| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (c) 2023 MediaTek Inc. |
| * Author: Balsam CHIHI <bchihi@baylibre.com> |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/clk-provider.h> |
| #include <linux/delay.h> |
| #include <linux/debugfs.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/iopoll.h> |
| #include <linux/kernel.h> |
| #include <linux/nvmem-consumer.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/reset.h> |
| #include <linux/thermal.h> |
| #include <dt-bindings/thermal/mediatek,lvts-thermal.h> |
| |
| #include "../thermal_hwmon.h" |
| |
| #define LVTS_MONCTL0(__base) (__base + 0x0000) |
| #define LVTS_MONCTL1(__base) (__base + 0x0004) |
| #define LVTS_MONCTL2(__base) (__base + 0x0008) |
| #define LVTS_MONINT(__base) (__base + 0x000C) |
| #define LVTS_MONINTSTS(__base) (__base + 0x0010) |
| #define LVTS_MONIDET0(__base) (__base + 0x0014) |
| #define LVTS_MONIDET1(__base) (__base + 0x0018) |
| #define LVTS_MONIDET2(__base) (__base + 0x001C) |
| #define LVTS_MONIDET3(__base) (__base + 0x0020) |
| #define LVTS_H2NTHRE(__base) (__base + 0x0024) |
| #define LVTS_HTHRE(__base) (__base + 0x0028) |
| #define LVTS_OFFSETH(__base) (__base + 0x0030) |
| #define LVTS_OFFSETL(__base) (__base + 0x0034) |
| #define LVTS_MSRCTL0(__base) (__base + 0x0038) |
| #define LVTS_MSRCTL1(__base) (__base + 0x003C) |
| #define LVTS_TSSEL(__base) (__base + 0x0040) |
| #define LVTS_CALSCALE(__base) (__base + 0x0048) |
| #define LVTS_ID(__base) (__base + 0x004C) |
| #define LVTS_CONFIG(__base) (__base + 0x0050) |
| #define LVTS_EDATA00(__base) (__base + 0x0054) |
| #define LVTS_EDATA01(__base) (__base + 0x0058) |
| #define LVTS_EDATA02(__base) (__base + 0x005C) |
| #define LVTS_EDATA03(__base) (__base + 0x0060) |
| #define LVTS_MSR0(__base) (__base + 0x0090) |
| #define LVTS_MSR1(__base) (__base + 0x0094) |
| #define LVTS_MSR2(__base) (__base + 0x0098) |
| #define LVTS_MSR3(__base) (__base + 0x009C) |
| #define LVTS_IMMD0(__base) (__base + 0x00A0) |
| #define LVTS_IMMD1(__base) (__base + 0x00A4) |
| #define LVTS_IMMD2(__base) (__base + 0x00A8) |
| #define LVTS_IMMD3(__base) (__base + 0x00AC) |
| #define LVTS_PROTCTL(__base) (__base + 0x00C0) |
| #define LVTS_PROTTA(__base) (__base + 0x00C4) |
| #define LVTS_PROTTB(__base) (__base + 0x00C8) |
| #define LVTS_PROTTC(__base) (__base + 0x00CC) |
| #define LVTS_CLKEN(__base) (__base + 0x00E4) |
| |
| #define LVTS_PERIOD_UNIT 0 |
| #define LVTS_GROUP_INTERVAL 0 |
| #define LVTS_FILTER_INTERVAL 0 |
| #define LVTS_SENSOR_INTERVAL 0 |
| #define LVTS_HW_FILTER 0x0 |
| #define LVTS_TSSEL_CONF 0x13121110 |
| #define LVTS_CALSCALE_CONF 0x300 |
| #define LVTS_MONINT_CONF 0x8300318C |
| |
| #define LVTS_MONINT_OFFSET_SENSOR0 0xC |
| #define LVTS_MONINT_OFFSET_SENSOR1 0x180 |
| #define LVTS_MONINT_OFFSET_SENSOR2 0x3000 |
| #define LVTS_MONINT_OFFSET_SENSOR3 0x3000000 |
| |
| #define LVTS_INT_SENSOR0 0x0009001F |
| #define LVTS_INT_SENSOR1 0x001203E0 |
| #define LVTS_INT_SENSOR2 0x00247C00 |
| #define LVTS_INT_SENSOR3 0x1FC00000 |
| |
| #define LVTS_SENSOR_MAX 4 |
| #define LVTS_GOLDEN_TEMP_MAX 62 |
| #define LVTS_GOLDEN_TEMP_DEFAULT 50 |
| #define LVTS_COEFF_A -250460 |
| #define LVTS_COEFF_B 250460 |
| |
| #define LVTS_MSR_IMMEDIATE_MODE 0 |
| #define LVTS_MSR_FILTERED_MODE 1 |
| |
| #define LVTS_MSR_READ_TIMEOUT_US 400 |
| #define LVTS_MSR_READ_WAIT_US (LVTS_MSR_READ_TIMEOUT_US / 2) |
| |
| #define LVTS_HW_SHUTDOWN_MT8195 105000 |
| |
| #define LVTS_MINIMUM_THRESHOLD 20000 |
| |
| static int golden_temp = LVTS_GOLDEN_TEMP_DEFAULT; |
| static int coeff_b = LVTS_COEFF_B; |
| |
| struct lvts_sensor_data { |
| int dt_id; |
| }; |
| |
| struct lvts_ctrl_data { |
| struct lvts_sensor_data lvts_sensor[LVTS_SENSOR_MAX]; |
| int cal_offset[LVTS_SENSOR_MAX]; |
| int hw_tshut_temp; |
| int num_lvts_sensor; |
| int offset; |
| int mode; |
| }; |
| |
| struct lvts_data { |
| const struct lvts_ctrl_data *lvts_ctrl; |
| int num_lvts_ctrl; |
| }; |
| |
| struct lvts_sensor { |
| struct thermal_zone_device *tz; |
| void __iomem *msr; |
| void __iomem *base; |
| int id; |
| int dt_id; |
| int low_thresh; |
| int high_thresh; |
| }; |
| |
| struct lvts_ctrl { |
| struct lvts_sensor sensors[LVTS_SENSOR_MAX]; |
| u32 calibration[LVTS_SENSOR_MAX]; |
| u32 hw_tshut_raw_temp; |
| int num_lvts_sensor; |
| int mode; |
| void __iomem *base; |
| int low_thresh; |
| int high_thresh; |
| }; |
| |
| struct lvts_domain { |
| struct lvts_ctrl *lvts_ctrl; |
| struct reset_control *reset; |
| struct clk *clk; |
| int num_lvts_ctrl; |
| void __iomem *base; |
| size_t calib_len; |
| u8 *calib; |
| #ifdef CONFIG_DEBUG_FS |
| struct dentry *dom_dentry; |
| #endif |
| }; |
| |
| #ifdef CONFIG_MTK_LVTS_THERMAL_DEBUGFS |
| |
| #define LVTS_DEBUG_FS_REGS(__reg) \ |
| { \ |
| .name = __stringify(__reg), \ |
| .offset = __reg(0), \ |
| } |
| |
| static const struct debugfs_reg32 lvts_regs[] = { |
| LVTS_DEBUG_FS_REGS(LVTS_MONCTL0), |
