| // SPDX-License-Identifier: GPL-2.0 |
| /* Marvell OcteonTx2 RVU Ethernet driver |
| * |
| * Copyright (C) 2020 Marvell International Ltd. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/etherdevice.h> |
| #include <net/ip.h> |
| #include <net/tso.h> |
| |
| #include "otx2_reg.h" |
| #include "otx2_common.h" |
| #include "otx2_struct.h" |
| #include "otx2_txrx.h" |
| #include "otx2_ptp.h" |
| #include "cn10k.h" |
| |
| #define CQE_ADDR(CQ, idx) ((CQ)->cqe_base + ((CQ)->cqe_size * (idx))) |
| |
| static struct nix_cqe_hdr_s *otx2_get_next_cqe(struct otx2_cq_queue *cq) |
| { |
| struct nix_cqe_hdr_s *cqe_hdr; |
| |
| cqe_hdr = (struct nix_cqe_hdr_s *)CQE_ADDR(cq, cq->cq_head); |
| if (cqe_hdr->cqe_type == NIX_XQE_TYPE_INVALID) |
| return NULL; |
| |
| cq->cq_head++; |
| cq->cq_head &= (cq->cqe_cnt - 1); |
| |
| return cqe_hdr; |
| } |
| |
| static unsigned int frag_num(unsigned int i) |
| { |
| #ifdef __BIG_ENDIAN |
| return (i & ~3) + 3 - (i & 3); |
| #else |
| return i; |
| #endif |
| } |
| |
| static dma_addr_t otx2_dma_map_skb_frag(struct otx2_nic *pfvf, |
| struct sk_buff *skb, int seg, int *len) |
| { |
| const skb_frag_t *frag; |
| struct page *page; |
| int offset; |
| |
| /* First segment is always skb->data */ |
| if (!seg) { |
| page = virt_to_page(skb->data); |
| offset = offset_in_page(skb->data); |
| *len = skb_headlen(skb); |
| } else { |
| frag = &skb_shinfo(skb)->frags[seg - 1]; |
| page = skb_frag_page(frag); |
| offset = skb_frag_off(frag); |
| *len = skb_frag_size(frag); |
| } |
| return otx2_dma_map_page(pfvf, page, offset, *len, DMA_TO_DEVICE); |
| } |
| |
| static void otx2_dma_unmap_skb_frags(struct otx2_nic *pfvf, struct sg_list *sg) |
| { |
| int seg; |
| |
| for (seg = 0; seg < sg->num_segs; seg++) { |
| otx2_dma_unmap_page(pfvf, sg->dma_addr[seg], |
| sg->size[seg], DMA_TO_DEVICE); |
| } |
| sg->num_segs = 0; |
| } |
| |
| static void otx2_snd_pkt_handler(struct otx2_nic *pfvf, |
| struct otx2_cq_queue *cq, |
| struct otx2_snd_queue *sq, |
| struct nix_cqe_tx_s *cqe, |
| int budget, int *tx_pkts, int *tx_bytes) |
| { |
| struct nix_send_comp_s *snd_comp = &cqe->comp; |
| struct skb_shared_hwtstamps ts; |
| struct sk_buff *skb = NULL; |
| u64 timestamp, tsns; |
| struct sg_list *sg; |
| int err; |
| |
| if (unlikely(snd_comp->status) && netif_msg_tx_err(pfvf)) |
| net_err_ratelimited("%s: TX%d: Error in send CQ status:%x\n", |
| pfvf->netdev->name, cq->cint_idx, |
| snd_comp->status); |
| |
| sg = &sq->sg[snd_comp->sqe_id]; |
| skb = (struct sk_buff *)sg->skb; |
| if (unlikely(!skb)) |
| return; |
| |
| if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) { |
| timestamp = ((u64 *)sq->timestamps->base)[snd_comp->sqe_id]; |
| if (timestamp != 1) { |
| err = otx2_ptp_tstamp2time(pfvf, timestamp, &tsns); |
| if (!err) { |
| memset(&ts, 0, sizeof(ts)); |
| ts.hwtstamp = ns_to_ktime(tsns); |
| skb_tstamp_tx(skb, &ts); |
| } |
| } |
| } |
| |
| *tx_bytes += skb->len; |
| (*tx_pkts)++; |
| otx2_dma_unmap_skb_frags(pfvf, sg); |
| napi_consume_skb(skb, budget); |
| sg->skb = (u64)NULL; |
| } |
| |
| static void otx2_set_rxtstamp(struct otx2_nic *pfvf, |
| struct sk_buff *skb, void *data) |
| { |
| u64 tsns; |
| int err; |
| |
| if (!(pfvf->flags & OTX2_FLAG_RX_TSTAMP_ENABLED)) |
| return; |
| |
| /* The first 8 bytes is the timestamp */ |
| err = otx2_ptp_tstamp2time(pfvf, be64_to_cpu(*(__be64 *)data), &tsns); |
| if (err) |
| return; |
| |
| skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(tsns); |
| } |
| |
| static void otx2_skb_add_frag(struct otx2_nic *pfvf, struct sk_buff *skb, |
