| // SPDX-License-Identifier: GPL-2.0-only |
| /**************************************************************************** |
| * Driver for Solarflare network controllers and boards |
| * Copyright 2018 Solarflare Communications Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published |
| * by the Free Software Foundation, incorporated herein by reference. |
| */ |
| |
| #include "net_driver.h" |
| #include <linux/module.h> |
| #include <linux/iommu.h> |
| #include "efx.h" |
| #include "nic.h" |
| #include "rx_common.h" |
| |
| /* This is the percentage fill level below which new RX descriptors |
| * will be added to the RX descriptor ring. |
| */ |
| static unsigned int rx_refill_threshold; |
| module_param(rx_refill_threshold, uint, 0444); |
| MODULE_PARM_DESC(rx_refill_threshold, |
| "RX descriptor ring refill threshold (%)"); |
| |
| /* Number of RX buffers to recycle pages for. When creating the RX page recycle |
| * ring, this number is divided by the number of buffers per page to calculate |
| * the number of pages to store in the RX page recycle ring. |
| */ |
| #define EFX_RECYCLE_RING_SIZE_IOMMU 4096 |
| #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH) |
| |
| /* RX maximum head room required. |
| * |
| * This must be at least 1 to prevent overflow, plus one packet-worth |
| * to allow pipelined receives. |
| */ |
| #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS) |
| |
| /* Check the RX page recycle ring for a page that can be reused. */ |
| static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue) |
| { |
| struct efx_nic *efx = rx_queue->efx; |
| struct efx_rx_page_state *state; |
| unsigned int index; |
| struct page *page; |
| |
| index = rx_queue->page_remove & rx_queue->page_ptr_mask; |
| page = rx_queue->page_ring[index]; |
| if (page == NULL) |
| return NULL; |
| |
| rx_queue->page_ring[index] = NULL; |
| /* page_remove cannot exceed page_add. */ |
| if (rx_queue->page_remove != rx_queue->page_add) |
| ++rx_queue->page_remove; |
| |
| /* If page_count is 1 then we hold the only reference to this page. */ |
| if (page_count(page) == 1) { |
| ++rx_queue->page_recycle_count; |
| return page; |
| } else { |
| state = page_address(page); |
| dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, |
| PAGE_SIZE << efx->rx_buffer_order, |
| DMA_FROM_DEVICE); |
| put_page(page); |
| ++rx_queue->page_recycle_failed; |
| } |
| |
| return NULL; |
| } |
| |
| /* Attempt to recycle the page if there is an RX recycle ring; the page can |
| * only be added if this is the final RX buffer, to prevent pages being used in |
| * the descriptor ring and appearing in the recycle ring simultaneously. |
| */ |
| static void efx_recycle_rx_page(struct efx_channel *channel, |
| struct efx_rx_buffer *rx_buf) |
| { |
| struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); |
| struct efx_nic *efx = rx_queue->efx; |
| struct page *page = rx_buf->page; |
| unsigned int index; |
| |
| /* Only recycle the page after processing the final buffer. */ |
| if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE)) |
| return; |
| |
| index = rx_queue->page_add & rx_queue->page_ptr_mask; |
| if (rx_queue->page_ring[index] == NULL) { |
| unsigned int read_index = rx_queue->page_remove & |
| rx_queue->page_ptr_mask; |
| |
| /* The next slot in the recycle ring is available, but |
| * increment page_remove if the read pointer currently |
| * points here. |
| */ |
| if (read_index == index) |
| ++rx_queue->page_remove; |
| rx_queue->page_ring[index] = page; |
| ++rx_queue->page_add; |
| return; |
| } |
| ++rx_queue->page_recycle_full; |
| efx_unmap_rx_buffer(efx, rx_buf); |
| put_page(rx_buf->page); |
| } |
| |
| /* Recycle the pages that are used by buffers that have just been received. */ |
| void efx_recycle_rx_pages(struct efx_channel *channel, |
| struct efx_rx_buffer *rx_buf, |
| unsigned int n_frags) |
| { |
| struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); |
| |
| do { |
| efx_recycle_rx_page(channel, rx_buf); |
| rx_buf = efx_rx_buf_next(rx_queue, rx_buf); |
| } while (--n_frags); |
| } |
| |
| void efx_discard_rx_packet(struct efx_channel *channel, |
| struct efx_rx_buffer *rx_buf, |
| unsigned int n_frags) |
| { |
| struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); |
| |
| efx_recycle_rx_pages(channel, rx_buf, n_frags); |
| |
| efx_free_rx_buffers(rx_queue, rx_buf, n_frags); |
| } |
| |
| static void efx_init_rx_recycle_ring(struct efx_rx_queue *rx_queue) |
| { |
| unsigned int bufs_in_recycle_ring, page_ring_size; |
| struct efx_nic *efx = rx_queue->efx; |
| |
| /* Set the RX recycle ring size */ |
| #ifdef CONFIG_PPC64 |
| bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU; |
| #else |
| if (iommu_present(&pci_bus_type)) |
| bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU; |
| else |
| bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU; |
| #endif /* CONFIG_PPC64 */ |
| |
| page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring / |
| efx->rx_bufs_per_page); |
| rx_queue->page_ring = kcalloc(page_ring_size, |
| sizeof(*rx_queue->page_ring), GFP_KERNEL); |
| rx_queue->page_ptr_mask = page_ring_size - 1; |
| } |
| |
| static void efx_fini_rx_recycle_ring(struct efx_rx_queue *rx_queue) |
| { |
| struct efx_nic *efx = rx_queue->efx; |
| int i; |
| |
| /* Unmap and release the pages in the recycle ring. Remove the ring. */ |
| for (i = 0; i <= rx_queue->page_ptr_mask; i++) { |
| struct page *page = rx_queue->page_ring[i]; |
| struct efx_rx_page_state *state; |
| |
| if (page == NULL) |
| continue; |
| |
| state = page_address(page); |
| dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, |
| PAGE_SIZE << efx->rx_buffer_order, |
| DMA_FROM_DEVICE); |
| put_page(page); |
| } |
| kfree(rx_queue->page_ring); |
| rx_queue->page_ring = NULL; |
| } |
| |
| static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue, |
| struct efx_rx_buffer *rx_buf) |
| { |
| /* Release the page reference we hold for the buffer. */ |
| if (rx_buf->page) |
| put_page(rx_buf->page); |
| |
| /* If this is the last buffer in a page, unmap and free it. */ |
| if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) { |
| efx_unmap_rx_buffer(rx_queue->efx, rx_buf); |
| efx_free_rx_buffers(rx_queue, rx_buf, 1); |
| } |
| rx_buf->page = NULL; |
| } |
| |
| int efx_probe_rx_queue(struct efx_rx_queue *rx_queue) |
| { |
| struct efx_nic *efx = rx_queue->efx; |
| unsigned int entries; |
| int rc; |
| |
| /* Create the smallest power-of-two aligned ring */ |
| entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE); |
| EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); |
| rx_queue->ptr_mask = entries - 1; |
| |
| netif_dbg(efx, probe, efx->net_dev, |
| "creating RX queue %d size %#x mask %#x\n", |
| efx_rx_queue_index(rx_queue), efx->rxq_entries, |
| rx_queue->ptr_mask); |
| |
| /* Allocate RX buffers */ |
| rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer), |
| GFP_KERNEL); |
| if (!rx_queue->buffer) |
| return -ENOMEM; |
| |
| rc = efx_nic_probe_rx(rx_queue); |
| if (rc) { |
| kfree(rx_queue->buffer); |
| rx_queue->buffer = NULL; |
| } |
| |
| return rc; |
| } |
| |
| void efx_init_rx_queue(struct efx_rx_queue *rx_queue) |
| { |
| unsigned int max_fill, trigger, max_trigger; |
| struct efx_nic *efx = rx_queue->efx; |
| int rc = 0; |
| |
| netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, |
| "initialising RX queue %d\n", efx_rx_queue_index(rx_queue)); |
| |
| /* Initialise ptr fields */ |
| rx_queue->added_count = 0; |
| rx_queue->notified_count = 0; |
| rx_queue->removed_count = 0; |
| rx_queue->min_fill = -1U; |
| efx_init_rx_recycle_ring(rx_queue); |
| |
| rx_queue->page_remove = 0; |
| rx_queue->page_add = rx_queue->page_ptr_mask + 1; |
| rx_queue->page_recycle_count = 0; |
| rx_queue->page_recycle_failed = 0; |
| rx_queue->page_recycle_full = 0; |
| |
| /* Initialise limit fields */ |
| max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM; |
| max_trigger = |
| max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page; |
| if (rx_refill_threshold != 0) { |
| trigger = max_fill * min(rx_refill_threshold, 100U) / 100U; |
| if (trigger > max_trigger) |
| trigger = max_trigger; |
| } else { |
| trigger = max_trigger; |
| } |
| |
| rx_queue->max_fill = max_fill; |
| rx_queue->fast_fill_trigger = trigger; |
| rx_queue->refill_enabled = true; |
| |
| /* Initialise XDP queue information */ |
| rc = xdp_rxq_info_reg(&rx_queue->xdp_rxq_info, efx->net_dev, |