| LVTS_DEBUG_FS_REGS(LVTS_MONCTL1), |
| LVTS_DEBUG_FS_REGS(LVTS_MONCTL2), |
| LVTS_DEBUG_FS_REGS(LVTS_MONINT), |
| LVTS_DEBUG_FS_REGS(LVTS_MONINTSTS), |
| LVTS_DEBUG_FS_REGS(LVTS_MONIDET0), |
| LVTS_DEBUG_FS_REGS(LVTS_MONIDET1), |
| LVTS_DEBUG_FS_REGS(LVTS_MONIDET2), |
| LVTS_DEBUG_FS_REGS(LVTS_MONIDET3), |
| LVTS_DEBUG_FS_REGS(LVTS_H2NTHRE), |
| LVTS_DEBUG_FS_REGS(LVTS_HTHRE), |
| LVTS_DEBUG_FS_REGS(LVTS_OFFSETH), |
| LVTS_DEBUG_FS_REGS(LVTS_OFFSETL), |
| LVTS_DEBUG_FS_REGS(LVTS_MSRCTL0), |
| LVTS_DEBUG_FS_REGS(LVTS_MSRCTL1), |
| LVTS_DEBUG_FS_REGS(LVTS_TSSEL), |
| LVTS_DEBUG_FS_REGS(LVTS_CALSCALE), |
| LVTS_DEBUG_FS_REGS(LVTS_ID), |
| LVTS_DEBUG_FS_REGS(LVTS_CONFIG), |
| LVTS_DEBUG_FS_REGS(LVTS_EDATA00), |
| LVTS_DEBUG_FS_REGS(LVTS_EDATA01), |
| LVTS_DEBUG_FS_REGS(LVTS_EDATA02), |
| LVTS_DEBUG_FS_REGS(LVTS_EDATA03), |
| LVTS_DEBUG_FS_REGS(LVTS_MSR0), |
| LVTS_DEBUG_FS_REGS(LVTS_MSR1), |
| LVTS_DEBUG_FS_REGS(LVTS_MSR2), |
| LVTS_DEBUG_FS_REGS(LVTS_MSR3), |
| LVTS_DEBUG_FS_REGS(LVTS_IMMD0), |
| LVTS_DEBUG_FS_REGS(LVTS_IMMD1), |
| LVTS_DEBUG_FS_REGS(LVTS_IMMD2), |
| LVTS_DEBUG_FS_REGS(LVTS_IMMD3), |
| LVTS_DEBUG_FS_REGS(LVTS_PROTCTL), |
| LVTS_DEBUG_FS_REGS(LVTS_PROTTA), |
| LVTS_DEBUG_FS_REGS(LVTS_PROTTB), |
| LVTS_DEBUG_FS_REGS(LVTS_PROTTC), |
| LVTS_DEBUG_FS_REGS(LVTS_CLKEN), |
| }; |
| |
| static int lvts_debugfs_init(struct device *dev, struct lvts_domain *lvts_td) |
| { |
| struct debugfs_regset32 *regset; |
| struct lvts_ctrl *lvts_ctrl; |
| struct dentry *dentry; |
| char name[64]; |
| int i; |
| |
| lvts_td->dom_dentry = debugfs_create_dir(dev_name(dev), NULL); |
| if (IS_ERR(lvts_td->dom_dentry)) |
| return 0; |
| |
| for (i = 0; i < lvts_td->num_lvts_ctrl; i++) { |
| |
| lvts_ctrl = &lvts_td->lvts_ctrl[i]; |
| |
| sprintf(name, "controller%d", i); |
| dentry = debugfs_create_dir(name, lvts_td->dom_dentry); |
| if (!dentry) |
| continue; |
| |
| regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL); |
| if (!regset) |
| continue; |
| |
| regset->base = lvts_ctrl->base; |
| regset->regs = lvts_regs; |
| regset->nregs = ARRAY_SIZE(lvts_regs); |
| |
| debugfs_create_regset32("registers", 0400, dentry, regset); |
| } |
| |
| return 0; |
| } |
| |
| static void lvts_debugfs_exit(struct lvts_domain *lvts_td) |
| { |
| debugfs_remove_recursive(lvts_td->dom_dentry); |
| } |
| |
| #else |
| |
| static inline int lvts_debugfs_init(struct device *dev, |
| struct lvts_domain *lvts_td) |
| { |
| return 0; |
| } |
| |
| static void lvts_debugfs_exit(struct lvts_domain *lvts_td) { } |
| |
| #endif |
| |
| static int lvts_raw_to_temp(u32 raw_temp) |
| { |
| int temperature; |
| |
| temperature = ((s64)(raw_temp & 0xFFFF) * LVTS_COEFF_A) >> 14; |
| temperature += coeff_b; |
| |
| return temperature; |
| } |
| |
| static u32 lvts_temp_to_raw(int temperature) |
| { |
| u32 raw_temp = ((s64)(coeff_b - temperature)) << 14; |
| |
| raw_temp = div_s64(raw_temp, -LVTS_COEFF_A); |
| |
| return raw_temp; |
| } |
| |
| static int lvts_get_temp(struct thermal_zone_device *tz, int *temp) |
| { |
| struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz); |
| void __iomem *msr = lvts_sensor->msr; |
| u32 value; |
| int rc; |
| |
| /* |
| * Measurement registers: |
| * |
| * LVTS_MSR[0-3] / LVTS_IMMD[0-3] |
| * |
| * Bits: |
| * |
| * 32-17: Unused |
| * 16 : Valid temperature |
| * 15-0 : Raw temperature |
| */ |
| rc = readl_poll_timeout(msr, value, value & BIT(16), |
| LVTS_MSR_READ_WAIT_US, LVTS_MSR_READ_TIMEOUT_US); |
| |
| /* |
| * As the thermal zone temperature will read before the |
| * hardware sensor is fully initialized, we have to check the |
| * validity of the temperature returned when reading the |
| * measurement register. The thermal controller will set the |
| * valid bit temperature only when it is totally initialized. |
| * |
| * Otherwise, we may end up with garbage values out of the |
| * functionning temperature and directly jump to a system |
| * shutdown. |
| */ |
| if (rc) |
| return -EAGAIN; |
| |
| *temp = lvts_raw_to_temp(value & 0xFFFF); |
| |
| return 0; |
| } |
| |
| static void lvts_update_irq_mask(struct lvts_ctrl *lvts_ctrl) |
| { |
| u32 masks[] = { |
| LVTS_MONINT_OFFSET_SENSOR0, |
| LVTS_MONINT_OFFSET_SENSOR1, |
| LVTS_MONINT_OFFSET_SENSOR2, |
| LVTS_MONINT_OFFSET_SENSOR3, |
| }; |
| u32 value = 0; |
| int i; |
| |
| value = readl(LVTS_MONINT(lvts_ctrl->base)); |
| |
| for (i = 0; i < ARRAY_SIZE(masks); i++) { |
| if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh |
| && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh) |
| value |= masks[i]; |
| else |
| value &= ~masks[i]; |
| } |
| |
| writel(value, LVTS_MONINT(lvts_ctrl->base)); |
| } |
| |
| static bool lvts_should_update_thresh(struct lvts_ctrl *lvts_ctrl, int high) |
| { |
| int i; |
| |
| if (high > lvts_ctrl->high_thresh) |
| return true; |
| |
| for (i = 0; i < lvts_ctrl->num_lvts_sensor; i++) |
