |
| .init = otx2_cpt_aead_cbc_aes_sha1_init, |
| .exit = otx2_cpt_aead_exit, |
| .setkey = otx2_cpt_aead_cbc_aes_sha_setkey, |
| .setauthsize = otx2_cpt_aead_set_authsize, |
| .encrypt = otx2_cpt_aead_encrypt, |
| .decrypt = otx2_cpt_aead_decrypt, |
| .ivsize = AES_BLOCK_SIZE, |
| .maxauthsize = SHA1_DIGEST_SIZE, |
| }, { |
| .base = { |
| .cra_name = "authenc(hmac(sha256),cbc(aes))", |
| .cra_driver_name = "cpt_hmac_sha256_cbc_aes", |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, |
| .cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING, |
| .cra_priority = 4001, |
| .cra_alignmask = 0, |
| .cra_module = THIS_MODULE, |
| }, |
| .init = otx2_cpt_aead_cbc_aes_sha256_init, |
| .exit = otx2_cpt_aead_exit, |
| .setkey = otx2_cpt_aead_cbc_aes_sha_setkey, |
| .setauthsize = otx2_cpt_aead_set_authsize, |
| .encrypt = otx2_cpt_aead_encrypt, |
| .decrypt = otx2_cpt_aead_decrypt, |
| .ivsize = AES_BLOCK_SIZE, |
| .maxauthsize = SHA256_DIGEST_SIZE, |
| }, { |
| .base = { |
| .cra_name = "authenc(hmac(sha384),cbc(aes))", |
| .cra_driver_name = "cpt_hmac_sha384_cbc_aes", |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, |
| .cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING, |
| .cra_priority = 4001, |
| .cra_alignmask = 0, |
| .cra_module = THIS_MODULE, |
| }, |
| .init = otx2_cpt_aead_cbc_aes_sha384_init, |
| .exit = otx2_cpt_aead_exit, |
| .setkey = otx2_cpt_aead_cbc_aes_sha_setkey, |
| .setauthsize = otx2_cpt_aead_set_authsize, |
| .encrypt = otx2_cpt_aead_encrypt, |
| .decrypt = otx2_cpt_aead_decrypt, |
| .ivsize = AES_BLOCK_SIZE, |
| .maxauthsize = SHA384_DIGEST_SIZE, |
| }, { |
| .base = { |
| .cra_name = "authenc(hmac(sha512),cbc(aes))", |
| .cra_driver_name = "cpt_hmac_sha512_cbc_aes", |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, |
| .cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING, |
| .cra_priority = 4001, |
| .cra_alignmask = 0, |
| .cra_module = THIS_MODULE, |
| }, |
| .init = otx2_cpt_aead_cbc_aes_sha512_init, |
| .exit = otx2_cpt_aead_exit, |
| .setkey = otx2_cpt_aead_cbc_aes_sha_setkey, |
| .setauthsize = otx2_cpt_aead_set_authsize, |
| .encrypt = otx2_cpt_aead_encrypt, |
| .decrypt = otx2_cpt_aead_decrypt, |
| .ivsize = AES_BLOCK_SIZE, |
| .maxauthsize = SHA512_DIGEST_SIZE, |
| }, { |
| .base = { |
| .cra_name = "authenc(hmac(sha1),ecb(cipher_null))", |
| .cra_driver_name = "cpt_hmac_sha1_ecb_null", |
| .cra_blocksize = 1, |
| .cra_flags = CRYPTO_ALG_ASYNC, |
| .cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING, |
| .cra_priority = 4001, |
| .cra_alignmask = 0, |
| .cra_module = THIS_MODULE, |
| }, |
| .init = otx2_cpt_aead_ecb_null_sha1_init, |
| .exit = otx2_cpt_aead_exit, |
| .setkey = otx2_cpt_aead_ecb_null_sha_setkey, |
| .setauthsize = otx2_cpt_aead_null_set_authsize, |
| .encrypt = otx2_cpt_aead_null_encrypt, |
| .decrypt = otx2_cpt_aead_null_decrypt, |
| .ivsize = 0, |
| .maxauthsize = SHA1_DIGEST_SIZE, |