| u64 iova, int len, struct nix_rx_parse_s *parse) |
| { |
| struct page *page; |
| int off = 0; |
| void *va; |
| |
| va = phys_to_virt(otx2_iova_to_phys(pfvf->iommu_domain, iova)); |
| |
| if (likely(!skb_shinfo(skb)->nr_frags)) { |
| /* Check if data starts at some nonzero offset |
| * from the start of the buffer. For now the |
| * only possible offset is 8 bytes in the case |
| * where packet is prepended by a timestamp. |
| */ |
| if (parse->laptr) { |
| otx2_set_rxtstamp(pfvf, skb, va); |
| off = OTX2_HW_TIMESTAMP_LEN; |
| } |
| } |
| |
| page = virt_to_page(va); |
| skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, |
| va - page_address(page) + off, len - off, pfvf->rbsize); |
| |
| otx2_dma_unmap_page(pfvf, iova - OTX2_HEAD_ROOM, |
| pfvf->rbsize, DMA_FROM_DEVICE); |
| } |
| |
| static void otx2_set_rxhash(struct otx2_nic *pfvf, |
| struct nix_cqe_rx_s *cqe, struct sk_buff *skb) |
| { |
| enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE; |
| struct otx2_rss_info *rss; |
| u32 hash = 0; |
| |
| if (!(pfvf->netdev->features & NETIF_F_RXHASH)) |
| return; |
| |
| rss = &pfvf->hw.rss_info; |
| if (rss->flowkey_cfg) { |
| if (rss->flowkey_cfg & |
| ~(NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6)) |
| hash_type = PKT_HASH_TYPE_L4; |
| else |
| hash_type = PKT_HASH_TYPE_L3; |
| hash = cqe->hdr.flow_tag; |
| } |
| skb_set_hash(skb, hash, hash_type); |
| } |
| |
| static void otx2_free_rcv_seg(struct otx2_nic *pfvf, struct nix_cqe_rx_s *cqe, |
| int qidx) |
| { |
| struct nix_rx_sg_s *sg = &cqe->sg; |
| void *end, *start; |
| u64 *seg_addr; |
| int seg; |
| |
| start = (void *)sg; |
| end = start + ((cqe->parse.desc_sizem1 + 1) * 16); |
| while (start < end) { |
| sg = (struct nix_rx_sg_s *)start; |
| seg_addr = &sg->seg_addr; |
| for (seg = 0; seg < sg->segs; seg++, seg_addr++) |
| pfvf->hw_ops->aura_freeptr(pfvf, qidx, |
| *seg_addr & ~0x07ULL); |
| start += sizeof(*sg); |
| } |
| } |
| |
| static bool otx2_check_rcv_errors(struct otx2_nic *pfvf, |
| struct nix_cqe_rx_s *cqe, int qidx) |
| { |
| struct otx2_drv_stats *stats = &pfvf->hw.drv_stats; |
| struct nix_rx_parse_s *parse = &cqe->parse; |
| |
| if (netif_msg_rx_err(pfvf)) |
| netdev_err(pfvf->netdev, |
| "RQ%d: Error pkt with errlev:0x%x errcode:0x%x\n", |
| qidx, parse->errlev, parse->errcode); |
| |
| if (parse->errlev == NPC_ERRLVL_RE) { |
| switch (parse->errcode) { |
| case ERRCODE_FCS: |
| case ERRCODE_FCS_RCV: |
| atomic_inc(&stats->rx_fcs_errs); |
| break; |
| case ERRCODE_UNDERSIZE: |
| atomic_inc(&stats->rx_undersize_errs); |
| break; |
| case ERRCODE_OVERSIZE: |
| atomic_inc(&stats->rx_oversize_errs); |
| break; |
| case ERRCODE_OL2_LEN_MISMATCH: |
| atomic_inc(&stats->rx_len_errs); |
| break; |
| default: |
| atomic_inc(&stats->rx_other_errs); |
| break; |
| } |
| } else if (parse->errlev == NPC_ERRLVL_NIX) { |
| switch (parse->errcode) { |
| case ERRCODE_OL3_LEN: |
| case ERRCODE_OL4_LEN: |
| case ERRCODE_IL3_LEN: |
| case ERRCODE_IL4_LEN: |
| atomic_inc(&stats->rx_len_errs); |
| break; |
| case ERRCODE_OL4_CSUM: |
| case ERRCODE_IL4_CSUM: |
| atomic_inc(&stats->rx_csum_errs); |
| break; |
| default: |
| atomic_inc(&stats->rx_other_errs); |
| break; |
| } |
| } else { |
| atomic_inc(&stats->rx_other_errs); |
| /* For now ignore all the NPC parser errors and |
| * pass the packets to stack. |
| */ |
| return false; |
| } |
| |
| /* If RXALL is enabled pass on packets to stack. */ |
| if (pfvf->netdev->features & NETIF_F_RXALL) |
| return false; |
| |
| /* Free buffer back to pool */ |
| if (cqe->sg.segs) |
