blob: e2329db9d6f405fe1d32ebfb8f95035cf1ecedcd [file] [log] [blame]
#ifndef _ASM_POWERPC_BOOK3S_64_PGALLOC_H
#define _ASM_POWERPC_BOOK3S_64_PGALLOC_H
/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/slab.h>
#include <linux/cpumask.h>
#include <linux/percpu.h>
struct vmemmap_backing {
struct vmemmap_backing *list;
unsigned long phys;
unsigned long virt_addr;
};
extern struct vmemmap_backing *vmemmap_list;
/*
* Functions that deal with pagetables that could be at any level of
* the table need to be passed an "index_size" so they know how to
* handle allocation. For PTE pages (which are linked to a struct
* page for now, and drawn from the main get_free_pages() pool), the
* allocation size will be (2^index_size * sizeof(pointer)) and
* allocations are drawn from the kmem_cache in PGT_CACHE(index_size).
*
* The maximum index size needs to be big enough to allow any
* pagetable sizes we need, but small enough to fit in the low bits of
* any page table pointer. In other words all pagetables, even tiny
* ones, must be aligned to allow at least enough low 0 bits to
* contain this value. This value is also used as a mask, so it must
* be one less than a power of two.
*/
#define MAX_PGTABLE_INDEX_SIZE 0xf
extern struct kmem_cache *pgtable_cache[];
#define PGT_CACHE(shift) ({ \
BUG_ON(!(shift)); \
pgtable_cache[(shift) - 1]; \
})
#define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO
extern pte_t *pte_fragment_alloc(struct mm_struct *, unsigned long, int);
extern void pte_fragment_free(unsigned long *, int);
extern void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift);
#ifdef CONFIG_SMP
extern void __tlb_remove_table(void *_table);
#endif
static inline pgd_t *radix__pgd_alloc(struct mm_struct *mm)
{
#ifdef CONFIG_PPC_64K_PAGES
return (pgd_t *)__get_free_page(pgtable_gfp_flags(mm, PGALLOC_GFP));
#else
struct page *page;
page = alloc_pages(pgtable_gfp_flags(mm, PGALLOC_GFP | __GFP_RETRY_MAYFAIL),
4);
if (!page)
return NULL;
return (pgd_t *) page_address(page);
#endif
}
static inline void radix__pgd_free(struct mm_struct *mm, pgd_t *pgd)
{
#ifdef CONFIG_PPC_64K_PAGES
free_page((unsigned long)pgd);
#else
free_pages((unsigned long)pgd, 4);
#endif
}
static inline pgd_t *pgd_alloc(struct mm_struct *mm)
{
if (radix_enabled())
return radix__pgd_alloc(mm);
return kmem_cache_alloc(PGT_CACHE(PGD_INDEX_SIZE),
pgtable_gfp_flags(mm, GFP_KERNEL));
}
static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd)
{
if (radix_enabled())
return radix__pgd_free(mm, pgd);
kmem_cache_free(PGT_CACHE(PGD_INDEX_SIZE), pgd);
}
static inline void pgd_populate(struct mm_struct *mm, pgd_t *pgd, pud_t *pud)
{
pgd_set(pgd, __pgtable_ptr_val(pud) | PGD_VAL_BITS);
}
static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr)
{
return kmem_cache_alloc(PGT_CACHE(PUD_INDEX_SIZE),
pgtable_gfp_flags(mm, GFP_KERNEL));
}
static inline void pud_free(struct mm_struct *mm, pud_t *pud)
{
kmem_cache_free(PGT_CACHE(PUD_INDEX_SIZE), pud);
}
static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd)
{
pud_set(pud, __pgtable_ptr_val(pmd) | PUD_VAL_BITS);
}
static inline void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud,
unsigned long address)
{
/*
* By now all the pud entries should be none entries. So go
* ahead and flush the page walk cache
*/
flush_tlb_pgtable(tlb, address);
pgtable_free_tlb(tlb, pud, PUD_INDEX_SIZE);
}
static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr)
{
return kmem_cache_alloc(PGT_CACHE(PMD_CACHE_INDEX),
pgtable_gfp_flags(mm, GFP_KERNEL));
}
static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd)
{
kmem_cache_free(PGT_CACHE(PMD_CACHE_INDEX), pmd);
}
static inline void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd,
unsigned long address)
{
/*
* By now all the pud entries should be none entries. So go
* ahead and flush the page walk cache
*/
flush_tlb_pgtable(tlb, address);
return pgtable_free_tlb(tlb, pmd, PMD_CACHE_INDEX);
}
static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd,
pte_t *pte)
{
pmd_set(pmd, __pgtable_ptr_val(pte) | PMD_VAL_BITS);
}
static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd,
pgtable_t pte_page)
{
pmd_set(pmd, __pgtable_ptr_val(pte_page) | PMD_VAL_BITS);
}
static inline pgtable_t pmd_pgtable(pmd_t pmd)
{
return (pgtable_t)pmd_page_vaddr(pmd);
}
#ifdef CONFIG_PPC_4K_PAGES
static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
unsigned long address)
{
return (pte_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
}
static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
unsigned long address)
{
struct page *page;
pte_t *pte;
pte = (pte_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO | __GFP_ACCOUNT);
if (!pte)
return NULL;
page = virt_to_page(pte);
if (!pgtable_page_ctor(page)) {
__free_page(page);
return NULL;
}
return pte;
}
#else /* if CONFIG_PPC_64K_PAGES */
static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
unsigned long address)
{
return (pte_t *)pte_fragment_alloc(mm, address, 1);
}
static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
unsigned long address)
{
return (pgtable_t)pte_fragment_alloc(mm, address, 0);
}
#endif
static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
{
pte_fragment_free((unsigned long *)pte, 1);
}
static inline void pte_free(struct mm_struct *mm, pgtable_t ptepage)
{
pte_fragment_free((unsigned long *)ptepage, 0);
}
static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table,
unsigned long address)
{
/*
* By now all the pud entries should be none entries. So go
* ahead and flush the page walk cache
*/
flush_tlb_pgtable(tlb, address);
pgtable_free_tlb(tlb, table, 0);
}
#define check_pgt_cache() do { } while (0)
#endif /* _ASM_POWERPC_BOOK3S_64_PGALLOC_H */