| }, { |
| .base = { |
| .cra_name = "authenc(hmac(sha256),ecb(cipher_null))", |
| .cra_driver_name = "cpt_hmac_sha256_ecb_null", |
| .cra_blocksize = 1, |
| .cra_flags = CRYPTO_ALG_ASYNC, |
| .cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING, |
| .cra_priority = 4001, |
| .cra_alignmask = 0, |
| .cra_module = THIS_MODULE, |
| }, |
| .init = otx2_cpt_aead_ecb_null_sha256_init, |
| .exit = otx2_cpt_aead_exit, |
| .setkey = otx2_cpt_aead_ecb_null_sha_setkey, |
| .setauthsize = otx2_cpt_aead_null_set_authsize, |
| .encrypt = otx2_cpt_aead_null_encrypt, |
| .decrypt = otx2_cpt_aead_null_decrypt, |
| .ivsize = 0, |
| .maxauthsize = SHA256_DIGEST_SIZE, |
| }, { |
| .base = { |
| .cra_name = "authenc(hmac(sha384),ecb(cipher_null))", |
| .cra_driver_name = "cpt_hmac_sha384_ecb_null", |
| .cra_blocksize = 1, |
| .cra_flags = CRYPTO_ALG_ASYNC, |
| .cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING, |
| .cra_priority = 4001, |
| .cra_alignmask = 0, |
| .cra_module = THIS_MODULE, |
| }, |
| .init = otx2_cpt_aead_ecb_null_sha384_init, |
| .exit = otx2_cpt_aead_exit, |
| .setkey = otx2_cpt_aead_ecb_null_sha_setkey, |
| .setauthsize = otx2_cpt_aead_null_set_authsize, |
| .encrypt = otx2_cpt_aead_null_encrypt, |
| .decrypt = otx2_cpt_aead_null_decrypt, |
| .ivsize = 0, |
| .maxauthsize = SHA384_DIGEST_SIZE, |
| }, { |
| .base = { |
| .cra_name = "authenc(hmac(sha512),ecb(cipher_null))", |
| .cra_driver_name = "cpt_hmac_sha512_ecb_null", |
| .cra_blocksize = 1, |
| .cra_flags = CRYPTO_ALG_ASYNC, |
| .cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING, |
| .cra_priority = 4001, |
| .cra_alignmask = 0, |
| .cra_module = THIS_MODULE, |
| }, |
| .init = otx2_cpt_aead_ecb_null_sha512_init, |
| .exit = otx2_cpt_aead_exit, |
| .setkey = otx2_cpt_aead_ecb_null_sha_setkey, |
| .setauthsize = otx2_cpt_aead_null_set_authsize, |
| .encrypt = otx2_cpt_aead_null_encrypt, |
| .decrypt = otx2_cpt_aead_null_decrypt, |
| .ivsize = 0, |
| .maxauthsize = SHA512_DIGEST_SIZE, |
| }, { |
| .base = { |
| .cra_name = "rfc4106(gcm(aes))", |
| .cra_driver_name = "cpt_rfc4106_gcm_aes", |
| .cra_blocksize = 1, |
| .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, |
| .cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING, |
| .cra_priority = 4001, |
| .cra_alignmask = 0, |
| .cra_module = THIS_MODULE, |
| }, |
| .init = otx2_cpt_aead_gcm_aes_init, |
| .exit = otx2_cpt_aead_exit, |
| .setkey = otx2_cpt_aead_gcm_aes_setkey, |
| .setauthsize = otx2_cpt_aead_gcm_set_authsize, |
| .encrypt = otx2_cpt_aead_encrypt, |
| .decrypt = otx2_cpt_aead_decrypt, |
| .ivsize = AES_GCM_IV_SIZE, |
| .maxauthsize = AES_GCM_ICV_SIZE, |
| } }; |
| |
| static inline int cpt_register_algs(void) |
| { |
| int i, err = 0; |
| |
| for (i = 0; i < ARRAY_SIZE(otx2_cpt_skciphers); i++) |
| otx2_cpt_skciphers[i].base.cra_flags &= ~CRYPTO_ALG_DEAD; |
| |
| err = crypto_register_skciphers(otx2_cpt_skciphers, |
