| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _BCACHEFS_UTIL_H |
| #define _BCACHEFS_UTIL_H |
| |
| #include <linux/bio.h> |
| #include <linux/blkdev.h> |
| #include <linux/closure.h> |
| #include <linux/errno.h> |
| #include <linux/freezer.h> |
| #include <linux/kernel.h> |
| #include <linux/sched/clock.h> |
| #include <linux/llist.h> |
| #include <linux/log2.h> |
| #include <linux/percpu.h> |
| #include <linux/preempt.h> |
| #include <linux/ratelimit.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/workqueue.h> |
| |
| #include "mean_and_variance.h" |
| |
| #include "darray.h" |
| #include "time_stats.h" |
| |
| struct closure; |
| |
| #ifdef CONFIG_BCACHEFS_DEBUG |
| #define EBUG_ON(cond) BUG_ON(cond) |
| #else |
| #define EBUG_ON(cond) |
| #endif |
| |
| #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ |
| #define CPU_BIG_ENDIAN 0 |
| #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ |
| #define CPU_BIG_ENDIAN 1 |
| #endif |
| |
| /* type hackery */ |
| |
| #define type_is_exact(_val, _type) \ |
| __builtin_types_compatible_p(typeof(_val), _type) |
| |
| #define type_is(_val, _type) \ |
| (__builtin_types_compatible_p(typeof(_val), _type) || \ |
| __builtin_types_compatible_p(typeof(_val), const _type)) |
| |
| /* Userspace doesn't align allocations as nicely as the kernel allocators: */ |
| static inline size_t buf_pages(void *p, size_t len) |
| { |
| return DIV_ROUND_UP(len + |
| ((unsigned long) p & (PAGE_SIZE - 1)), |
| PAGE_SIZE); |
| } |
| |
| #define HEAP(type) \ |
| struct { \ |
| size_t size, used; \ |
| type *data; \ |
| } |
| |
| #define DECLARE_HEAP(type, name) HEAP(type) name |
| |
| #define init_heap(heap, _size, gfp) \ |
| ({ \ |
| (heap)->used = 0; \ |
| (heap)->size = (_size); \ |
| (heap)->data = kvmalloc((heap)->size * sizeof((heap)->data[0]),\ |
| (gfp)); \ |
| }) |
| |
| #define free_heap(heap) \ |
| do { \ |
| kvfree((heap)->data); \ |
| (heap)->data = NULL; \ |
| } while (0) |
| |
| #define heap_set_backpointer(h, i, _fn) \ |
| do { \ |
| void (*fn)(typeof(h), size_t) = _fn; \ |
| if (fn) \ |
| fn(h, i); \ |
| } while (0) |
| |
| #define heap_swap(h, i, j, set_backpointer) \ |
| do { \ |
| swap((h)->data[i], (h)->data[j]); \ |
| heap_set_backpointer(h, i, set_backpointer); \ |
| heap_set_backpointer(h, j, set_backpointer); \ |
| } while (0) |
| |
| #define heap_peek(h) \ |
| ({ \ |
| EBUG_ON(!(h)->used); \ |
| (h)->data[0]; \ |
| }) |
| |
| #define heap_full(h) ((h)->used == (h)->size) |
| |
| #define heap_sift_down(h, i, cmp, set_backpointer) \ |
| do { \ |
| size_t _c, _j = i; \ |
| \ |
| for (; _j * 2 + 1 < (h)->used; _j = _c) { \ |
| _c = _j * 2 + 1; \ |
| if (_c + 1 < (h)->used && \ |
| cmp(h, (h)->data[_c], (h)->data[_c + 1]) >= 0) \ |
| _c++; \ |
| \ |
| if (cmp(h, (h)->data[_c], (h)->data[_j]) >= 0) \ |
| break; \ |
| heap_swap(h, _c, _j, set_backpointer); \ |