| if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh |
| && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh) |
| return false; |
| |
| return true; |
| } |
| |
| static int lvts_set_trips(struct thermal_zone_device *tz, int low, int high) |
| { |
| struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz); |
| struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl, sensors[lvts_sensor->id]); |
| void __iomem *base = lvts_sensor->base; |
| u32 raw_low = lvts_temp_to_raw(low != -INT_MAX ? low : LVTS_MINIMUM_THRESHOLD); |
| u32 raw_high = lvts_temp_to_raw(high); |
| bool should_update_thresh; |
| |
| lvts_sensor->low_thresh = low; |
| lvts_sensor->high_thresh = high; |
| |
| should_update_thresh = lvts_should_update_thresh(lvts_ctrl, high); |
| if (should_update_thresh) { |
| lvts_ctrl->high_thresh = high; |
| lvts_ctrl->low_thresh = low; |
| } |
| lvts_update_irq_mask(lvts_ctrl); |
| |
| if (!should_update_thresh) |
| return 0; |
| |
| /* |
| * Low offset temperature threshold |
| * |
| * LVTS_OFFSETL |
| * |
| * Bits: |
| * |
| * 14-0 : Raw temperature for threshold |
| */ |
| pr_debug("%s: Setting low limit temperature interrupt: %d\n", |
| thermal_zone_device_type(tz), low); |
| writel(raw_low, LVTS_OFFSETL(base)); |
| |
| /* |
| * High offset temperature threshold |
| * |
| * LVTS_OFFSETH |
| * |
| * Bits: |
| * |
| * 14-0 : Raw temperature for threshold |
| */ |
| pr_debug("%s: Setting high limit temperature interrupt: %d\n", |
| thermal_zone_device_type(tz), high); |
| writel(raw_high, LVTS_OFFSETH(base)); |
| |
| return 0; |
| } |
| |
| static irqreturn_t lvts_ctrl_irq_handler(struct lvts_ctrl *lvts_ctrl) |
| { |
| irqreturn_t iret = IRQ_NONE; |
| u32 value; |
| u32 masks[] = { |
| LVTS_INT_SENSOR0, |
| LVTS_INT_SENSOR1, |
| LVTS_INT_SENSOR2, |
| LVTS_INT_SENSOR3 |
| }; |
| int i; |
| |
| /* |
| * Interrupt monitoring status |
| * |
| * LVTS_MONINTST |
| * |
| * Bits: |
| * |
| * 31 : Interrupt for stage 3 |
| * 30 : Interrupt for stage 2 |
| * 29 : Interrupt for state 1 |
| * 28 : Interrupt using filter on sensor 3 |
| * |
| * 27 : Interrupt using immediate on sensor 3 |
| * 26 : Interrupt normal to hot on sensor 3 |
| * 25 : Interrupt high offset on sensor 3 |
| * 24 : Interrupt low offset on sensor 3 |
| * |
| * 23 : Interrupt hot threshold on sensor 3 |
| * 22 : Interrupt cold threshold on sensor 3 |
| * 21 : Interrupt using filter on sensor 2 |
| * 20 : Interrupt using filter on sensor 1 |
| * |
| * 19 : Interrupt using filter on sensor 0 |
| * 18 : Interrupt using immediate on sensor 2 |
| * 17 : Interrupt using immediate on sensor 1 |
| * 16 : Interrupt using immediate on sensor 0 |
| * |
| * 15 : Interrupt device access timeout interrupt |
| * 14 : Interrupt normal to hot on sensor 2 |
| * 13 : Interrupt high offset interrupt on sensor 2 |
| * 12 : Interrupt low offset interrupt on sensor 2 |
| * |
| * 11 : Interrupt hot threshold on sensor 2 |
| * 10 : Interrupt cold threshold on sensor 2 |
| * 9 : Interrupt normal to hot on sensor 1 |
| * 8 : Interrupt high offset interrupt on sensor 1 |
| * |
| * 7 : Interrupt low offset interrupt on sensor 1 |
| * 6 : Interrupt hot threshold on sensor 1 |
| * 5 : Interrupt cold threshold on sensor 1 |
| * 4 : Interrupt normal to hot on sensor 0 |
| * |
| * 3 : Interrupt high offset interrupt on sensor 0 |
| * 2 : Interrupt low offset interrupt on sensor 0 |
| * 1 : Interrupt hot threshold on sensor 0 |
| * 0 : Interrupt cold threshold on sensor 0 |
| * |
| * We are interested in the sensor(s) responsible of the |
| * interrupt event. We update the thermal framework with the |
| * thermal zone associated with the sensor. The framework will |
| * take care of the rest whatever the kind of interrupt, we |
| * are only interested in which sensor raised the interrupt. |
| * |
| * sensor 3 interrupt: 0001 1111 1100 0000 0000 0000 0000 0000 |
| * => 0x1FC00000 |
| * sensor 2 interrupt: 0000 0000 0010 0100 0111 1100 0000 0000 |
| * => 0x00247C00 |
| * sensor 1 interrupt: 0000 0000 0001 0010 0000 0011 1110 0000 |
| * => 0X001203E0 |
| * sensor 0 interrupt: 0000 0000 0000 1001 0000 0000 0001 1111 |
| * => 0x0009001F |
| */ |
| value = readl(LVTS_MONINTSTS(lvts_ctrl->base)); |
| |
| /* |
| * Let's figure out which sensors raised the interrupt |
| * |
| * NOTE: the masks array must be ordered with the index |
| * corresponding to the sensor id eg. index=0, mask for |
| * sensor0. |
| */ |
| for (i = 0; i < ARRAY_SIZE(masks); i++) { |
| |
| if (!(value & masks[i])) |
| continue; |
| |
| thermal_zone_device_update(lvts_ctrl->sensors[i].tz, |
| THERMAL_TRIP_VIOLATED); |
| iret = IRQ_HANDLED; |
| } |
| |
| /* |
| * Write back to clear the interrupt status (W1C) |
| */ |
| writel(value, LVTS_MONINTSTS(lvts_ctrl->base)); |
| |
| return iret; |
| } |
| |
| /* |
| * Temperature interrupt handler. Even if the driver supports more |
| * interrupt modes, we use the interrupt when the temperature crosses |