| ARRAY_SIZE(otx2_cpt_skciphers)); |
| if (err) |
| return err; |
| |
| for (i = 0; i < ARRAY_SIZE(otx2_cpt_aeads); i++) |
| otx2_cpt_aeads[i].base.cra_flags &= ~CRYPTO_ALG_DEAD; |
| |
| err = crypto_register_aeads(otx2_cpt_aeads, |
| ARRAY_SIZE(otx2_cpt_aeads)); |
| if (err) { |
| crypto_unregister_skciphers(otx2_cpt_skciphers, |
| ARRAY_SIZE(otx2_cpt_skciphers)); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static inline void cpt_unregister_algs(void) |
| { |
| crypto_unregister_skciphers(otx2_cpt_skciphers, |
| ARRAY_SIZE(otx2_cpt_skciphers)); |
| crypto_unregister_aeads(otx2_cpt_aeads, ARRAY_SIZE(otx2_cpt_aeads)); |
| } |
| |
| static int compare_func(const void *lptr, const void *rptr) |
| { |
| const struct cpt_device_desc *ldesc = (struct cpt_device_desc *) lptr; |
| const struct cpt_device_desc *rdesc = (struct cpt_device_desc *) rptr; |
| |
| if (ldesc->dev->devfn < rdesc->dev->devfn) |
| return -1; |
| if (ldesc->dev->devfn > rdesc->dev->devfn) |
| return 1; |
| return 0; |
| } |
| |
| static void swap_func(void *lptr, void *rptr, int size) |
| { |
| struct cpt_device_desc *ldesc = lptr; |
| struct cpt_device_desc *rdesc = rptr; |
| |
| swap(*ldesc, *rdesc); |
| } |
| |
| int otx2_cpt_crypto_init(struct pci_dev *pdev, struct module *mod, |
| int num_queues, int num_devices) |
| { |
| int ret = 0; |
| int count; |
| |
| mutex_lock(&mutex); |
| count = atomic_read(&se_devices.count); |
| if (count >= OTX2_CPT_MAX_LFS_NUM) { |
| dev_err(&pdev->dev, "No space to add a new device\n"); |
| ret = -ENOSPC; |
| goto unlock; |
| } |
| se_devices.desc[count].num_queues = num_queues; |
| se_devices.desc[count++].dev = pdev; |
| atomic_inc(&se_devices.count); |
| |
| if (atomic_read(&se_devices.count) == num_devices && |
| is_crypto_registered == false) { |
| if (cpt_register_algs()) { |
| dev_err(&pdev->dev, |
| "Error in registering crypto algorithms\n"); |
| ret = -EINVAL; |
| goto unlock; |
| } |
| try_module_get(mod); |
| is_crypto_registered = true; |
| } |
| sort(se_devices.desc, count, sizeof(struct cpt_device_desc), |
| compare_func, swap_func); |
| |
| unlock: |
| mutex_unlock(&mutex); |
| return ret; |
| } |
| |
| void otx2_cpt_crypto_exit(struct pci_dev *pdev, struct module *mod) |
| { |
| struct cpt_device_table *dev_tbl; |
| bool dev_found = false; |
| int i, j, count; |
| |
| mutex_lock(&mutex); |
| |
| dev_tbl = &se_devices; |
| count = atomic_read(&dev_tbl->count); |
| for (i = 0; i < count; i++) { |
| if (pdev == dev_tbl->desc[i].dev) { |
| for (j = i; j < count-1; j++) |
| dev_tbl->desc[j] = dev_tbl->desc[j+1]; |
| dev_found = true; |
| break; |
| } |
| } |
| |
| if (!dev_found) { |
| dev_err(&pdev->dev, "%s device not found\n", __func__); |
| goto unlock; |
| } |
| if (atomic_dec_and_test(&se_devices.count)) { |
| cpt_unregister_algs(); |
| module_put(mod); |
| is_crypto_registered = false; |
| } |
| |
| unlock: |
| mutex_unlock(&mutex); |
| } |