| otx2_free_rcv_seg(pfvf, cqe, qidx); |
| return true; |
| } |
| |
| static void otx2_rcv_pkt_handler(struct otx2_nic *pfvf, |
| struct napi_struct *napi, |
| struct otx2_cq_queue *cq, |
| struct nix_cqe_rx_s *cqe) |
| { |
| struct nix_rx_parse_s *parse = &cqe->parse; |
| struct nix_rx_sg_s *sg = &cqe->sg; |
| struct sk_buff *skb = NULL; |
| void *end, *start; |
| u64 *seg_addr; |
| u16 *seg_size; |
| int seg; |
| |
| if (unlikely(parse->errlev || parse->errcode)) { |
| if (otx2_check_rcv_errors(pfvf, cqe, cq->cq_idx)) |
| return; |
| } |
| |
| skb = napi_get_frags(napi); |
| if (unlikely(!skb)) |
| return; |
| |
| start = (void *)sg; |
| end = start + ((cqe->parse.desc_sizem1 + 1) * 16); |
| while (start < end) { |
| sg = (struct nix_rx_sg_s *)start; |
| seg_addr = &sg->seg_addr; |
| seg_size = (void *)sg; |
| for (seg = 0; seg < sg->segs; seg++, seg_addr++) { |
| otx2_skb_add_frag(pfvf, skb, *seg_addr, seg_size[seg], |
| parse); |
| cq->pool_ptrs++; |
| } |
| start += sizeof(*sg); |
| } |
| otx2_set_rxhash(pfvf, cqe, skb); |
| |
| skb_record_rx_queue(skb, cq->cq_idx); |
| if (pfvf->netdev->features & NETIF_F_RXCSUM) |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| |
| napi_gro_frags(napi); |
| } |
| |
| static int otx2_rx_napi_handler(struct otx2_nic *pfvf, |
| struct napi_struct *napi, |
| struct otx2_cq_queue *cq, int budget) |
| { |
| struct nix_cqe_rx_s *cqe; |
| int processed_cqe = 0; |
| |
| while (likely(processed_cqe < budget)) { |
| cqe = (struct nix_cqe_rx_s *)CQE_ADDR(cq, cq->cq_head); |
| if (cqe->hdr.cqe_type == NIX_XQE_TYPE_INVALID || |
| !cqe->sg.seg_addr) { |
| if (!processed_cqe) |
| return 0; |
| break; |
| } |
| cq->cq_head++; |
| cq->cq_head &= (cq->cqe_cnt - 1); |
| |
| otx2_rcv_pkt_handler(pfvf, napi, cq, cqe); |
| |
| cqe->hdr.cqe_type = NIX_XQE_TYPE_INVALID; |
| cqe->sg.seg_addr = 0x00; |
| processed_cqe++; |
| } |
| |
| /* Free CQEs to HW */ |
| otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR, |
| ((u64)cq->cq_idx << 32) | processed_cqe); |
| |
| if (unlikely(!cq->pool_ptrs)) |
| return 0; |
| /* Refill pool with new buffers */ |
| pfvf->hw_ops->refill_pool_ptrs(pfvf, cq); |
| |
| return processed_cqe; |
| } |
| |
| void otx2_refill_pool_ptrs(void *dev, struct otx2_cq_queue *cq) |
| { |
| struct otx2_nic *pfvf = dev; |
| dma_addr_t bufptr; |
| |
| while (cq->pool_ptrs) { |
| if (otx2_alloc_buffer(pfvf, cq, &bufptr)) |
| break; |
| otx2_aura_freeptr(pfvf, cq->cq_idx, bufptr + OTX2_HEAD_ROOM); |
| cq->pool_ptrs--; |
| } |
| } |
| |
| static int otx2_tx_napi_handler(struct otx2_nic *pfvf, |
| struct otx2_cq_queue *cq, int budget) |
| { |
| int tx_pkts = 0, tx_bytes = 0; |
| struct nix_cqe_tx_s *cqe; |
| int processed_cqe = 0; |
| |
| while (likely(processed_cqe < budget)) { |
| cqe = (struct nix_cqe_tx_s *)otx2_get_next_cqe(cq); |
| if (unlikely(!cqe)) { |
| if (!processed_cqe) |
| return 0; |
| break; |
| } |
| otx2_snd_pkt_handler(pfvf, cq, &pfvf->qset.sq[cq->cint_idx], |
| cqe, budget, &tx_pkts, &tx_bytes); |
| |
| cqe->hdr.cqe_type = NIX_XQE_TYPE_INVALID; |
| processed_cqe++; |
| } |
| |
| /* Free CQEs to HW */ |
| otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR, |
| ((u64)cq->cq_idx << 32) | processed_cqe); |
| |
| if (likely(tx_pkts)) { |
| struct netdev_queue *txq; |
| |
| txq = netdev_get_tx_queue(pfvf->netdev, cq->cint_idx); |
| netdev_tx_completed_queue(txq, tx_pkts, tx_bytes); |
| /* Check if queue was stopped earlier due to ring full */ |
| smp_mb(); |
| if (netif_tx_queue_stopped(txq) && |
| netif_carrier_ok(pfvf->netdev)) |
| netif_tx_wake_queue(txq); |
| } |
