| /* Key garbage collector |
| * |
| * Copyright (C) 2009-2011 Red Hat, Inc. All Rights Reserved. |
| * Written by David Howells (dhowells@redhat.com) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public Licence |
| * as published by the Free Software Foundation; either version |
| * 2 of the Licence, or (at your option) any later version. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/security.h> |
| #include <keys/keyring-type.h> |
| #include "internal.h" |
| |
| /* |
| * Delay between key revocation/expiry in seconds |
| */ |
| unsigned key_gc_delay = 5 * 60; |
| |
| /* |
| * Reaper for unused keys. |
| */ |
| static void key_garbage_collector(struct work_struct *work); |
| DECLARE_WORK(key_gc_work, key_garbage_collector); |
| |
| /* |
| * Reaper for links from keyrings to dead keys. |
| */ |
| static void key_gc_timer_func(unsigned long); |
| static DEFINE_TIMER(key_gc_timer, key_gc_timer_func, 0, 0); |
| |
| static time_t key_gc_next_run = LONG_MAX; |
| static struct key_type *key_gc_dead_keytype; |
| |
| static unsigned long key_gc_flags; |
| #define KEY_GC_KEY_EXPIRED 0 /* A key expired and needs unlinking */ |
| #define KEY_GC_REAP_KEYTYPE 1 /* A keytype is being unregistered */ |
| #define KEY_GC_REAPING_KEYTYPE 2 /* Cleared when keytype reaped */ |
| |
| |
| /* |
| * Any key whose type gets unregistered will be re-typed to this if it can't be |
| * immediately unlinked. |
| */ |
| struct key_type key_type_dead = { |
| .name = "dead", |
| }; |
| |
| /* |
| * Schedule a garbage collection run. |
| * - time precision isn't particularly important |
| */ |
| void key_schedule_gc(time_t gc_at) |
| { |
| unsigned long expires; |
| time_t now = current_kernel_time().tv_sec; |
| |
| kenter("%ld", gc_at - now); |
| |
| if (gc_at <= now || test_bit(KEY_GC_REAP_KEYTYPE, &key_gc_flags)) { |
| kdebug("IMMEDIATE"); |
| schedule_work(&key_gc_work); |
| } else if (gc_at < key_gc_next_run) { |
| kdebug("DEFERRED"); |
| key_gc_next_run = gc_at; |
| expires = jiffies + (gc_at - now) * HZ; |
| mod_timer(&key_gc_timer, expires); |
| } |
| } |
| |
| /* |
| * Schedule a dead links collection run. |
| */ |
| void key_schedule_gc_links(void) |
| { |
| set_bit(KEY_GC_KEY_EXPIRED, &key_gc_flags); |
| schedule_work(&key_gc_work); |
| } |
| |
| /* |
| * Some key's cleanup time was met after it expired, so we need to get the |
| * reaper to go through a cycle finding expired keys. |
| */ |
| static void key_gc_timer_func(unsigned long data) |
| { |
| kenter(""); |
| key_gc_next_run = LONG_MAX; |
| key_schedule_gc_links(); |
| } |
| |
| /* |
| * wait_on_bit() sleep function for uninterruptible waiting |
| */ |
| static int key_gc_wait_bit(void *flags) |
| { |
| schedule(); |
| return 0; |
| } |
| |
| /* |
| * Reap keys of dead type. |
| * |
| * We use three flags to make sure we see three complete cycles of the garbage |
| * collector: the first to mark keys of that type as being dead, the second to |
| * collect dead links and the third to clean up the dead keys. We have to be |
| * careful as there may already be a cycle in progress. |
| * |
| * The caller must be holding key_types_sem. |
| */ |
| void key_gc_keytype(struct key_type *ktype) |
| { |
| kenter("%s", ktype->name); |
| |
| key_gc_dead_keytype = ktype; |
| set_bit(KEY_GC_REAPING_KEYTYPE, &key_gc_flags); |
| smp_mb(); |
| set_bit(KEY_GC_REAP_KEYTYPE, &key_gc_flags); |
| |
| kdebug("schedule"); |
| schedule_work(&key_gc_work); |
| |
| kdebug("sleep"); |
| wait_on_bit(&key_gc_flags, KEY_GC_REAPING_KEYTYPE, key_gc_wait_bit, |
| TASK_UNINTERRUPTIBLE); |
| |
| key_gc_dead_keytype = NULL; |
| kleave(""); |
| } |
| |
| static int key_gc_keyring_func(const void *object, void *iterator_data) |
| { |
| const struct key *key = object; |
| time_t *limit = iterator_data; |
| return key_is_dead(key, *limit); |
| } |
| |
| /* |
| * Garbage collect pointers from a keyring. |
| * |
| * Not called with any locks held. The keyring's key struct will not be |