| * the hot threshold the way up and the way down (modulo the |
| * hysteresis). |
| * |
| * Each thermal domain has a couple of interrupts, one for hardware |
| * reset and another one for all the thermal events happening on the |
| * different sensors. |
| * |
| * The interrupt is configured for thermal events when crossing the |
| * hot temperature limit. At each interrupt, we check in every |
| * controller if there is an interrupt pending. |
| */ |
| static irqreturn_t lvts_irq_handler(int irq, void *data) |
| { |
| struct lvts_domain *lvts_td = data; |
| irqreturn_t aux, iret = IRQ_NONE; |
| int i; |
| |
| for (i = 0; i < lvts_td->num_lvts_ctrl; i++) { |
| |
| aux = lvts_ctrl_irq_handler(&lvts_td->lvts_ctrl[i]); |
| if (aux != IRQ_HANDLED) |
| continue; |
| |
| iret = IRQ_HANDLED; |
| } |
| |
| return iret; |
| } |
| |
| static struct thermal_zone_device_ops lvts_ops = { |
| .get_temp = lvts_get_temp, |
| .set_trips = lvts_set_trips, |
| }; |
| |
| static int lvts_sensor_init(struct device *dev, struct lvts_ctrl *lvts_ctrl, |
| const struct lvts_ctrl_data *lvts_ctrl_data) |
| { |
| struct lvts_sensor *lvts_sensor = lvts_ctrl->sensors; |
| void __iomem *msr_regs[] = { |
| LVTS_MSR0(lvts_ctrl->base), |
| LVTS_MSR1(lvts_ctrl->base), |
| LVTS_MSR2(lvts_ctrl->base), |
| LVTS_MSR3(lvts_ctrl->base) |
| }; |
| |
| void __iomem *imm_regs[] = { |
| LVTS_IMMD0(lvts_ctrl->base), |
| LVTS_IMMD1(lvts_ctrl->base), |
| LVTS_IMMD2(lvts_ctrl->base), |
| LVTS_IMMD3(lvts_ctrl->base) |
| }; |
| |
| int i; |
| |
| for (i = 0; i < lvts_ctrl_data->num_lvts_sensor; i++) { |
| |
| int dt_id = lvts_ctrl_data->lvts_sensor[i].dt_id; |
| |
| /* |
| * At this point, we don't know which id matches which |
| * sensor. Let's set arbitrally the id from the index. |
| */ |
| lvts_sensor[i].id = i; |
| |
| /* |
| * The thermal zone registration will set the trip |
| * point interrupt in the thermal controller |
| * register. But this one will be reset in the |
| * initialization after. So we need to post pone the |
| * thermal zone creation after the controller is |
| * setup. For this reason, we store the device tree |
| * node id from the data in the sensor structure |
| */ |
| lvts_sensor[i].dt_id = dt_id; |
| |
| /* |
| * We assign the base address of the thermal |
| * controller as a back pointer. So it will be |
| * accessible from the different thermal framework ops |
| * as we pass the lvts_sensor pointer as thermal zone |
| * private data. |
| */ |
| lvts_sensor[i].base = lvts_ctrl->base; |
| |
| /* |
| * Each sensor has its own register address to read from. |
| */ |
| lvts_sensor[i].msr = lvts_ctrl_data->mode == LVTS_MSR_IMMEDIATE_MODE ? |
| imm_regs[i] : msr_regs[i]; |
| |
| lvts_sensor[i].low_thresh = INT_MIN; |
| lvts_sensor[i].high_thresh = INT_MIN; |
| }; |
| |
| lvts_ctrl->num_lvts_sensor = lvts_ctrl_data->num_lvts_sensor; |
| |
| return 0; |
| } |
| |
| /* |
| * The efuse blob values follows the sensor enumeration per thermal |
| * controller. The decoding of the stream is as follow: |
| * |
| * stream index map for MCU Domain : |
| * |
| * <-----mcu-tc#0-----> <-----sensor#0-----> <-----sensor#1-----> |
| * 0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09 |
| * |
| * <-----mcu-tc#1-----> <-----sensor#2-----> <-----sensor#3-----> |
| * 0x0A | 0x0B | 0x0C | 0x0D | 0x0E | 0x0F | 0x10 | 0x11 | 0x12 |
| * |
| * <-----mcu-tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6-----> <-----sensor#7-----> |
| * 0x13 | 0x14 | 0x15 | 0x16 | 0x17 | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F | 0x20 | 0x21 |
| * |
| * stream index map for AP Domain : |
| * |
| * <-----ap--tc#0-----> <-----sensor#0-----> <-----sensor#1-----> |
| * 0x22 | 0x23 | 0x24 | 0x25 | 0x26 | 0x27 | 0x28 | 0x29 | 0x2A |
| * |
| * <-----ap--tc#1-----> <-----sensor#2-----> <-----sensor#3-----> |
| * 0x2B | 0x2C | 0x2D | 0x2E | 0x2F | 0x30 | 0x31 | 0x32 | 0x33 |
| * |
| * <-----ap--tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6-----> |
| * 0x34 | 0x35 | 0x36 | 0x37 | 0x38 | 0x39 | 0x3A | 0x3B | 0x3C | 0x3D | 0x3E | 0x3F |
| * |
| * <-----ap--tc#3-----> <-----sensor#7-----> <-----sensor#8-----> |
| * 0x40 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47 | 0x48 |
| * |
| * The data description gives the offset of the calibration data in |
| * this bytes stream for each sensor. |
| */ |
| static int lvts_calibration_init(struct device *dev, struct lvts_ctrl *lvts_ctrl, |
| const struct lvts_ctrl_data *lvts_ctrl_data, |
| u8 *efuse_calibration) |
| { |
| int i; |
| |
| for (i = 0; i < lvts_ctrl_data->num_lvts_sensor; i++) |
| memcpy(&lvts_ctrl->calibration[i], |
| efuse_calibration + lvts_ctrl_data->cal_offset[i], 2); |
| |
| return 0; |
| } |
| |
| /* |
| * The efuse bytes stream can be split into different chunk of |
| * nvmems. This function reads and concatenate those into a single |
| * buffer so it can be read sequentially when initializing the |