| } \ |
| } while (0) |
| |
| #define heap_sift_up(h, i, cmp, set_backpointer) \ |
| do { \ |
| while (i) { \ |
| size_t p = (i - 1) / 2; \ |
| if (cmp(h, (h)->data[i], (h)->data[p]) >= 0) \ |
| break; \ |
| heap_swap(h, i, p, set_backpointer); \ |
| i = p; \ |
| } \ |
| } while (0) |
| |
| #define __heap_add(h, d, cmp, set_backpointer) \ |
| ({ \ |
| size_t _i = (h)->used++; \ |
| (h)->data[_i] = d; \ |
| heap_set_backpointer(h, _i, set_backpointer); \ |
| \ |
| heap_sift_up(h, _i, cmp, set_backpointer); \ |
| _i; \ |
| }) |
| |
| #define heap_add(h, d, cmp, set_backpointer) \ |
| ({ \ |
| bool _r = !heap_full(h); \ |
| if (_r) \ |
| __heap_add(h, d, cmp, set_backpointer); \ |
| _r; \ |
| }) |
| |
| #define heap_add_or_replace(h, new, cmp, set_backpointer) \ |
| do { \ |
| if (!heap_add(h, new, cmp, set_backpointer) && \ |
| cmp(h, new, heap_peek(h)) >= 0) { \ |
| (h)->data[0] = new; \ |
| heap_set_backpointer(h, 0, set_backpointer); \ |
| heap_sift_down(h, 0, cmp, set_backpointer); \ |
| } \ |
| } while (0) |
| |
| #define heap_del(h, i, cmp, set_backpointer) \ |
| do { \ |
| size_t _i = (i); \ |
| \ |
| BUG_ON(_i >= (h)->used); \ |
| (h)->used--; \ |
| if ((_i) < (h)->used) { \ |
| heap_swap(h, _i, (h)->used, set_backpointer); \ |
| heap_sift_up(h, _i, cmp, set_backpointer); \ |
| heap_sift_down(h, _i, cmp, set_backpointer); \ |
| } \ |
| } while (0) |
| |
| #define heap_pop(h, d, cmp, set_backpointer) \ |
| ({ \ |
| bool _r = (h)->used; \ |
| if (_r) { \ |
| (d) = (h)->data[0]; \ |
| heap_del(h, 0, cmp, set_backpointer); \ |
| } \ |
| _r; \ |
| }) |
| |
| #define heap_resort(heap, cmp, set_backpointer) \ |
| do { \ |
| ssize_t _i; \ |
| for (_i = (ssize_t) (heap)->used / 2 - 1; _i >= 0; --_i) \ |
| heap_sift_down(heap, _i, cmp, set_backpointer); \ |
| } while (0) |
| |
| #define ANYSINT_MAX(t) \ |
| ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1) |
| |
| #include "printbuf.h" |
| |
| #define prt_vprintf(_out, ...) bch2_prt_vprintf(_out, __VA_ARGS__) |
| #define prt_printf(_out, ...) bch2_prt_printf(_out, __VA_ARGS__) |
| #define printbuf_str(_buf) bch2_printbuf_str(_buf) |
| #define printbuf_exit(_buf) bch2_printbuf_exit(_buf) |
| |
| #define printbuf_tabstops_reset(_buf) bch2_printbuf_tabstops_reset(_buf) |
| #define printbuf_tabstop_pop(_buf) bch2_printbuf_tabstop_pop(_buf) |
| #define printbuf_tabstop_push(_buf, _n) bch2_printbuf_tabstop_push(_buf, _n) |
| |
| #define printbuf_indent_add(_out, _n) bch2_printbuf_indent_add(_out, _n) |
| #define printbuf_indent_sub(_out, _n) bch2_printbuf_indent_sub(_out, _n) |
| |
| #define prt_newline(_out) bch2_prt_newline(_out) |
| #define prt_tab(_out) bch2_prt_tab(_out) |
| #define prt_tab_rjust(_out) bch2_prt_tab_rjust(_out) |
| |
| #define prt_bytes_indented(...) bch2_prt_bytes_indented(__VA_ARGS__) |