| rx_queue->core_index, 0); |
| |
| if (rc) { |
| netif_err(efx, rx_err, efx->net_dev, |
| "Failure to initialise XDP queue information rc=%d\n", |
| rc); |
| efx->xdp_rxq_info_failed = true; |
| } else { |
| rx_queue->xdp_rxq_info_valid = true; |
| } |
| |
| /* Set up RX descriptor ring */ |
| efx_nic_init_rx(rx_queue); |
| } |
| |
| void efx_fini_rx_queue(struct efx_rx_queue *rx_queue) |
| { |
| struct efx_rx_buffer *rx_buf; |
| int i; |
| |
| netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, |
| "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue)); |
| |
| del_timer_sync(&rx_queue->slow_fill); |
| |
| /* Release RX buffers from the current read ptr to the write ptr */ |
| if (rx_queue->buffer) { |
| for (i = rx_queue->removed_count; i < rx_queue->added_count; |
| i++) { |
| unsigned int index = i & rx_queue->ptr_mask; |
| |
| rx_buf = efx_rx_buffer(rx_queue, index); |
| efx_fini_rx_buffer(rx_queue, rx_buf); |
| } |
| } |
| |
| efx_fini_rx_recycle_ring(rx_queue); |
| |
| if (rx_queue->xdp_rxq_info_valid) |
| xdp_rxq_info_unreg(&rx_queue->xdp_rxq_info); |
| |
| rx_queue->xdp_rxq_info_valid = false; |
| } |
| |
| void efx_remove_rx_queue(struct efx_rx_queue *rx_queue) |
| { |
| netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, |
| "destroying RX queue %d\n", efx_rx_queue_index(rx_queue)); |
| |
| efx_nic_remove_rx(rx_queue); |
| |
| kfree(rx_queue->buffer); |
| rx_queue->buffer = NULL; |
| } |
| |
| /* Unmap a DMA-mapped page. This function is only called for the final RX |
| * buffer in a page. |
| */ |
| void efx_unmap_rx_buffer(struct efx_nic *efx, |
| struct efx_rx_buffer *rx_buf) |
| { |
| struct page *page = rx_buf->page; |
| |
| if (page) { |
| struct efx_rx_page_state *state = page_address(page); |
| |
| dma_unmap_page(&efx->pci_dev->dev, |
| state->dma_addr, |
| PAGE_SIZE << efx->rx_buffer_order, |
| DMA_FROM_DEVICE); |
| } |
| } |
| |
| void efx_free_rx_buffers(struct efx_rx_queue *rx_queue, |
| struct efx_rx_buffer *rx_buf, |
| unsigned int num_bufs) |
| { |
| do { |
| if (rx_buf->page) { |
| put_page(rx_buf->page); |
| rx_buf->page = NULL; |
| } |
| rx_buf = efx_rx_buf_next(rx_queue, rx_buf); |
| } while (--num_bufs); |
| } |
| |
| void efx_rx_slow_fill(struct timer_list *t) |
| { |
| struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill); |
| |
| /* Post an event to cause NAPI to run and refill the queue */ |
| efx_nic_generate_fill_event(rx_queue); |
| ++rx_queue->slow_fill_count; |
| } |
| |
| void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue) |
| { |
| mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10)); |
| } |
| |
| /* efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers |
| * |
| * @rx_queue: Efx RX queue |
| * |
| * This allocates a batch of pages, maps them for DMA, and populates |
| * struct efx_rx_buffers for each one. Return a negative error code or |
| * 0 on success. If a single page can be used for multiple buffers, |
| * then the page will either be inserted fully, or not at all. |
| */ |
| static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic) |
| { |
| unsigned int page_offset, index, count; |
| struct efx_nic *efx = rx_queue->efx; |
| struct efx_rx_page_state *state; |
| struct efx_rx_buffer *rx_buf; |
| dma_addr_t dma_addr; |
| struct page *page; |
| |
| count = 0; |
| do { |
| page = efx_reuse_page(rx_queue); |
| if (page == NULL) { |
| page = alloc_pages(__GFP_COMP | |
| (atomic ? GFP_ATOMIC : GFP_KERNEL), |
| efx->rx_buffer_order); |
| if (unlikely(page == NULL)) |
| return -ENOMEM; |
| dma_addr = |
| dma_map_page(&efx->pci_dev->dev, page, 0, |
| PAGE_SIZE << efx->rx_buffer_order, |
| DMA_FROM_DEVICE); |
| if (unlikely(dma_mapping_error(&efx->pci_dev->dev, |
| dma_addr))) { |
| __free_pages(page, efx->rx_buffer_order); |
| return -EIO; |
| } |
| state = page_address(page); |
| state->dma_addr = dma_addr; |
| } else { |
| state = page_address(page); |
| dma_addr = state->dma_addr; |
| } |
| |
| dma_addr += sizeof(struct efx_rx_page_state); |
| page_offset = sizeof(struct efx_rx_page_state); |
| |
| do { |
| index = rx_queue->added_count & rx_queue->ptr_mask; |
| rx_buf = efx_rx_buffer(rx_queue, index); |
| rx_buf->dma_addr = dma_addr + efx->rx_ip_align + |