| * deallocated under us as only our caller may deallocate it. |
| */ |
| static void key_gc_keyring(struct key *keyring, time_t limit) |
| { |
| int result; |
| |
| kenter("%x{%s}", keyring->serial, keyring->description ?: ""); |
| |
| if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) | |
| (1 << KEY_FLAG_REVOKED))) |
| goto dont_gc; |
| |
| /* scan the keyring looking for dead keys */ |
| rcu_read_lock(); |
| result = assoc_array_iterate(&keyring->keys, |
| key_gc_keyring_func, &limit); |
| rcu_read_unlock(); |
| if (result == true) |
| goto do_gc; |
| |
| dont_gc: |
| kleave(" [no gc]"); |
| return; |
| |
| do_gc: |
| keyring_gc(keyring, limit); |
| kleave(" [gc]"); |
| } |
| |
| /* |
| * Garbage collect a list of unreferenced, detached keys |
| */ |
| static noinline void key_gc_unused_keys(struct list_head *keys) |
| { |
| while (!list_empty(keys)) { |
| struct key *key = |
| list_entry(keys->next, struct key, graveyard_link); |
| list_del(&key->graveyard_link); |
| |
| kdebug("- %u", key->serial); |
| key_check(key); |
| |
| security_key_free(key); |
| |
| /* deal with the user's key tracking and quota */ |
| if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) { |
| spin_lock(&key->user->lock); |
| key->user->qnkeys--; |
| key->user->qnbytes -= key->quotalen; |
| spin_unlock(&key->user->lock); |
| } |
| |
| atomic_dec(&key->user->nkeys); |
| if (test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) |
| atomic_dec(&key->user->nikeys); |
| |
| key_user_put(key->user); |
| |
| /* now throw away the key memory */ |
| if (key->type->destroy) |
| key->type->destroy(key); |
| |
| kfree(key->description); |
| |
| #ifdef KEY_DEBUGGING |
| key->magic = KEY_DEBUG_MAGIC_X; |
| #endif |
| kmem_cache_free(key_jar, key); |
| } |
| } |
| |
| /* |
| * Garbage collector for unused keys. |
| * |
| * This is done in process context so that we don't have to disable interrupts |
| * all over the place. key_put() schedules this rather than trying to do the |
| * cleanup itself, which means key_put() doesn't have to sleep. |
| */ |
| static void key_garbage_collector(struct work_struct *work) |
| { |
| static LIST_HEAD(graveyard); |
| static u8 gc_state; /* Internal persistent state */ |
| #define KEY_GC_REAP_AGAIN 0x01 /* - Need another cycle */ |
| #define KEY_GC_REAPING_LINKS 0x02 /* - We need to reap links */ |
| #define KEY_GC_SET_TIMER 0x04 /* - We need to restart the timer */ |
| #define KEY_GC_REAPING_DEAD_1 0x10 /* - We need to mark dead keys */ |
| #define KEY_GC_REAPING_DEAD_2 0x20 /* - We need to reap dead key links */ |
| #define KEY_GC_REAPING_DEAD_3 0x40 /* - We need to reap dead keys */ |
| #define KEY_GC_FOUND_DEAD_KEY 0x80 /* - We found at least one dead key */ |
| |
| struct rb_node *cursor; |
| struct key *key; |
| time_t new_timer, limit; |
| |
| kenter("[%lx,%x]", key_gc_flags, gc_state); |
| |
| limit = current_kernel_time().tv_sec; |
| if (limit > key_gc_delay) |
| limit -= key_gc_delay; |
| else |
| limit = key_gc_delay; |
| |
| /* Work out what we're going to be doing in this pass */ |
| gc_state &= KEY_GC_REAPING_DEAD_1 | KEY_GC_REAPING_DEAD_2; |
| gc_state <<= 1; |
| if (test_and_clear_bit(KEY_GC_KEY_EXPIRED, &key_gc_flags)) |
| gc_state |= KEY_GC_REAPING_LINKS | KEY_GC_SET_TIMER; |
| |
| if (test_and_clear_bit(KEY_GC_REAP_KEYTYPE, &key_gc_flags)) |
| gc_state |= KEY_GC_REAPING_DEAD_1; |
| kdebug("new pass %x", gc_state); |
| |
| new_timer = LONG_MAX; |
| |
| /* As only this function is permitted to remove things from the key |
| * serial tree, if cursor is non-NULL then it will always point to a |
| * valid node in the tree - even if lock got dropped. |
| */ |
| spin_lock(&key_serial_lock); |
| cursor = rb_first(&key_serial_tree); |
| |
| continue_scanning: |
| while (cursor) { |
| key = rb_entry(cursor, struct key, serial_node); |
| cursor = rb_next(cursor); |
| |
| if (atomic_read(&key->usage) == 0) |
| goto found_unreferenced_key; |
| |
| if (unlikely(gc_state & KEY_GC_REAPING_DEAD_1)) { |