| #define prt_u64(_out, _v) prt_printf(_out, "%llu", (u64) (_v)) |
| #define prt_human_readable_u64(...) bch2_prt_human_readable_u64(__VA_ARGS__) |
| #define prt_human_readable_s64(...) bch2_prt_human_readable_s64(__VA_ARGS__) |
| #define prt_units_u64(...) bch2_prt_units_u64(__VA_ARGS__) |
| #define prt_units_s64(...) bch2_prt_units_s64(__VA_ARGS__) |
| #define prt_string_option(...) bch2_prt_string_option(__VA_ARGS__) |
| #define prt_bitflags(...) bch2_prt_bitflags(__VA_ARGS__) |
| #define prt_bitflags_vector(...) bch2_prt_bitflags_vector(__VA_ARGS__) |
| |
| void bch2_pr_time_units(struct printbuf *, u64); |
| void bch2_prt_datetime(struct printbuf *, time64_t); |
| |
| #ifdef __KERNEL__ |
| static inline void uuid_unparse_lower(u8 *uuid, char *out) |
| { |
| sprintf(out, "%pUb", uuid); |
| } |
| #else |
| #include <uuid/uuid.h> |
| #endif |
| |
| static inline void pr_uuid(struct printbuf *out, u8 *uuid) |
| { |
| char uuid_str[40]; |
| |
| uuid_unparse_lower(uuid, uuid_str); |
| prt_printf(out, "%s", uuid_str); |
| } |
| |
| int bch2_strtoint_h(const char *, int *); |
| int bch2_strtouint_h(const char *, unsigned int *); |
| int bch2_strtoll_h(const char *, long long *); |
| int bch2_strtoull_h(const char *, unsigned long long *); |
| int bch2_strtou64_h(const char *, u64 *); |
| |
| static inline int bch2_strtol_h(const char *cp, long *res) |
| { |
| #if BITS_PER_LONG == 32 |
| return bch2_strtoint_h(cp, (int *) res); |
| #else |
| return bch2_strtoll_h(cp, (long long *) res); |
| #endif |
| } |
| |
| static inline int bch2_strtoul_h(const char *cp, long *res) |
| { |
| #if BITS_PER_LONG == 32 |
| return bch2_strtouint_h(cp, (unsigned int *) res); |
| #else |
| return bch2_strtoull_h(cp, (unsigned long long *) res); |
| #endif |
| } |
| |
| #define strtoi_h(cp, res) \ |
| ( type_is(*res, int) ? bch2_strtoint_h(cp, (void *) res)\ |
| : type_is(*res, long) ? bch2_strtol_h(cp, (void *) res)\ |
| : type_is(*res, long long) ? bch2_strtoll_h(cp, (void *) res)\ |
| : type_is(*res, unsigned) ? bch2_strtouint_h(cp, (void *) res)\ |
| : type_is(*res, unsigned long) ? bch2_strtoul_h(cp, (void *) res)\ |
| : type_is(*res, unsigned long long) ? bch2_strtoull_h(cp, (void *) res)\ |
| : -EINVAL) |
| |
| #define strtoul_safe(cp, var) \ |
| ({ \ |
| unsigned long _v; \ |
| int _r = kstrtoul(cp, 10, &_v); \ |
| if (!_r) \ |
| var = _v; \ |
| _r; \ |
| }) |
| |
| #define strtoul_safe_clamp(cp, var, min, max) \ |
| ({ \ |
| unsigned long _v; \ |
| int _r = kstrtoul(cp, 10, &_v); \ |
| if (!_r) \ |
| var = clamp_t(typeof(var), _v, min, max); \ |
| _r; \ |
| }) |
| |
| #define strtoul_safe_restrict(cp, var, min, max) \ |
| ({ \ |
| unsigned long _v; \ |
| int _r = kstrtoul(cp, 10, &_v); \ |
| if (!_r && _v >= min && _v <= max) \ |
| var = _v; \ |
| else \ |
| _r = -EINVAL; \ |
| _r; \ |
| }) |
| |
| #define snprint(out, var) \ |