| EFX_XDP_HEADROOM; |
| rx_buf->page = page; |
| rx_buf->page_offset = page_offset + efx->rx_ip_align + |
| EFX_XDP_HEADROOM; |
| rx_buf->len = efx->rx_dma_len; |
| rx_buf->flags = 0; |
| ++rx_queue->added_count; |
| get_page(page); |
| dma_addr += efx->rx_page_buf_step; |
| page_offset += efx->rx_page_buf_step; |
| } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE); |
| |
| rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE; |
| } while (++count < efx->rx_pages_per_batch); |
| |
| return 0; |
| } |
| |
| void efx_rx_config_page_split(struct efx_nic *efx) |
| { |
| efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align + |
| EFX_XDP_HEADROOM + EFX_XDP_TAILROOM, |
| EFX_RX_BUF_ALIGNMENT); |
| efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 : |
| ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) / |
| efx->rx_page_buf_step); |
| efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) / |
| efx->rx_bufs_per_page; |
| efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH, |
| efx->rx_bufs_per_page); |
| } |
| |
| /* efx_fast_push_rx_descriptors - push new RX descriptors quickly |
| * @rx_queue: RX descriptor queue |
| * |
| * This will aim to fill the RX descriptor queue up to |
| * @rx_queue->@max_fill. If there is insufficient atomic |
| * memory to do so, a slow fill will be scheduled. |
| * |
| * The caller must provide serialisation (none is used here). In practise, |
| * this means this function must run from the NAPI handler, or be called |
| * when NAPI is disabled. |
| */ |
| void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic) |
| { |
| struct efx_nic *efx = rx_queue->efx; |
| unsigned int fill_level, batch_size; |
| int space, rc = 0; |
| |
| if (!rx_queue->refill_enabled) |
| return; |
| |
| /* Calculate current fill level, and exit if we don't need to fill */ |
| fill_level = (rx_queue->added_count - rx_queue->removed_count); |
| EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries); |
| if (fill_level >= rx_queue->fast_fill_trigger) |
| goto out; |
| |
| /* Record minimum fill level */ |
| if (unlikely(fill_level < rx_queue->min_fill)) { |
| if (fill_level) |
| rx_queue->min_fill = fill_level; |
| } |
| |
| batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page; |
| space = rx_queue->max_fill - fill_level; |
| EFX_WARN_ON_ONCE_PARANOID(space < batch_size); |
| |
| netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, |
| "RX queue %d fast-filling descriptor ring from" |
| " level %d to level %d\n", |
| efx_rx_queue_index(rx_queue), fill_level, |
| rx_queue->max_fill); |
| |
| do { |
| rc = efx_init_rx_buffers(rx_queue, atomic); |
| if (unlikely(rc)) { |
| /* Ensure that we don't leave the rx queue empty */ |
| efx_schedule_slow_fill(rx_queue); |
| goto out; |
| } |
| } while ((space -= batch_size) >= batch_size); |
| |
| netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, |
| "RX queue %d fast-filled descriptor ring " |
| "to level %d\n", efx_rx_queue_index(rx_queue), |
| rx_queue->added_count - rx_queue->removed_count); |
| |
| out: |
| if (rx_queue->notified_count != rx_queue->added_count) |
| efx_nic_notify_rx_desc(rx_queue); |
| } |
| |
| /* Pass a received packet up through GRO. GRO can handle pages |
| * regardless of checksum state and skbs with a good checksum. |
| */ |
| void |
| efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf, |
| unsigned int n_frags, u8 *eh, __wsum csum) |
| { |
| struct napi_struct *napi = &channel->napi_str; |
| struct efx_nic *efx = channel->efx; |
| struct sk_buff *skb; |
| |
| skb = napi_get_frags(napi); |
| if (unlikely(!skb)) { |
| struct efx_rx_queue *rx_queue; |
| |
| rx_queue = efx_channel_get_rx_queue(channel); |
| efx_free_rx_buffers(rx_queue, rx_buf, n_frags); |
| return; |
| } |
| |
| if (efx->net_dev->features & NETIF_F_RXHASH && |
| efx_rx_buf_hash_valid(efx, eh)) |
| skb_set_hash(skb, efx_rx_buf_hash(efx, eh), |
| PKT_HASH_TYPE_L3); |
| if (csum) { |
| skb->csum = csum; |
| skb->ip_summed = CHECKSUM_COMPLETE; |
| } else { |
| skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ? |
| CHECKSUM_UNNECESSARY : CHECKSUM_NONE); |
| } |
| skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL); |
| |
| for (;;) { |
| skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, |
| rx_buf->page, rx_buf->page_offset, |
| rx_buf->len); |
| rx_buf->page = NULL; |
| skb->len += rx_buf->len; |
| if (skb_shinfo(skb)->nr_frags == n_frags) |
| break; |
| |
| rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf); |
| } |
| |
| skb->data_len = skb->len; |
| skb->truesize += n_frags * efx->rx_buffer_truesize; |
| |
| skb_record_rx_queue(skb, channel->rx_queue.core_index); |
| |
| napi_gro_frags(napi); |
| } |
| |
| /* RSS contexts. We're using linked lists and crappy O(n) algorithms, because |
| * (a) this is an infrequent control-plane operation and (b) n is small (max 64) |
| */ |
| struct efx_rss_context *efx_alloc_rss_context_entry(struct efx_nic *efx) |
| { |
| struct list_head *head = &efx->rss_context.list; |
| struct efx_rss_context *ctx, *new; |
| u32 id = 1; /* Don't use zero, that refers to the master RSS context */ |
| |
| WARN_ON(!mutex_is_locked(&efx->rss_lock)); |
| |
| /* Search for first gap in the numbering */ |
| list_for_each_entry(ctx, head, list) { |
| if (ctx->user_id != id) |
| break; |
| id++; |
| /* Check for wrap. If this happens, we have nearly 2^32 |
| * allocated RSS contexts, which seems unlikely. |
| */ |
| if (WARN_ON_ONCE(!id)) |
| return NULL; |
| } |
| |
| /* Create the new entry */ |
| new = kmalloc(sizeof(*new), GFP_KERNEL); |
| if (!new) |
| return NULL; |
| new->context_id = EFX_MCDI_RSS_CONTEXT_INVALID; |
| new->rx_hash_udp_4tuple = false; |
| |
| /* Insert the new entry into the gap */ |
| new->user_id = id; |
| list_add_tail(&new->list, &ctx->list); |
| return new; |
| } |
| |
| struct efx_rss_context *efx_find_rss_context_entry(struct efx_nic *efx, u32 id) |
| { |
| struct list_head *head = &efx->rss_context.list; |
| struct efx_rss_context *ctx; |
| |
| WARN_ON(!mutex_is_locked(&efx->rss_lock)); |
| |
| list_for_each_entry(ctx, head, list) |
| if (ctx->user_id == id) |
| return ctx; |
| return NULL; |
| } |
| |
| void efx_free_rss_context_entry(struct efx_rss_context *ctx) |
| { |
| list_del(&ctx->list); |
| kfree(ctx); |
| } |
| |
| void efx_set_default_rx_indir_table(struct efx_nic *efx, |
| struct efx_rss_context *ctx) |
| { |
| size_t i; |
| |
| for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++) |
| ctx->rx_indir_table[i] = |
| ethtool_rxfh_indir_default(i, efx->rss_spread); |
| } |
| |
| /** |
| * efx_filter_is_mc_recipient - test whether spec is a multicast recipient |
| * @spec: Specification to test |
| * |
| * Return: %true if the specification is a non-drop RX filter that |
| * matches a local MAC address I/G bit value of 1 or matches a local |
| * IPv4 or IPv6 address value in the respective multicast address |
| * range. Otherwise %false. |
| */ |
| bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec) |
| { |
| if (!(spec->flags & EFX_FILTER_FLAG_RX) || |
| spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP) |
| return false; |
| |
| if (spec->match_flags & |
| (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) && |
| is_multicast_ether_addr(spec->loc_mac)) |
| return true; |
| |
| if ((spec->match_flags & |
| (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) == |
| (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) { |
| if (spec->ether_type == htons(ETH_P_IP) && |
| ipv4_is_multicast(spec->loc_host[0])) |
| return true; |
| if (spec->ether_type == htons(ETH_P_IPV6) && |
| ((const u8 *)spec->loc_host)[0] == 0xff) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool efx_filter_spec_equal(const struct efx_filter_spec *left, |
| const struct efx_filter_spec *right) |
| { |
| if ((left->match_flags ^ right->match_flags) | |
| ((left->flags ^ right->flags) & |
| (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX))) |
| return false; |
| |
| return memcmp(&left->outer_vid, &right->outer_vid, |
| sizeof(struct efx_filter_spec) - |
| offsetof(struct efx_filter_spec, outer_vid)) == 0; |
| } |
| |
| u32 efx_filter_spec_hash(const struct efx_filter_spec *spec) |
| { |
| BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3); |
| return jhash2((const u32 *)&spec->outer_vid, |
| (sizeof(struct efx_filter_spec) - |
| offsetof(struct efx_filter_spec, outer_vid)) / 4, |
| 0); |
| } |