| return 0; |
| } |
| |
| int otx2_napi_handler(struct napi_struct *napi, int budget) |
| { |
| struct otx2_cq_poll *cq_poll; |
| int workdone = 0, cq_idx, i; |
| struct otx2_cq_queue *cq; |
| struct otx2_qset *qset; |
| struct otx2_nic *pfvf; |
| |
| cq_poll = container_of(napi, struct otx2_cq_poll, napi); |
| pfvf = (struct otx2_nic *)cq_poll->dev; |
| qset = &pfvf->qset; |
| |
| for (i = CQS_PER_CINT - 1; i >= 0; i--) { |
| cq_idx = cq_poll->cq_ids[i]; |
| if (unlikely(cq_idx == CINT_INVALID_CQ)) |
| continue; |
| cq = &qset->cq[cq_idx]; |
| if (cq->cq_type == CQ_RX) { |
| /* If the RQ refill WQ task is running, skip napi |
| * scheduler for this queue. |
| */ |
| if (cq->refill_task_sched) |
| continue; |
| workdone += otx2_rx_napi_handler(pfvf, napi, |
| cq, budget); |
| } else { |
| workdone += otx2_tx_napi_handler(pfvf, cq, budget); |
| } |
| } |
| |
| /* Clear the IRQ */ |
| otx2_write64(pfvf, NIX_LF_CINTX_INT(cq_poll->cint_idx), BIT_ULL(0)); |
| |
| if (workdone < budget && napi_complete_done(napi, workdone)) { |
| /* If interface is going down, don't re-enable IRQ */ |
| if (pfvf->flags & OTX2_FLAG_INTF_DOWN) |
| return workdone; |
| |
| /* Re-enable interrupts */ |
| otx2_write64(pfvf, NIX_LF_CINTX_ENA_W1S(cq_poll->cint_idx), |
| BIT_ULL(0)); |
| } |
| return workdone; |
| } |
| |
| void otx2_sqe_flush(void *dev, struct otx2_snd_queue *sq, |
| int size, int qidx) |
| { |
| u64 status; |
| |
| /* Packet data stores should finish before SQE is flushed to HW */ |
| dma_wmb(); |
| |
| do { |
| memcpy(sq->lmt_addr, sq->sqe_base, size); |
| status = otx2_lmt_flush(sq->io_addr); |
| } while (status == 0); |
| |
| sq->head++; |
| sq->head &= (sq->sqe_cnt - 1); |
| } |
| |
| #define MAX_SEGS_PER_SG 3 |
| /* Add SQE scatter/gather subdescriptor structure */ |
| static bool otx2_sqe_add_sg(struct otx2_nic *pfvf, struct otx2_snd_queue *sq, |
| struct sk_buff *skb, int num_segs, int *offset) |
| { |
| struct nix_sqe_sg_s *sg = NULL; |
| u64 dma_addr, *iova = NULL; |
| u16 *sg_lens = NULL; |
| int seg, len; |
| |
| sq->sg[sq->head].num_segs = 0; |
| |
| for (seg = 0; seg < num_segs; seg++) { |
| if ((seg % MAX_SEGS_PER_SG) == 0) { |
| sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset); |
| sg->ld_type = NIX_SEND_LDTYPE_LDD; |
| sg->subdc = NIX_SUBDC_SG; |
| sg->segs = 0; |
| sg_lens = (void *)sg; |
| iova = (void *)sg + sizeof(*sg); |
| /* Next subdc always starts at a 16byte boundary. |
| * So if sg->segs is whether 2 or 3, offset += 16bytes. |
| */ |
| if ((num_segs - seg) >= (MAX_SEGS_PER_SG - 1)) |
| *offset += sizeof(*sg) + (3 * sizeof(u64)); |
| else |
| *offset += sizeof(*sg) + sizeof(u64); |
| } |
| dma_addr = otx2_dma_map_skb_frag(pfvf, skb, seg, &len); |
| if (dma_mapping_error(pfvf->dev, dma_addr)) |
| return false; |
| |
| sg_lens[frag_num(seg % MAX_SEGS_PER_SG)] = len; |
| sg->segs++; |
| *iova++ = dma_addr; |
| |
| /* Save DMA mapping info for later unmapping */ |
| sq->sg[sq->head].dma_addr[seg] = dma_addr; |
| sq->sg[sq->head].size[seg] = len; |
| sq->sg[sq->head].num_segs++; |
| } |
| |
| sq->sg[sq->head].skb = (u64)skb; |
| return true; |
| } |
| |
| /* Add SQE extended header subdescriptor */ |
| static void otx2_sqe_add_ext(struct otx2_nic *pfvf, struct otx2_snd_queue *sq, |
| struct sk_buff *skb, int *offset) |
| { |
| struct nix_sqe_ext_s *ext; |
| |
| ext = (struct nix_sqe_ext_s *)(sq->sqe_base + *offset); |
| ext->subdc = NIX_SUBDC_EXT; |
| if (skb_shinfo(skb)->gso_size) { |
| ext->lso = 1; |
| ext->lso_sb = skb_transport_offset(skb) + tcp_hdrlen(skb); |
| ext->lso_mps = skb_shinfo(skb)->gso_size; |