| * calibration data. |
| */ |
| static int lvts_calibration_read(struct device *dev, struct lvts_domain *lvts_td, |
| const struct lvts_data *lvts_data) |
| { |
| struct device_node *np = dev_of_node(dev); |
| struct nvmem_cell *cell; |
| struct property *prop; |
| const char *cell_name; |
| |
| of_property_for_each_string(np, "nvmem-cell-names", prop, cell_name) { |
| size_t len; |
| u8 *efuse; |
| |
| cell = of_nvmem_cell_get(np, cell_name); |
| if (IS_ERR(cell)) { |
| dev_err(dev, "Failed to get cell '%s'\n", cell_name); |
| return PTR_ERR(cell); |
| } |
| |
| efuse = nvmem_cell_read(cell, &len); |
| |
| nvmem_cell_put(cell); |
| |
| if (IS_ERR(efuse)) { |
| dev_err(dev, "Failed to read cell '%s'\n", cell_name); |
| return PTR_ERR(efuse); |
| } |
| |
| lvts_td->calib = devm_krealloc(dev, lvts_td->calib, |
| lvts_td->calib_len + len, GFP_KERNEL); |
| if (!lvts_td->calib) { |
| kfree(efuse); |
| return -ENOMEM; |
| } |
| |
| memcpy(lvts_td->calib + lvts_td->calib_len, efuse, len); |
| |
| lvts_td->calib_len += len; |
| |
| kfree(efuse); |
| } |
| |
| return 0; |
| } |
| |
| static int lvts_golden_temp_init(struct device *dev, u32 *value) |
| { |
| u32 gt; |
| |
| gt = (*value) >> 24; |
| |
| if (gt && gt < LVTS_GOLDEN_TEMP_MAX) |
| golden_temp = gt; |
| |
| coeff_b = golden_temp * 500 + LVTS_COEFF_B; |
| |
| return 0; |
| } |
| |
| static int lvts_ctrl_init(struct device *dev, struct lvts_domain *lvts_td, |
| const struct lvts_data *lvts_data) |
| { |
| size_t size = sizeof(*lvts_td->lvts_ctrl) * lvts_data->num_lvts_ctrl; |
| struct lvts_ctrl *lvts_ctrl; |
| int i, ret; |
| |
| /* |
| * Create the calibration bytes stream from efuse data |
| */ |
| ret = lvts_calibration_read(dev, lvts_td, lvts_data); |
| if (ret) |
| return ret; |
| |
| /* |
| * The golden temp information is contained in the first chunk |
| * of efuse data. |
| */ |
| ret = lvts_golden_temp_init(dev, (u32 *)lvts_td->calib); |
| if (ret) |
| return ret; |
| |
| lvts_ctrl = devm_kzalloc(dev, size, GFP_KERNEL); |
| if (!lvts_ctrl) |
| return -ENOMEM; |
| |
| for (i = 0; i < lvts_data->num_lvts_ctrl; i++) { |
| |
| lvts_ctrl[i].base = lvts_td->base + lvts_data->lvts_ctrl[i].offset; |
| |
| ret = lvts_sensor_init(dev, &lvts_ctrl[i], |
| &lvts_data->lvts_ctrl[i]); |
| if (ret) |
| return ret; |
| |
| ret = lvts_calibration_init(dev, &lvts_ctrl[i], |
| &lvts_data->lvts_ctrl[i], |
| lvts_td->calib); |
| if (ret) |
| return ret; |
| |
| /* |
| * The mode the ctrl will use to read the temperature |
| * (filtered or immediate) |
| */ |
| lvts_ctrl[i].mode = lvts_data->lvts_ctrl[i].mode; |
| |
| /* |
| * The temperature to raw temperature must be done |
| * after initializing the calibration. |
| */ |
| lvts_ctrl[i].hw_tshut_raw_temp = |
| lvts_temp_to_raw(lvts_data->lvts_ctrl[i].hw_tshut_temp); |
| |
| lvts_ctrl[i].low_thresh = INT_MIN; |
| lvts_ctrl[i].high_thresh = INT_MIN; |
| } |
| |
| /* |
| * We no longer need the efuse bytes stream, let's free it |
| */ |
| devm_kfree(dev, lvts_td->calib); |
| |
| lvts_td->lvts_ctrl = lvts_ctrl; |
| lvts_td->num_lvts_ctrl = lvts_data->num_lvts_ctrl; |
| |
| return 0; |
| } |
| |
| /* |
| * At this point the configuration register is the only place in the |
| * driver where we write multiple values. Per hardware constraint, |
| * each write in the configuration register must be separated by a |
| * delay of 2 us. |
| */ |
| static void lvts_write_config(struct lvts_ctrl *lvts_ctrl, u32 *cmds, int nr_cmds) |
| { |
| int i; |
| |
| /* |
| * Configuration register |
| */ |
| for (i = 0; i < nr_cmds; i++) { |
| writel(cmds[i], LVTS_CONFIG(lvts_ctrl->base)); |
| usleep_range(2, 4); |
| } |
| } |
| |
| static int lvts_irq_init(struct lvts_ctrl *lvts_ctrl) |
| { |
| /* |
| * LVTS_PROTCTL : Thermal Protection Sensor Selection |
| * |
| * Bits: |
| * |
| * 19-18 : Sensor to base the protection on |
| * 17-16 : Strategy: |
| * 00 : Average of 4 sensors |
| * 01 : Max of 4 sensors |
| * 10 : Selected sensor with bits 19-18 |
| * 11 : Reserved |
| */ |
| writel(BIT(16), LVTS_PROTCTL(lvts_ctrl->base)); |
| |
| /* |
| * LVTS_PROTTA : Stage 1 temperature threshold |
| * LVTS_PROTTB : Stage 2 temperature threshold |
| * LVTS_PROTTC : Stage 3 temperature threshold |
| * |
| * Bits: |
| * |
| * 14-0: Raw temperature threshold |
| * |
| * writel(0x0, LVTS_PROTTA(lvts_ctrl->base)); |
| * writel(0x0, LVTS_PROTTB(lvts_ctrl->base)); |
| */ |
| writel(lvts_ctrl->hw_tshut_raw_temp, LVTS_PROTTC(lvts_ctrl->base)); |
| |
| /* |
| * LVTS_MONINT : Interrupt configuration register |
| * |
| * The LVTS_MONINT register layout is the same as the LVTS_MONINTSTS |
| * register, except we set the bits to enable the interrupt. |
| */ |
| writel(LVTS_MONINT_CONF, LVTS_MONINT(lvts_ctrl->base)); |
| |
| return 0; |
| } |
| |
| static int lvts_domain_reset(struct device *dev, struct reset_control *reset) |
| { |
| int ret; |
| |
| ret = reset_control_assert(reset); |
