| #ifndef _SPARC64_TSB_H |
| #define _SPARC64_TSB_H |
| |
| /* The sparc64 TSB is similar to the powerpc hashtables. It's a |
| * power-of-2 sized table of TAG/PTE pairs. The cpu precomputes |
| * pointers into this table for 8K and 64K page sizes, and also a |
| * comparison TAG based upon the virtual address and context which |
| * faults. |
| * |
| * TLB miss trap handler software does the actual lookup via something |
| * of the form: |
| * |
| * ldxa [%g0] ASI_{D,I}MMU_TSB_8KB_PTR, %g1 |
| * ldxa [%g0] ASI_{D,I}MMU, %g6 |
| * ldda [%g1] ASI_NUCLEUS_QUAD_LDD, %g4 |
| * cmp %g4, %g6 |
| * bne,pn %xcc, tsb_miss_{d,i}tlb |
| * mov FAULT_CODE_{D,I}TLB, %g3 |
| * stxa %g5, [%g0] ASI_{D,I}TLB_DATA_IN |
| * retry |
| * |
| |
| * Each 16-byte slot of the TSB is the 8-byte tag and then the 8-byte |
| * PTE. The TAG is of the same layout as the TLB TAG TARGET mmu |
| * register which is: |
| * |
| * ------------------------------------------------- |
| * | - | CONTEXT | - | VADDR bits 63:22 | |
| * ------------------------------------------------- |
| * 63 61 60 48 47 42 41 0 |
| * |
| * Like the powerpc hashtables we need to use locking in order to |
| * synchronize while we update the entries. PTE updates need locking |
| * as well. |
| * |
| * We need to carefully choose a lock bits for the TSB entry. We |
| * choose to use bit 47 in the tag. Also, since we never map anything |
| * at page zero in context zero, we use zero as an invalid tag entry. |
| * When the lock bit is set, this forces a tag comparison failure. |
| * |
| * Currently, we allocate an 8K TSB per-process and we use it for both |
| * I-TLB and D-TLB misses. Perhaps at some point we'll add code that |
| * monitors the number of active pages in the process as we get |
| * major/minor faults, and grow the TSB in response. The only trick |
| * in implementing that is synchronizing the freeing of the old TSB |
| * wrt. parallel TSB updates occuring on other processors. On |
| * possible solution is to use RCU for the freeing of the TSB. |
| */ |
| |
| #define TSB_TAG_LOCK (1 << (47 - 32)) |
| |
| #define TSB_MEMBAR membar #StoreStore |
| |
| #define TSB_LOCK_TAG(TSB, REG1, REG2) \ |
| 99: lduwa [TSB] ASI_N, REG1; \ |
| sethi %hi(TSB_TAG_LOCK), REG2;\ |
| andcc REG1, REG2, %g0; \ |
| bne,pn %icc, 99b; \ |
| nop; \ |
| casa [TSB] ASI_N, REG1, REG2;\ |
| cmp REG1, REG2; \ |
| bne,pn %icc, 99b; \ |
| nop; \ |
| TSB_MEMBAR |
| |
| #define TSB_WRITE(TSB, TTE, TAG) \ |
| stx TTE, [TSB + 0x08]; \ |
| TSB_MEMBAR; \ |
| stx TAG, [TSB + 0x00]; |
| |
| /* Do a kernel page table walk. Leaves physical PTE pointer in |
| * REG1. Jumps to FAIL_LABEL on early page table walk termination. |
| * VADDR will not be clobbered, but REG2 will. |
| */ |
| #define KERN_PGTABLE_WALK(VADDR, REG1, REG2, FAIL_LABEL) \ |
| sethi %hi(swapper_pg_dir), REG1; \ |
| or REG1, %lo(swapper_pg_dir), REG1; \ |
| sllx VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \ |
| srlx REG2, 64 - PAGE_SHIFT, REG2; \ |
| andn REG2, 0x3, REG2; \ |
| lduw [REG1 + REG2], REG1; \ |