| |
| #ifdef CONFIG_RFS_ACCEL |
| bool efx_rps_check_rule(struct efx_arfs_rule *rule, unsigned int filter_idx, |
| bool *force) |
| { |
| if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) { |
| /* ARFS is currently updating this entry, leave it */ |
| return false; |
| } |
| if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) { |
| /* ARFS tried and failed to update this, so it's probably out |
| * of date. Remove the filter and the ARFS rule entry. |
| */ |
| rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING; |
| *force = true; |
| return true; |
| } else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */ |
| /* ARFS has moved on, so old filter is not needed. Since we did |
| * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will |
| * not be removed by efx_rps_hash_del() subsequently. |
| */ |
| *force = true; |
| return true; |
| } |
| /* Remove it iff ARFS wants to. */ |
| return true; |
| } |
| |
| static |
| struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx, |
| const struct efx_filter_spec *spec) |
| { |
| u32 hash = efx_filter_spec_hash(spec); |
| |
| lockdep_assert_held(&efx->rps_hash_lock); |
| if (!efx->rps_hash_table) |
| return NULL; |
| return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE]; |
| } |
| |
| struct efx_arfs_rule *efx_rps_hash_find(struct efx_nic *efx, |
| const struct efx_filter_spec *spec) |
| { |
| struct efx_arfs_rule *rule; |
| struct hlist_head *head; |
| struct hlist_node *node; |
| |
| head = efx_rps_hash_bucket(efx, spec); |
| if (!head) |
| return NULL; |
| hlist_for_each(node, head) { |
| rule = container_of(node, struct efx_arfs_rule, node); |
| if (efx_filter_spec_equal(spec, &rule->spec)) |
| return rule; |
| } |
| return NULL; |
| } |
| |
| struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx, |
| const struct efx_filter_spec *spec, |
| bool *new) |
| { |
| struct efx_arfs_rule *rule; |
| struct hlist_head *head; |
| struct hlist_node *node; |
| |
| head = efx_rps_hash_bucket(efx, spec); |
| if (!head) |
| return NULL; |
| hlist_for_each(node, head) { |
| rule = container_of(node, struct efx_arfs_rule, node); |
| if (efx_filter_spec_equal(spec, &rule->spec)) { |
| *new = false; |
| return rule; |
| } |
| } |
| rule = kmalloc(sizeof(*rule), GFP_ATOMIC); |
| *new = true; |
| if (rule) { |
| memcpy(&rule->spec, spec, sizeof(rule->spec)); |
| hlist_add_head(&rule->node, head); |
| } |
| return rule; |
| } |
| |
| void efx_rps_hash_del(struct efx_nic *efx, const struct efx_filter_spec *spec) |
| { |
| struct efx_arfs_rule *rule; |
| struct hlist_head *head; |
| struct hlist_node *node; |
| |
| head = efx_rps_hash_bucket(efx, spec); |
| if (WARN_ON(!head)) |
| return; |
| hlist_for_each(node, head) { |
| rule = container_of(node, struct efx_arfs_rule, node); |
| if (efx_filter_spec_equal(spec, &rule->spec)) { |
| /* Someone already reused the entry. We know that if |
| * this check doesn't fire (i.e. filter_id == REMOVING) |
| * then the REMOVING mark was put there by our caller, |
| * because caller is holding a lock on filter table and |
| * only holders of that lock set REMOVING. |
| */ |
| if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING) |
| return; |
| hlist_del(node); |
| kfree(rule); |
| return; |
| } |
| } |
| /* We didn't find it. */ |
| WARN_ON(1); |
| } |
| #endif |
| |
| int efx_probe_filters(struct efx_nic *efx) |
| { |
| int rc; |
| |
| mutex_lock(&efx->mac_lock); |
| down_write(&efx->filter_sem); |
| rc = efx->type->filter_table_probe(efx); |
| if (rc) |
| goto out_unlock; |
| |
| #ifdef CONFIG_RFS_ACCEL |
| if (efx->type->offload_features & NETIF_F_NTUPLE) { |
| struct efx_channel *channel; |
| int i, success = 1; |
| |
| efx_for_each_channel(channel, efx) { |
| channel->rps_flow_id = |
| kcalloc(efx->type->max_rx_ip_filters, |
| sizeof(*channel->rps_flow_id), |
| GFP_KERNEL); |
| if (!channel->rps_flow_id) |
| success = 0; |
| else |
| for (i = 0; |
| i < efx->type->max_rx_ip_filters; |
| ++i) |
| channel->rps_flow_id[i] = |
| RPS_FLOW_ID_INVALID; |
| channel->rfs_expire_index = 0; |
| channel->rfs_filter_count = 0; |
| } |
| |
| if (!success) { |
| efx_for_each_channel(channel, efx) |
| kfree(channel->rps_flow_id); |
| efx->type->filter_table_remove(efx); |