| |
| /* Only TSOv4 and TSOv6 GSO offloads are supported */ |
| if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { |
| ext->lso_format = pfvf->hw.lso_tsov4_idx; |
| |
| /* HW adds payload size to 'ip_hdr->tot_len' while |
| * sending TSO segment, hence set payload length |
| * in IP header of the packet to just header length. |
| */ |
| ip_hdr(skb)->tot_len = |
| htons(ext->lso_sb - skb_network_offset(skb)); |
| } else if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) { |
| ext->lso_format = pfvf->hw.lso_tsov6_idx; |
| |
| ipv6_hdr(skb)->payload_len = |
| htons(ext->lso_sb - skb_network_offset(skb)); |
| } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { |
| __be16 l3_proto = vlan_get_protocol(skb); |
| struct udphdr *udph = udp_hdr(skb); |
| u16 iplen; |
| |
| ext->lso_sb = skb_transport_offset(skb) + |
| sizeof(struct udphdr); |
| |
| /* HW adds payload size to length fields in IP and |
| * UDP headers while segmentation, hence adjust the |
| * lengths to just header sizes. |
| */ |
| iplen = htons(ext->lso_sb - skb_network_offset(skb)); |
| if (l3_proto == htons(ETH_P_IP)) { |
| ip_hdr(skb)->tot_len = iplen; |
| ext->lso_format = pfvf->hw.lso_udpv4_idx; |
| } else { |
| ipv6_hdr(skb)->payload_len = iplen; |
| ext->lso_format = pfvf->hw.lso_udpv6_idx; |
| } |
| |
| udph->len = htons(sizeof(struct udphdr)); |
| } |
| } else if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { |
| ext->tstmp = 1; |
| } |
| |
| #define OTX2_VLAN_PTR_OFFSET (ETH_HLEN - ETH_TLEN) |
| if (skb_vlan_tag_present(skb)) { |
| if (skb->vlan_proto == htons(ETH_P_8021Q)) { |
| ext->vlan1_ins_ena = 1; |
| ext->vlan1_ins_ptr = OTX2_VLAN_PTR_OFFSET; |
| ext->vlan1_ins_tci = skb_vlan_tag_get(skb); |
| } else if (skb->vlan_proto == htons(ETH_P_8021AD)) { |
| ext->vlan0_ins_ena = 1; |
| ext->vlan0_ins_ptr = OTX2_VLAN_PTR_OFFSET; |
| ext->vlan0_ins_tci = skb_vlan_tag_get(skb); |
| } |
| } |
| |
| *offset += sizeof(*ext); |
| } |
| |
| static void otx2_sqe_add_mem(struct otx2_snd_queue *sq, int *offset, |
| int alg, u64 iova) |
| { |
| struct nix_sqe_mem_s *mem; |
| |
| mem = (struct nix_sqe_mem_s *)(sq->sqe_base + *offset); |
| mem->subdc = NIX_SUBDC_MEM; |
| mem->alg = alg; |
| mem->wmem = 1; /* wait for the memory operation */ |
| mem->addr = iova; |
| |
| *offset += sizeof(*mem); |
| } |
| |
| /* Add SQE header subdescriptor structure */ |
| static void otx2_sqe_add_hdr(struct otx2_nic *pfvf, struct otx2_snd_queue *sq, |
| struct nix_sqe_hdr_s *sqe_hdr, |
| struct sk_buff *skb, u16 qidx) |
| { |
| int proto = 0; |
| |
| /* Check if SQE was framed before, if yes then no need to |
| * set these constants again and again. |
| */ |
| if (!sqe_hdr->total) { |
| /* Don't free Tx buffers to Aura */ |
| sqe_hdr->df = 1; |
| sqe_hdr->aura = sq->aura_id; |
| /* Post a CQE Tx after pkt transmission */ |
| sqe_hdr->pnc = 1; |
| sqe_hdr->sq = qidx; |
| } |
| sqe_hdr->total = skb->len; |
| /* Set SQE identifier which will be used later for freeing SKB */ |
| sqe_hdr->sqe_id = sq->head; |
| |
| /* Offload TCP/UDP checksum to HW */ |
| if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| sqe_hdr->ol3ptr = skb_network_offset(skb); |
| sqe_hdr->ol4ptr = skb_transport_offset(skb); |
| /* get vlan protocol Ethertype */ |
| if (eth_type_vlan(skb->protocol)) |
| skb->protocol = vlan_get_protocol(skb); |
| |
| if (skb->protocol == htons(ETH_P_IP)) { |
| proto = ip_hdr(skb)->protocol; |
| /* In case of TSO, HW needs this to be explicitly set. |
| * So set this always, instead of adding a check. |
| */ |
| sqe_hdr->ol3type = NIX_SENDL3TYPE_IP4_CKSUM; |