| brz,pn REG1, FAIL_LABEL; \ |
| sllx VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \ |
| srlx REG2, 64 - PAGE_SHIFT, REG2; \ |
| sllx REG1, 11, REG1; \ |
| andn REG2, 0x3, REG2; \ |
| lduwa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \ |
| brz,pn REG1, FAIL_LABEL; \ |
| sllx VADDR, 64 - PMD_SHIFT, REG2; \ |
| srlx REG2, 64 - PAGE_SHIFT, REG2; \ |
| sllx REG1, 11, REG1; \ |
| andn REG2, 0x7, REG2; \ |
| add REG1, REG2, REG1; |
| |
| /* Do a user page table walk in MMU globals. Leaves physical PTE |
| * pointer in REG1. Jumps to FAIL_LABEL on early page table walk |
| * termination. Physical base of page tables is in PHYS_PGD which |
| * will not be modified. |
| * |
| * VADDR will not be clobbered, but REG1 and REG2 will. |
| */ |
| #define USER_PGTABLE_WALK_TL1(VADDR, PHYS_PGD, REG1, REG2, FAIL_LABEL) \ |
| sllx VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \ |
| srlx REG2, 64 - PAGE_SHIFT, REG2; \ |
| andn REG2, 0x3, REG2; \ |
| lduwa [PHYS_PGD + REG2] ASI_PHYS_USE_EC, REG1; \ |
| brz,pn REG1, FAIL_LABEL; \ |
| sllx VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \ |
| srlx REG2, 64 - PAGE_SHIFT, REG2; \ |
| sllx REG1, 11, REG1; \ |
| andn REG2, 0x3, REG2; \ |
| lduwa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \ |
| brz,pn REG1, FAIL_LABEL; \ |
| sllx VADDR, 64 - PMD_SHIFT, REG2; \ |
| srlx REG2, 64 - PAGE_SHIFT, REG2; \ |
| sllx REG1, 11, REG1; \ |
| andn REG2, 0x7, REG2; \ |
| add REG1, REG2, REG1; |
| |
| /* Lookup a OBP mapping on VADDR in the prom_trans[] table at TL>0. |
| * If no entry is found, FAIL_LABEL will be branched to. On success |
| * the resulting PTE value will be left in REG1. VADDR is preserved |
| * by this routine. |
| */ |
| #define OBP_TRANS_LOOKUP(VADDR, REG1, REG2, REG3, FAIL_LABEL) \ |
| sethi %hi(prom_trans), REG1; \ |
| or REG1, %lo(prom_trans), REG1; \ |
| 97: ldx [REG1 + 0x00], REG2; \ |
| brz,pn REG2, FAIL_LABEL; \ |
| nop; \ |
| ldx [REG1 + 0x08], REG3; \ |
| add REG2, REG3, REG3; \ |
| cmp REG2, VADDR; \ |
| bgu,pt %xcc, 98f; \ |
| cmp VADDR, REG3; \ |
| bgeu,pt %xcc, 98f; \ |
| ldx [REG1 + 0x10], REG3; \ |
| sub VADDR, REG2, REG2; \ |
| ba,pt %xcc, 99f; \ |
| add REG3, REG2, REG1; \ |
| 98: ba,pt %xcc, 97b; \ |
| add REG1, (3 * 8), REG1; \ |
| 99: |
| |
| /* Do a kernel TSB lookup at tl>0 on VADDR+TAG, branch to OK_LABEL |
| * on TSB hit. REG1, REG2, REG3, and REG4 are used as temporaries |
| * and the found TTE will be left in REG1. REG3 and REG4 must |
| * be an even/odd pair of registers. |
| * |
| * VADDR and TAG will be preserved and not clobbered by this macro. |
| */ |
| /* XXX non-8K base page size support... */ |
| #define KERN_TSB_LOOKUP_TL1(VADDR, TAG, REG1, REG2, REG3, REG4, OK_LABEL) \ |
| sethi %hi(swapper_tsb), REG1; \ |
| or REG1, %lo(swapper_tsb), REG1; \ |
| srlx VADDR, 13, REG2; \ |
| and REG2, (512 - 1), REG2; \ |
| sllx REG2, 4, REG2; \ |
| add REG1, REG2, REG2; \ |
| ldda [REG2] ASI_NUCLEUS_QUAD_LDD, REG3; \ |
| cmp REG3, TAG; \ |
| be,a,pt %xcc, OK_LABEL; \ |
| mov REG4, REG1; |
| |
| #endif /* !(_SPARC64_TSB_H) */ |