| if (key->type == key_gc_dead_keytype) { |
| gc_state |= KEY_GC_FOUND_DEAD_KEY; |
| set_bit(KEY_FLAG_DEAD, &key->flags); |
| key->perm = 0; |
| goto skip_dead_key; |
| } |
| } |
| |
| if (gc_state & KEY_GC_SET_TIMER) { |
| if (key->expiry > limit && key->expiry < new_timer) { |
| kdebug("will expire %x in %ld", |
| key_serial(key), key->expiry - limit); |
| new_timer = key->expiry; |
| } |
| } |
| |
| if (unlikely(gc_state & KEY_GC_REAPING_DEAD_2)) |
| if (key->type == key_gc_dead_keytype) |
| gc_state |= KEY_GC_FOUND_DEAD_KEY; |
| |
| if ((gc_state & KEY_GC_REAPING_LINKS) || |
| unlikely(gc_state & KEY_GC_REAPING_DEAD_2)) { |
| if (key->type == &key_type_keyring) |
| goto found_keyring; |
| } |
| |
| if (unlikely(gc_state & KEY_GC_REAPING_DEAD_3)) |
| if (key->type == key_gc_dead_keytype) |
| goto destroy_dead_key; |
| |
| skip_dead_key: |
| if (spin_is_contended(&key_serial_lock) || need_resched()) |
| goto contended; |
| } |
| |
| contended: |
| spin_unlock(&key_serial_lock); |
| |
| maybe_resched: |
| if (cursor) { |
| cond_resched(); |
| spin_lock(&key_serial_lock); |
| goto continue_scanning; |
| } |
| |
| /* We've completed the pass. Set the timer if we need to and queue a |
| * new cycle if necessary. We keep executing cycles until we find one |
| * where we didn't reap any keys. |
| */ |
| kdebug("pass complete"); |
| |
| if (gc_state & KEY_GC_SET_TIMER && new_timer != (time_t)LONG_MAX) { |
| new_timer += key_gc_delay; |
| key_schedule_gc(new_timer); |
| } |
| |
| if (unlikely(gc_state & KEY_GC_REAPING_DEAD_2) || |
| !list_empty(&graveyard)) { |
| /* Make sure that all pending keyring payload destructions are |
| * fulfilled and that people aren't now looking at dead or |
| * dying keys that they don't have a reference upon or a link |
| * to. |
| */ |
| kdebug("gc sync"); |
| synchronize_rcu(); |
| } |
| |
| if (!list_empty(&graveyard)) { |
| kdebug("gc keys"); |
| key_gc_unused_keys(&graveyard); |
| } |
| |
| if (unlikely(gc_state & (KEY_GC_REAPING_DEAD_1 | |
| KEY_GC_REAPING_DEAD_2))) { |
| if (!(gc_state & KEY_GC_FOUND_DEAD_KEY)) { |
| /* No remaining dead keys: short circuit the remaining |
| * keytype reap cycles. |
| */ |
| kdebug("dead short"); |
| gc_state &= ~(KEY_GC_REAPING_DEAD_1 | KEY_GC_REAPING_DEAD_2); |
| gc_state |= KEY_GC_REAPING_DEAD_3; |
| } else { |
| gc_state |= KEY_GC_REAP_AGAIN; |
| } |
| } |
| |
| if (unlikely(gc_state & KEY_GC_REAPING_DEAD_3)) { |
| kdebug("dead wake"); |
| smp_mb(); |
| clear_bit(KEY_GC_REAPING_KEYTYPE, &key_gc_flags); |
| wake_up_bit(&key_gc_flags, KEY_GC_REAPING_KEYTYPE); |
| } |
| |
| if (gc_state & KEY_GC_REAP_AGAIN) |
| schedule_work(&key_gc_work); |
| kleave(" [end %x]", gc_state); |
| return; |
| |
| /* We found an unreferenced key - once we've removed it from the tree, |
| * we can safely drop the lock. |
| */ |
| found_unreferenced_key: |
| kdebug("unrefd key %d", key->serial); |
| rb_erase(&key->serial_node, &key_serial_tree); |
| spin_unlock(&key_serial_lock); |
| |
| list_add_tail(&key->graveyard_link, &graveyard); |
| gc_state |= KEY_GC_REAP_AGAIN; |
| goto maybe_resched; |
| |
| /* We found a keyring and we need to check the payload for links to |
| * dead or expired keys. We don't flag another reap immediately as we |
| * have to wait for the old payload to be destroyed by RCU before we |
| * can reap the keys to which it refers. |
| */ |
| found_keyring: |
| spin_unlock(&key_serial_lock); |
| key_gc_keyring(key, limit); |
| goto maybe_resched; |
| |
| /* We found a dead key that is still referenced. Reset its type and |
| * destroy its payload with its semaphore held. |
| */ |
| destroy_dead_key: |
| spin_unlock(&key_serial_lock); |
| kdebug("destroy key %d", key->serial); |
| down_write(&key->sem); |
| key->type = &key_type_dead; |
| if (key_gc_dead_keytype->destroy) |
| key_gc_dead_keytype->destroy(key); |
| memset(&key->payload, KEY_DESTROY, sizeof(key->payload)); |
| up_write(&key->sem); |
| goto maybe_resched; |
| } |