| } else if (skb->protocol == htons(ETH_P_IPV6)) { |
| proto = ipv6_hdr(skb)->nexthdr; |
| sqe_hdr->ol3type = NIX_SENDL3TYPE_IP6; |
| } |
| |
| if (proto == IPPROTO_TCP) |
| sqe_hdr->ol4type = NIX_SENDL4TYPE_TCP_CKSUM; |
| else if (proto == IPPROTO_UDP) |
| sqe_hdr->ol4type = NIX_SENDL4TYPE_UDP_CKSUM; |
| } |
| } |
| |
| static int otx2_dma_map_tso_skb(struct otx2_nic *pfvf, |
| struct otx2_snd_queue *sq, |
| struct sk_buff *skb, int sqe, int hdr_len) |
| { |
| int num_segs = skb_shinfo(skb)->nr_frags + 1; |
| struct sg_list *sg = &sq->sg[sqe]; |
| u64 dma_addr; |
| int seg, len; |
| |
| sg->num_segs = 0; |
| |
| /* Get payload length at skb->data */ |
| len = skb_headlen(skb) - hdr_len; |
| |
| for (seg = 0; seg < num_segs; seg++) { |
| /* Skip skb->data, if there is no payload */ |
| if (!seg && !len) |
| continue; |
| dma_addr = otx2_dma_map_skb_frag(pfvf, skb, seg, &len); |
| if (dma_mapping_error(pfvf->dev, dma_addr)) |
| goto unmap; |
| |
| /* Save DMA mapping info for later unmapping */ |
| sg->dma_addr[sg->num_segs] = dma_addr; |
| sg->size[sg->num_segs] = len; |
| sg->num_segs++; |
| } |
| return 0; |
| unmap: |
| otx2_dma_unmap_skb_frags(pfvf, sg); |
| return -EINVAL; |
| } |
| |
| static u64 otx2_tso_frag_dma_addr(struct otx2_snd_queue *sq, |
| struct sk_buff *skb, int seg, |
| u64 seg_addr, int hdr_len, int sqe) |
| { |
| struct sg_list *sg = &sq->sg[sqe]; |
| const skb_frag_t *frag; |
| int offset; |
| |
| if (seg < 0) |
| return sg->dma_addr[0] + (seg_addr - (u64)skb->data); |
| |
| frag = &skb_shinfo(skb)->frags[seg]; |
| offset = seg_addr - (u64)skb_frag_address(frag); |
| if (skb_headlen(skb) - hdr_len) |
| seg++; |
| return sg->dma_addr[seg] + offset; |
| } |
| |
| static void otx2_sqe_tso_add_sg(struct otx2_snd_queue *sq, |
| struct sg_list *list, int *offset) |
| { |
| struct nix_sqe_sg_s *sg = NULL; |
| u16 *sg_lens = NULL; |
| u64 *iova = NULL; |
| int seg; |
| |
| /* Add SG descriptors with buffer addresses */ |
| for (seg = 0; seg < list->num_segs; seg++) { |
| if ((seg % MAX_SEGS_PER_SG) == 0) { |
| sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset); |
| sg->ld_type = NIX_SEND_LDTYPE_LDD; |
| sg->subdc = NIX_SUBDC_SG; |
| sg->segs = 0; |
| sg_lens = (void *)sg; |
| iova = (void *)sg + sizeof(*sg); |
| /* Next subdc always starts at a 16byte boundary. |
| * So if sg->segs is whether 2 or 3, offset += 16bytes. |
| */ |
| if ((list->num_segs - seg) >= (MAX_SEGS_PER_SG - 1)) |
| *offset += sizeof(*sg) + (3 * sizeof(u64)); |
| else |
| *offset += sizeof(*sg) + sizeof(u64); |
| } |
| sg_lens[frag_num(seg % MAX_SEGS_PER_SG)] = list->size[seg]; |
| *iova++ = list->dma_addr[seg]; |
| sg->segs++; |
| } |
| } |
| |
| static void otx2_sq_append_tso(struct otx2_nic *pfvf, struct otx2_snd_queue *sq, |
| struct sk_buff *skb, u16 qidx) |
| { |
| struct netdev_queue *txq = netdev_get_tx_queue(pfvf->netdev, qidx); |
| int hdr_len, tcp_data, seg_len, pkt_len, offset; |
| struct nix_sqe_hdr_s *sqe_hdr; |
| int first_sqe = sq->head; |
| struct sg_list list; |
| struct tso_t tso; |
| |
| hdr_len = tso_start(skb, &tso); |
| |
| /* Map SKB's fragments to DMA. |
| * It's done here to avoid mapping for every TSO segment's packet. |
| */ |
| if (otx2_dma_map_tso_skb(pfvf, sq, skb, first_sqe, hdr_len)) { |
| dev_kfree_skb_any(skb); |
| return; |
| } |
| |
| netdev_tx_sent_queue(txq, skb->len); |
| |
| tcp_data = skb->len - hdr_len; |
| while (tcp_data > 0) { |
| char *hdr; |
| |
| seg_len = min_t(int, skb_shinfo(skb)->gso_size, tcp_data); |
| tcp_data -= seg_len; |
| |
| /* Set SQE's SEND_HDR */ |