| if (ret) |
| return ret; |
| |
| return reset_control_deassert(reset); |
| } |
| |
| /* |
| * Enable or disable the clocks of a specified thermal controller |
| */ |
| static int lvts_ctrl_set_enable(struct lvts_ctrl *lvts_ctrl, int enable) |
| { |
| /* |
| * LVTS_CLKEN : Internal LVTS clock |
| * |
| * Bits: |
| * |
| * 0 : enable / disable clock |
| */ |
| writel(enable, LVTS_CLKEN(lvts_ctrl->base)); |
| |
| return 0; |
| } |
| |
| static int lvts_ctrl_connect(struct device *dev, struct lvts_ctrl *lvts_ctrl) |
| { |
| u32 id, cmds[] = { 0xC103FFFF, 0xC502FF55 }; |
| |
| lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds)); |
| |
| /* |
| * LVTS_ID : Get ID and status of the thermal controller |
| * |
| * Bits: |
| * |
| * 0-5 : thermal controller id |
| * 7 : thermal controller connection is valid |
| */ |
| id = readl(LVTS_ID(lvts_ctrl->base)); |
| if (!(id & BIT(7))) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| static int lvts_ctrl_initialize(struct device *dev, struct lvts_ctrl *lvts_ctrl) |
| { |
| /* |
| * Write device mask: 0xC1030000 |
| */ |
| u32 cmds[] = { |
| 0xC1030E01, 0xC1030CFC, 0xC1030A8C, 0xC103098D, 0xC10308F1, |
| 0xC10307A6, 0xC10306B8, 0xC1030500, 0xC1030420, 0xC1030300, |
| 0xC1030030, 0xC10300F6, 0xC1030050, 0xC1030060, 0xC10300AC, |
| 0xC10300FC, 0xC103009D, 0xC10300F1, 0xC10300E1 |
| }; |
| |
| lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds)); |
| |
| return 0; |
| } |
| |
| static int lvts_ctrl_calibrate(struct device *dev, struct lvts_ctrl *lvts_ctrl) |
| { |
| int i; |
| void __iomem *lvts_edata[] = { |
| LVTS_EDATA00(lvts_ctrl->base), |
| LVTS_EDATA01(lvts_ctrl->base), |
| LVTS_EDATA02(lvts_ctrl->base), |
| LVTS_EDATA03(lvts_ctrl->base) |
| }; |
| |
| /* |
| * LVTS_EDATA0X : Efuse calibration reference value for sensor X |
| * |
| * Bits: |
| * |
| * 20-0 : Efuse value for normalization data |
| */ |
| for (i = 0; i < LVTS_SENSOR_MAX; i++) |
| writel(lvts_ctrl->calibration[i], lvts_edata[i]); |
| |
| return 0; |
| } |
| |
| static int lvts_ctrl_configure(struct device *dev, struct lvts_ctrl *lvts_ctrl) |
| { |
| u32 value; |
| |
| /* |
| * LVTS_TSSEL : Sensing point index numbering |
| * |
| * Bits: |
| * |
| * 31-24: ADC Sense 3 |
| * 23-16: ADC Sense 2 |
| * 15-8 : ADC Sense 1 |
| * 7-0 : ADC Sense 0 |
| */ |
| value = LVTS_TSSEL_CONF; |
| writel(value, LVTS_TSSEL(lvts_ctrl->base)); |
| |
| /* |
| * LVTS_CALSCALE : ADC voltage round |
| */ |
| value = 0x300; |
| value = LVTS_CALSCALE_CONF; |
| |
| /* |
| * LVTS_MSRCTL0 : Sensor filtering strategy |
| * |
| * Filters: |
| * |
| * 000 : One sample |
| * 001 : Avg 2 samples |
| * 010 : 4 samples, drop min and max, avg 2 samples |
| * 011 : 6 samples, drop min and max, avg 4 samples |
| * 100 : 10 samples, drop min and max, avg 8 samples |
| * 101 : 18 samples, drop min and max, avg 16 samples |
| * |
| * Bits: |
| * |
| * 0-2 : Sensor0 filter |
| * 3-5 : Sensor1 filter |
| * 6-8 : Sensor2 filter |
| * 9-11 : Sensor3 filter |
| */ |
| value = LVTS_HW_FILTER << 9 | LVTS_HW_FILTER << 6 | |
| LVTS_HW_FILTER << 3 | LVTS_HW_FILTER; |
| writel(value, LVTS_MSRCTL0(lvts_ctrl->base)); |
| |
| /* |
| * LVTS_MONCTL1 : Period unit and group interval configuration |
| * |
| * The clock source of LVTS thermal controller is 26MHz. |
| * |
| * The period unit is a time base for all the interval delays |
| * specified in the registers. By default we use 12. The time |
| * conversion is done by multiplying by 256 and 1/26.10^6 |
| * |
| * An interval delay multiplied by the period unit gives the |
| * duration in seconds. |
| * |
| * - Filter interval delay is a delay between two samples of |
| * the same sensor. |
| * |
| * - Sensor interval delay is a delay between two samples of |
| * different sensors. |
| * |
| * - Group interval delay is a delay between different rounds. |
| * |
| * For example: |
| * If Period unit = C, filter delay = 1, sensor delay = 2, group delay = 1, |
| * and two sensors, TS1 and TS2, are in a LVTS thermal controller |
| * and then |
| * Period unit time = C * 1/26M * 256 = 12 * 38.46ns * 256 = 118.149us |
| * Filter interval delay = 1 * Period unit = 118.149us |
| * Sensor interval delay = 2 * Period unit = 236.298us |
| * Group interval delay = 1 * Period unit = 118.149us |
| * |
| * TS1 TS1 ... TS1 TS2 TS2 ... TS2 TS1... |
| * <--> Filter interval delay |
| * <--> Sensor interval delay |
| * <--> Group interval delay |
| * Bits: |
| * 29 - 20 : Group interval |
| * 16 - 13 : Send a single interrupt when crossing the hot threshold (1) |
| * or an interrupt everytime the hot threshold is crossed (0) |
| * 9 - 0 : Period unit |
| * |
| */ |
| value = LVTS_GROUP_INTERVAL << 20 | LVTS_PERIOD_UNIT; |
| writel(value, LVTS_MONCTL1(lvts_ctrl->base)); |
| |
| /* |
| * LVTS_MONCTL2 : Filtering and sensor interval |
| * |
| * Bits: |
| * |
| * 25-16 : Interval unit in PERIOD_UNIT between sample on |