| rc = -ENOMEM; |
| goto out_unlock; |
| } |
| } |
| #endif |
| out_unlock: |
| up_write(&efx->filter_sem); |
| mutex_unlock(&efx->mac_lock); |
| return rc; |
| } |
| |
| void efx_remove_filters(struct efx_nic *efx) |
| { |
| #ifdef CONFIG_RFS_ACCEL |
| struct efx_channel *channel; |
| |
| efx_for_each_channel(channel, efx) { |
| cancel_delayed_work_sync(&channel->filter_work); |
| kfree(channel->rps_flow_id); |
| channel->rps_flow_id = NULL; |
| } |
| #endif |
| down_write(&efx->filter_sem); |
| efx->type->filter_table_remove(efx); |
| up_write(&efx->filter_sem); |
| } |
| |
| #ifdef CONFIG_RFS_ACCEL |
| |
| static void efx_filter_rfs_work(struct work_struct *data) |
| { |
| struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion, |
| work); |
| struct efx_nic *efx = netdev_priv(req->net_dev); |
| struct efx_channel *channel = efx_get_channel(efx, req->rxq_index); |
| int slot_idx = req - efx->rps_slot; |
| struct efx_arfs_rule *rule; |
| u16 arfs_id = 0; |
| int rc; |
| |
| rc = efx->type->filter_insert(efx, &req->spec, true); |
| if (rc >= 0) |
| /* Discard 'priority' part of EF10+ filter ID (mcdi_filters) */ |
| rc %= efx->type->max_rx_ip_filters; |
| if (efx->rps_hash_table) { |
| spin_lock_bh(&efx->rps_hash_lock); |
| rule = efx_rps_hash_find(efx, &req->spec); |
| /* The rule might have already gone, if someone else's request |
| * for the same spec was already worked and then expired before |
| * we got around to our work. In that case we have nothing |
| * tying us to an arfs_id, meaning that as soon as the filter |
| * is considered for expiry it will be removed. |
| */ |
| if (rule) { |
| if (rc < 0) |
| rule->filter_id = EFX_ARFS_FILTER_ID_ERROR; |
| else |
| rule->filter_id = rc; |
| arfs_id = rule->arfs_id; |
| } |
| spin_unlock_bh(&efx->rps_hash_lock); |
| } |
| if (rc >= 0) { |
| /* Remember this so we can check whether to expire the filter |
| * later. |
| */ |
| mutex_lock(&efx->rps_mutex); |
| if (channel->rps_flow_id[rc] == RPS_FLOW_ID_INVALID) |
| channel->rfs_filter_count++; |
| channel->rps_flow_id[rc] = req->flow_id; |
| mutex_unlock(&efx->rps_mutex); |
| |
| if (req->spec.ether_type == htons(ETH_P_IP)) |
| netif_info(efx, rx_status, efx->net_dev, |
| "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n", |
| (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", |
| req->spec.rem_host, ntohs(req->spec.rem_port), |
| req->spec.loc_host, ntohs(req->spec.loc_port), |
| req->rxq_index, req->flow_id, rc, arfs_id); |
| else |
| netif_info(efx, rx_status, efx->net_dev, |
| "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n", |
| (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", |
| req->spec.rem_host, ntohs(req->spec.rem_port), |
| req->spec.loc_host, ntohs(req->spec.loc_port), |
| req->rxq_index, req->flow_id, rc, arfs_id); |
| channel->n_rfs_succeeded++; |
| } else { |
| if (req->spec.ether_type == htons(ETH_P_IP)) |
| netif_dbg(efx, rx_status, efx->net_dev, |
| "failed to steer %s %pI4:%u:%pI4:%u to queue %u [flow %u rc %d id %u]\n", |
| (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", |
| req->spec.rem_host, ntohs(req->spec.rem_port), |
| req->spec.loc_host, ntohs(req->spec.loc_port), |
| req->rxq_index, req->flow_id, rc, arfs_id); |
| else |
| netif_dbg(efx, rx_status, efx->net_dev, |
| "failed to steer %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u rc %d id %u]\n", |
| (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", |
| req->spec.rem_host, ntohs(req->spec.rem_port), |
| req->spec.loc_host, ntohs(req->spec.loc_port), |
| req->rxq_index, req->flow_id, rc, arfs_id); |
| channel->n_rfs_failed++; |
| /* We're overloading the NIC's filter tables, so let's do a |
| * chunk of extra expiry work. |
| */ |
| __efx_filter_rfs_expire(channel, min(channel->rfs_filter_count, |
| 100u)); |
| } |
| |
| /* Release references */ |
| clear_bit(slot_idx, &efx->rps_slot_map); |
| dev_put(req->net_dev); |
| } |
| |
| int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb, |
| u16 rxq_index, u32 flow_id) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| struct efx_async_filter_insertion *req; |
| struct efx_arfs_rule *rule; |
| struct flow_keys fk; |
| int slot_idx; |
| bool new; |