| memset(sq->sqe_base, 0, sq->sqe_size); |
| sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base); |
| otx2_sqe_add_hdr(pfvf, sq, sqe_hdr, skb, qidx); |
| offset = sizeof(*sqe_hdr); |
| |
| /* Add TSO segment's pkt header */ |
| hdr = sq->tso_hdrs->base + (sq->head * TSO_HEADER_SIZE); |
| tso_build_hdr(skb, hdr, &tso, seg_len, tcp_data == 0); |
| list.dma_addr[0] = |
| sq->tso_hdrs->iova + (sq->head * TSO_HEADER_SIZE); |
| list.size[0] = hdr_len; |
| list.num_segs = 1; |
| |
| /* Add TSO segment's payload data fragments */ |
| pkt_len = hdr_len; |
| while (seg_len > 0) { |
| int size; |
| |
| size = min_t(int, tso.size, seg_len); |
| |
| list.size[list.num_segs] = size; |
| list.dma_addr[list.num_segs] = |
| otx2_tso_frag_dma_addr(sq, skb, |
| tso.next_frag_idx - 1, |
| (u64)tso.data, hdr_len, |
| first_sqe); |
| list.num_segs++; |
| pkt_len += size; |
| seg_len -= size; |
| tso_build_data(skb, &tso, size); |
| } |
| sqe_hdr->total = pkt_len; |
| otx2_sqe_tso_add_sg(sq, &list, &offset); |
| |
| /* DMA mappings and skb needs to be freed only after last |
| * TSO segment is transmitted out. So set 'PNC' only for |
| * last segment. Also point last segment's sqe_id to first |
| * segment's SQE index where skb address and DMA mappings |
| * are saved. |
| */ |
| if (!tcp_data) { |
| sqe_hdr->pnc = 1; |
| sqe_hdr->sqe_id = first_sqe; |
| sq->sg[first_sqe].skb = (u64)skb; |
| } else { |
| sqe_hdr->pnc = 0; |
| } |
| |
| sqe_hdr->sizem1 = (offset / 16) - 1; |
| |
| /* Flush SQE to HW */ |
| pfvf->hw_ops->sqe_flush(pfvf, sq, offset, qidx); |
| } |
| } |
| |
| static bool is_hw_tso_supported(struct otx2_nic *pfvf, |
| struct sk_buff *skb) |
| { |
| int payload_len, last_seg_size; |
| |
| if (test_bit(HW_TSO, &pfvf->hw.cap_flag)) |
| return true; |
| |
| /* On 96xx A0, HW TSO not supported */ |
| if (!is_96xx_B0(pfvf->pdev)) |
| return false; |
| |
| /* HW has an issue due to which when the payload of the last LSO |
| * segment is shorter than 16 bytes, some header fields may not |
| * be correctly modified, hence don't offload such TSO segments. |
| */ |
| |
| payload_len = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb)); |
| last_seg_size = payload_len % skb_shinfo(skb)->gso_size; |
| if (last_seg_size && last_seg_size < 16) |
| return false; |
| |
| return true; |
| } |
| |
| static int otx2_get_sqe_count(struct otx2_nic *pfvf, struct sk_buff *skb) |
| { |
| if (!skb_shinfo(skb)->gso_size) |
| return 1; |
| |
| /* HW TSO */ |
| if (is_hw_tso_supported(pfvf, skb)) |
| return 1; |
| |
| /* SW TSO */ |
| return skb_shinfo(skb)->gso_segs; |
| } |
| |
| static void otx2_set_txtstamp(struct otx2_nic *pfvf, struct sk_buff *skb, |
| struct otx2_snd_queue *sq, int *offset) |
| { |
| u64 iova; |
| |
| if (!skb_shinfo(skb)->gso_size && |
| skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { |
| skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; |
| iova = sq->timestamps->iova + (sq->head * sizeof(u64)); |
| otx2_sqe_add_mem(sq, offset, NIX_SENDMEMALG_E_SETTSTMP, iova); |
| } else { |
| skb_tx_timestamp(skb); |
| } |
| } |
| |
| bool otx2_sq_append_skb(struct net_device *netdev, struct otx2_snd_queue *sq, |
| struct sk_buff *skb, u16 qidx) |
| { |
| struct netdev_queue *txq = netdev_get_tx_queue(netdev, qidx); |
| struct otx2_nic *pfvf = netdev_priv(netdev); |
| int offset, num_segs, free_sqe; |
| struct nix_sqe_hdr_s *sqe_hdr; |
| |
| /* Check if there is room for new SQE. |
| * 'Num of SQBs freed to SQ's pool - SQ's Aura count' |
| * will give free SQE count. |
| */ |