| * the same sensor, filter interval |
| * 9-0 : Interval unit in PERIOD_UNIT between each sensor |
| * |
| */ |
| value = LVTS_FILTER_INTERVAL << 16 | LVTS_SENSOR_INTERVAL; |
| writel(value, LVTS_MONCTL2(lvts_ctrl->base)); |
| |
| return lvts_irq_init(lvts_ctrl); |
| } |
| |
| static int lvts_ctrl_start(struct device *dev, struct lvts_ctrl *lvts_ctrl) |
| { |
| struct lvts_sensor *lvts_sensors = lvts_ctrl->sensors; |
| struct thermal_zone_device *tz; |
| u32 sensor_map = 0; |
| int i; |
| /* |
| * Bitmaps to enable each sensor on immediate and filtered modes, as |
| * described in MSRCTL1 and MONCTL0 registers below, respectively. |
| */ |
| u32 sensor_imm_bitmap[] = { BIT(4), BIT(5), BIT(6), BIT(9) }; |
| u32 sensor_filt_bitmap[] = { BIT(0), BIT(1), BIT(2), BIT(3) }; |
| |
| u32 *sensor_bitmap = lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE ? |
| sensor_imm_bitmap : sensor_filt_bitmap; |
| |
| for (i = 0; i < lvts_ctrl->num_lvts_sensor; i++) { |
| |
| int dt_id = lvts_sensors[i].dt_id; |
| |
| tz = devm_thermal_of_zone_register(dev, dt_id, &lvts_sensors[i], |
| &lvts_ops); |
| if (IS_ERR(tz)) { |
| /* |
| * This thermal zone is not described in the |
| * device tree. It is not an error from the |
| * thermal OF code POV, we just continue. |
| */ |
| if (PTR_ERR(tz) == -ENODEV) |
| continue; |
| |
| return PTR_ERR(tz); |
| } |
| |
| devm_thermal_add_hwmon_sysfs(dev, tz); |
| |
| /* |
| * The thermal zone pointer will be needed in the |
| * interrupt handler, we store it in the sensor |
| * structure. The thermal domain structure will be |
| * passed to the interrupt handler private data as the |
| * interrupt is shared for all the controller |
| * belonging to the thermal domain. |
| */ |
| lvts_sensors[i].tz = tz; |
| |
| /* |
| * This sensor was correctly associated with a thermal |
| * zone, let's set the corresponding bit in the sensor |
| * map, so we can enable the temperature monitoring in |
| * the hardware thermal controller. |
| */ |
| sensor_map |= sensor_bitmap[i]; |
| } |
| |
| /* |
| * The initialization of the thermal zones give us |
| * which sensor point to enable. If any thermal zone |
| * was not described in the device tree, it won't be |
| * enabled here in the sensor map. |
| */ |
| if (lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE) { |
| /* |
| * LVTS_MSRCTL1 : Measurement control |
| * |
| * Bits: |
| * |
| * 9: Ignore MSRCTL0 config and do immediate measurement on sensor3 |
| * 6: Ignore MSRCTL0 config and do immediate measurement on sensor2 |
| * 5: Ignore MSRCTL0 config and do immediate measurement on sensor1 |
| * 4: Ignore MSRCTL0 config and do immediate measurement on sensor0 |
| * |
| * That configuration will ignore the filtering and the delays |
| * introduced in MONCTL1 and MONCTL2 |
| */ |
| writel(sensor_map, LVTS_MSRCTL1(lvts_ctrl->base)); |
| } else { |
| /* |
| * Bits: |
| * 9: Single point access flow |
| * 0-3: Enable sensing point 0-3 |
| */ |
| writel(sensor_map | BIT(9), LVTS_MONCTL0(lvts_ctrl->base)); |
| } |
| |
| return 0; |
| } |
| |
| static int lvts_domain_init(struct device *dev, struct lvts_domain *lvts_td, |
| const struct lvts_data *lvts_data) |
| { |
| struct lvts_ctrl *lvts_ctrl; |
| int i, ret; |
| |
| ret = lvts_ctrl_init(dev, lvts_td, lvts_data); |
| if (ret) |
| return ret; |
| |
| ret = lvts_domain_reset(dev, lvts_td->reset); |
| if (ret) { |
| dev_dbg(dev, "Failed to reset domain"); |
| return ret; |
| } |
| |
| for (i = 0; i < lvts_td->num_lvts_ctrl; i++) { |
| |
| lvts_ctrl = &lvts_td->lvts_ctrl[i]; |
| |
| /* |
| * Initialization steps: |
| * |
| * - Enable the clock |
| * - Connect to the LVTS |
| * - Initialize the LVTS |
| * - Prepare the calibration data |
| * - Select monitored sensors |
| * [ Configure sampling ] |
| * [ Configure the interrupt ] |
| * - Start measurement |
| */ |
| ret = lvts_ctrl_set_enable(lvts_ctrl, true); |
| if (ret) { |
| dev_dbg(dev, "Failed to enable LVTS clock"); |
| return ret; |
| } |
| |
| ret = lvts_ctrl_connect(dev, lvts_ctrl); |
| if (ret) { |
| dev_dbg(dev, "Failed to connect to LVTS controller"); |
| return ret; |
| } |
| |
| ret = lvts_ctrl_initialize(dev, lvts_ctrl); |
| if (ret) { |
| dev_dbg(dev, "Failed to initialize controller"); |
| return ret; |
| } |
| |
| ret = lvts_ctrl_calibrate(dev, lvts_ctrl); |
| if (ret) { |
| dev_dbg(dev, "Failed to calibrate controller"); |
| return ret; |
| } |
| |
| ret = lvts_ctrl_configure(dev, lvts_ctrl); |
| if (ret) { |
| dev_dbg(dev, "Failed to configure controller"); |
| return ret; |
| } |
| |
| ret = lvts_ctrl_start(dev, lvts_ctrl); |
| if (ret) { |
| dev_dbg(dev, "Failed to start controller"); |
| return ret; |
| } |
| } |
| |
| return lvts_debugfs_init(dev, lvts_td); |
| } |
| |
| static int lvts_probe(struct platform_device *pdev) |
| { |
| const struct lvts_data *lvts_data; |
| struct lvts_domain *lvts_td; |
| struct device *dev = &pdev->dev; |