| int rc; |
| |
| /* find a free slot */ |
| for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++) |
| if (!test_and_set_bit(slot_idx, &efx->rps_slot_map)) |
| break; |
| if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT) |
| return -EBUSY; |
| |
| if (flow_id == RPS_FLOW_ID_INVALID) { |
| rc = -EINVAL; |
| goto out_clear; |
| } |
| |
| if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) { |
| rc = -EPROTONOSUPPORT; |
| goto out_clear; |
| } |
| |
| if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) { |
| rc = -EPROTONOSUPPORT; |
| goto out_clear; |
| } |
| if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) { |
| rc = -EPROTONOSUPPORT; |
| goto out_clear; |
| } |
| |
| req = efx->rps_slot + slot_idx; |
| efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT, |
| efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0, |
| rxq_index); |
| req->spec.match_flags = |
| EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO | |
| EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT | |
| EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT; |
| req->spec.ether_type = fk.basic.n_proto; |
| req->spec.ip_proto = fk.basic.ip_proto; |
| |
| if (fk.basic.n_proto == htons(ETH_P_IP)) { |
| req->spec.rem_host[0] = fk.addrs.v4addrs.src; |
| req->spec.loc_host[0] = fk.addrs.v4addrs.dst; |
| } else { |
| memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src, |
| sizeof(struct in6_addr)); |
| memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst, |
| sizeof(struct in6_addr)); |
| } |
| |
| req->spec.rem_port = fk.ports.src; |
| req->spec.loc_port = fk.ports.dst; |
| |
| if (efx->rps_hash_table) { |
| /* Add it to ARFS hash table */ |
| spin_lock(&efx->rps_hash_lock); |
| rule = efx_rps_hash_add(efx, &req->spec, &new); |
| if (!rule) { |
| rc = -ENOMEM; |
| goto out_unlock; |
| } |
| if (new) |
| rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER; |
| rc = rule->arfs_id; |
| /* Skip if existing or pending filter already does the right thing */ |
| if (!new && rule->rxq_index == rxq_index && |
| rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING) |
| goto out_unlock; |
| rule->rxq_index = rxq_index; |
| rule->filter_id = EFX_ARFS_FILTER_ID_PENDING; |
| spin_unlock(&efx->rps_hash_lock); |
| } else { |
| /* Without an ARFS hash table, we just use arfs_id 0 for all |
| * filters. This means if multiple flows hash to the same |
| * flow_id, all but the most recently touched will be eligible |
| * for expiry. |
| */ |
| rc = 0; |
| } |
| |
| /* Queue the request */ |
| dev_hold(req->net_dev = net_dev); |
| INIT_WORK(&req->work, efx_filter_rfs_work); |
| req->rxq_index = rxq_index; |
| req->flow_id = flow_id; |
| schedule_work(&req->work); |
| return rc; |
| out_unlock: |
| spin_unlock(&efx->rps_hash_lock); |
| out_clear: |
| clear_bit(slot_idx, &efx->rps_slot_map); |
| return rc; |
| } |
| |
| bool __efx_filter_rfs_expire(struct efx_channel *channel, unsigned int quota) |
| { |
| bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index); |
| struct efx_nic *efx = channel->efx; |
| unsigned int index, size, start; |
| u32 flow_id; |
| |
| if (!mutex_trylock(&efx->rps_mutex)) |
| return false; |
| expire_one = efx->type->filter_rfs_expire_one; |
| index = channel->rfs_expire_index; |
| start = index; |
| size = efx->type->max_rx_ip_filters; |
| while (quota) { |
| flow_id = channel->rps_flow_id[index]; |
| |
| if (flow_id != RPS_FLOW_ID_INVALID) { |
| quota--; |
| if (expire_one(efx, flow_id, index)) { |
| netif_info(efx, rx_status, efx->net_dev, |
| "expired filter %d [channel %u flow %u]\n", |
| index, channel->channel, flow_id); |
| channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID; |
| channel->rfs_filter_count--; |
| } |
| } |
| if (++index == size) |
| index = 0; |
| /* If we were called with a quota that exceeds the total number |
| * of filters in the table (which shouldn't happen, but could |
| * if two callers race), ensure that we don't loop forever - |
| * stop when we've examined every row of the table. |
| */ |
| if (index == start) |
| break; |
| } |
| |
| channel->rfs_expire_index = index; |
| mutex_unlock(&efx->rps_mutex); |
| return true; |
| } |
| |
| #endif /* CONFIG_RFS_ACCEL */ |