| free_sqe = (sq->num_sqbs - *sq->aura_fc_addr) * sq->sqe_per_sqb; |
| |
| if (free_sqe < sq->sqe_thresh || |
| free_sqe < otx2_get_sqe_count(pfvf, skb)) |
| return false; |
| |
| num_segs = skb_shinfo(skb)->nr_frags + 1; |
| |
| /* If SKB doesn't fit in a single SQE, linearize it. |
| * TODO: Consider adding JUMP descriptor instead. |
| */ |
| if (unlikely(num_segs > OTX2_MAX_FRAGS_IN_SQE)) { |
| if (__skb_linearize(skb)) { |
| dev_kfree_skb_any(skb); |
| return true; |
| } |
| num_segs = skb_shinfo(skb)->nr_frags + 1; |
| } |
| |
| if (skb_shinfo(skb)->gso_size && !is_hw_tso_supported(pfvf, skb)) { |
| /* Insert vlan tag before giving pkt to tso */ |
| if (skb_vlan_tag_present(skb)) |
| skb = __vlan_hwaccel_push_inside(skb); |
| otx2_sq_append_tso(pfvf, sq, skb, qidx); |
| return true; |
| } |
| |
| /* Set SQE's SEND_HDR. |
| * Do not clear the first 64bit as it contains constant info. |
| */ |
| memset(sq->sqe_base + 8, 0, sq->sqe_size - 8); |
| sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base); |
| otx2_sqe_add_hdr(pfvf, sq, sqe_hdr, skb, qidx); |
| offset = sizeof(*sqe_hdr); |
| |
| /* Add extended header if needed */ |
| otx2_sqe_add_ext(pfvf, sq, skb, &offset); |
| |
| /* Add SG subdesc with data frags */ |
| if (!otx2_sqe_add_sg(pfvf, sq, skb, num_segs, &offset)) { |
| otx2_dma_unmap_skb_frags(pfvf, &sq->sg[sq->head]); |
| return false; |
| } |
| |
| otx2_set_txtstamp(pfvf, skb, sq, &offset); |
| |
| sqe_hdr->sizem1 = (offset / 16) - 1; |
| |
| netdev_tx_sent_queue(txq, skb->len); |
| |
| /* Flush SQE to HW */ |
| pfvf->hw_ops->sqe_flush(pfvf, sq, offset, qidx); |
| |
| return true; |
| } |
| EXPORT_SYMBOL(otx2_sq_append_skb); |
| |
| void otx2_cleanup_rx_cqes(struct otx2_nic *pfvf, struct otx2_cq_queue *cq) |
| { |
| struct nix_cqe_rx_s *cqe; |
| int processed_cqe = 0; |
| u64 iova, pa; |
| |
| while ((cqe = (struct nix_cqe_rx_s *)otx2_get_next_cqe(cq))) { |
| if (!cqe->sg.subdc) |
| continue; |
| processed_cqe++; |
| if (cqe->sg.segs > 1) { |
| otx2_free_rcv_seg(pfvf, cqe, cq->cq_idx); |
| continue; |
| } |
| iova = cqe->sg.seg_addr - OTX2_HEAD_ROOM; |
| pa = otx2_iova_to_phys(pfvf->iommu_domain, iova); |
| otx2_dma_unmap_page(pfvf, iova, pfvf->rbsize, DMA_FROM_DEVICE); |
| put_page(virt_to_page(phys_to_virt(pa))); |
| } |
| |
| /* Free CQEs to HW */ |
| otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR, |
| ((u64)cq->cq_idx << 32) | processed_cqe); |
| } |
| |
| void otx2_cleanup_tx_cqes(struct otx2_nic *pfvf, struct otx2_cq_queue *cq) |
| { |
| struct sk_buff *skb = NULL; |
| struct otx2_snd_queue *sq; |
| struct nix_cqe_tx_s *cqe; |
| int processed_cqe = 0; |
| struct sg_list *sg; |
| |
| sq = &pfvf->qset.sq[cq->cint_idx]; |
| |
| while ((cqe = (struct nix_cqe_tx_s *)otx2_get_next_cqe(cq))) { |
| sg = &sq->sg[cqe->comp.sqe_id]; |
| skb = (struct sk_buff *)sg->skb; |
| if (skb) { |
| otx2_dma_unmap_skb_frags(pfvf, sg); |
| dev_kfree_skb_any(skb); |
| sg->skb = (u64)NULL; |
| } |
| processed_cqe++; |
| } |
| |
| /* Free CQEs to HW */ |
| otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR, |
| ((u64)cq->cq_idx << 32) | processed_cqe); |
| } |
| |
| int otx2_rxtx_enable(struct otx2_nic *pfvf, bool enable) |
| { |
| struct msg_req *msg; |
| int err; |
| |
| mutex_lock(&pfvf->mbox.lock); |
| if (enable) |
| msg = otx2_mbox_alloc_msg_nix_lf_start_rx(&pfvf->mbox); |
| else |
| msg = otx2_mbox_alloc_msg_nix_lf_stop_rx(&pfvf->mbox); |
| |
| if (!msg) { |
| mutex_unlock(&pfvf->mbox.lock); |
| return -ENOMEM; |
| } |
| |
| err = otx2_sync_mbox_msg(&pfvf->mbox); |
| mutex_unlock(&pfvf->mbox.lock); |
| return err; |
| } |