| struct resource *res; |
| int irq, ret; |
| |
| lvts_td = devm_kzalloc(dev, sizeof(*lvts_td), GFP_KERNEL); |
| if (!lvts_td) |
| return -ENOMEM; |
| |
| lvts_data = of_device_get_match_data(dev); |
| |
| lvts_td->clk = devm_clk_get_enabled(dev, NULL); |
| if (IS_ERR(lvts_td->clk)) |
| return dev_err_probe(dev, PTR_ERR(lvts_td->clk), "Failed to retrieve clock\n"); |
| |
| res = platform_get_mem_or_io(pdev, 0); |
| if (!res) |
| return dev_err_probe(dev, (-ENXIO), "No IO resource\n"); |
| |
| lvts_td->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); |
| if (IS_ERR(lvts_td->base)) |
| return dev_err_probe(dev, PTR_ERR(lvts_td->base), "Failed to map io resource\n"); |
| |
| lvts_td->reset = devm_reset_control_get_by_index(dev, 0); |
| if (IS_ERR(lvts_td->reset)) |
| return dev_err_probe(dev, PTR_ERR(lvts_td->reset), "Failed to get reset control\n"); |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) |
| return irq; |
| |
| ret = lvts_domain_init(dev, lvts_td, lvts_data); |
| if (ret) |
| return dev_err_probe(dev, ret, "Failed to initialize the lvts domain\n"); |
| |
| /* |
| * At this point the LVTS is initialized and enabled. We can |
| * safely enable the interrupt. |
| */ |
| ret = devm_request_threaded_irq(dev, irq, NULL, lvts_irq_handler, |
| IRQF_ONESHOT, dev_name(dev), lvts_td); |
| if (ret) |
| return dev_err_probe(dev, ret, "Failed to request interrupt\n"); |
| |
| platform_set_drvdata(pdev, lvts_td); |
| |
| return 0; |
| } |
| |
| static int lvts_remove(struct platform_device *pdev) |
| { |
| struct lvts_domain *lvts_td; |
| int i; |
| |
| lvts_td = platform_get_drvdata(pdev); |
| |
| for (i = 0; i < lvts_td->num_lvts_ctrl; i++) |
| lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false); |
| |
| lvts_debugfs_exit(lvts_td); |
| |
| return 0; |
| } |
| |
| static const struct lvts_ctrl_data mt8195_lvts_mcu_data_ctrl[] = { |
| { |
| .cal_offset = { 0x04, 0x07 }, |
| .lvts_sensor = { |
| { .dt_id = MT8195_MCU_BIG_CPU0 }, |
| { .dt_id = MT8195_MCU_BIG_CPU1 } |
| }, |
| .num_lvts_sensor = 2, |
| .offset = 0x0, |
| .hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195, |
| }, |
| { |
| .cal_offset = { 0x0d, 0x10 }, |
| .lvts_sensor = { |
| { .dt_id = MT8195_MCU_BIG_CPU2 }, |
| { .dt_id = MT8195_MCU_BIG_CPU3 } |
| }, |
| .num_lvts_sensor = 2, |
| .offset = 0x100, |
| .hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195, |
| }, |
| { |
| .cal_offset = { 0x16, 0x19, 0x1c, 0x1f }, |
| .lvts_sensor = { |
| { .dt_id = MT8195_MCU_LITTLE_CPU0 }, |
| { .dt_id = MT8195_MCU_LITTLE_CPU1 }, |
| { .dt_id = MT8195_MCU_LITTLE_CPU2 }, |
| { .dt_id = MT8195_MCU_LITTLE_CPU3 } |
| }, |
| .num_lvts_sensor = 4, |
| .offset = 0x200, |
| .hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195, |
| } |
| }; |
| |
| static const struct lvts_ctrl_data mt8195_lvts_ap_data_ctrl[] = { |
| { |
| .cal_offset = { 0x25, 0x28 }, |
| .lvts_sensor = { |
| { .dt_id = MT8195_AP_VPU0 }, |
| { .dt_id = MT8195_AP_VPU1 } |
| }, |
| .num_lvts_sensor = 2, |
| .offset = 0x0, |
| .hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195, |
| }, |
| { |
| .cal_offset = { 0x2e, 0x31 }, |
| .lvts_sensor = { |
| { .dt_id = MT8195_AP_GPU0 }, |
| { .dt_id = MT8195_AP_GPU1 } |
| }, |
| .num_lvts_sensor = 2, |
| .offset = 0x100, |
| .hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195, |
| }, |
| { |
| .cal_offset = { 0x37, 0x3a, 0x3d }, |
| .lvts_sensor = { |
| { .dt_id = MT8195_AP_VDEC }, |
| { .dt_id = MT8195_AP_IMG }, |
| { .dt_id = MT8195_AP_INFRA }, |
| }, |
| .num_lvts_sensor = 3, |
| .offset = 0x200, |
| .hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195, |
| }, |
| { |
| .cal_offset = { 0x43, 0x46 }, |
| .lvts_sensor = { |
| { .dt_id = MT8195_AP_CAM0 }, |
| { .dt_id = MT8195_AP_CAM1 } |
| }, |
| .num_lvts_sensor = 2, |
| .offset = 0x300, |
| .hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195, |
| } |
| }; |
| |
| static const struct lvts_data mt8195_lvts_mcu_data = { |
| .lvts_ctrl = mt8195_lvts_mcu_data_ctrl, |
| .num_lvts_ctrl = ARRAY_SIZE(mt8195_lvts_mcu_data_ctrl), |
| }; |
| |
| static const struct lvts_data mt8195_lvts_ap_data = { |
| .lvts_ctrl = mt8195_lvts_ap_data_ctrl, |
| .num_lvts_ctrl = ARRAY_SIZE(mt8195_lvts_ap_data_ctrl), |
| }; |
| |
| static const struct of_device_id lvts_of_match[] = { |
| { .compatible = "mediatek,mt8195-lvts-mcu", .data = &mt8195_lvts_mcu_data }, |
| { .compatible = "mediatek,mt8195-lvts-ap", .data = &mt8195_lvts_ap_data }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, lvts_of_match); |
| |
| static struct platform_driver lvts_driver = { |
| .probe = lvts_probe, |
| .remove = lvts_remove, |
| .driver = { |
| .name = "mtk-lvts-thermal", |
| .of_match_table = lvts_of_match, |
| }, |
| }; |
| module_platform_driver(lvts_driver); |
| |
| MODULE_AUTHOR("Balsam CHIHI <bchihi@baylibre.com>"); |
| MODULE_DESCRIPTION("MediaTek LVTS Thermal Driver"); |
| MODULE_LICENSE("GPL"); |