| prt_printf(out, \ |
| type_is(var, int) ? "%i\n" \ |
| : type_is(var, unsigned) ? "%u\n" \ |
| : type_is(var, long) ? "%li\n" \ |
| : type_is(var, unsigned long) ? "%lu\n" \ |
| : type_is(var, s64) ? "%lli\n" \ |
| : type_is(var, u64) ? "%llu\n" \ |
| : type_is(var, char *) ? "%s\n" \ |
| : "%i\n", var) |
| |
| bool bch2_is_zero(const void *, size_t); |
| |
| u64 bch2_read_flag_list(char *, const char * const[]); |
| |
| void bch2_prt_u64_base2_nbits(struct printbuf *, u64, unsigned); |
| void bch2_prt_u64_base2(struct printbuf *, u64); |
| |
| void bch2_print_string_as_lines(const char *prefix, const char *lines); |
| |
| typedef DARRAY(unsigned long) bch_stacktrace; |
| int bch2_save_backtrace(bch_stacktrace *stack, struct task_struct *, unsigned, gfp_t); |
| void bch2_prt_backtrace(struct printbuf *, bch_stacktrace *); |
| int bch2_prt_task_backtrace(struct printbuf *, struct task_struct *, unsigned, gfp_t); |
| |
| static inline void prt_bdevname(struct printbuf *out, struct block_device *bdev) |
| { |
| #ifdef __KERNEL__ |
| prt_printf(out, "%pg", bdev); |
| #else |
| prt_str(out, bdev->name); |
| #endif |
| } |
| |
| void bch2_time_stats_to_text(struct printbuf *, struct bch2_time_stats *); |
| |
| #define ewma_add(ewma, val, weight) \ |
| ({ \ |
| typeof(ewma) _ewma = (ewma); \ |
| typeof(weight) _weight = (weight); \ |
| \ |
| (((_ewma << _weight) - _ewma) + (val)) >> _weight; \ |
| }) |
| |
| struct bch_ratelimit { |
| /* Next time we want to do some work, in nanoseconds */ |
| u64 next; |
| |
| /* |
| * Rate at which we want to do work, in units per nanosecond |
| * The units here correspond to the units passed to |
| * bch2_ratelimit_increment() |
| */ |
| unsigned rate; |
| }; |
| |
| static inline void bch2_ratelimit_reset(struct bch_ratelimit *d) |
| { |
| d->next = local_clock(); |
| } |
| |
| u64 bch2_ratelimit_delay(struct bch_ratelimit *); |
| void bch2_ratelimit_increment(struct bch_ratelimit *, u64); |
| |
| struct bch_pd_controller { |
| struct bch_ratelimit rate; |
| unsigned long last_update; |
| |
| s64 last_actual; |
| s64 smoothed_derivative; |
| |
| unsigned p_term_inverse; |
| unsigned d_smooth; |
| unsigned d_term; |
| |
| /* for exporting to sysfs (no effect on behavior) */ |
| s64 last_derivative; |
| s64 last_proportional; |
| s64 last_change; |
| s64 last_target; |
| |
| /* |
| * If true, the rate will not increase if bch2_ratelimit_delay() |
| * is not being called often enough. |
| */ |
| bool backpressure; |
| }; |
| |
| void bch2_pd_controller_update(struct bch_pd_controller *, s64, s64, int); |
| void bch2_pd_controller_init(struct bch_pd_controller *); |
| void bch2_pd_controller_debug_to_text(struct printbuf *, struct bch_pd_controller *); |
| |
| #define sysfs_pd_controller_attribute(name) \ |
| rw_attribute(name##_rate); \ |
| rw_attribute(name##_rate_bytes); \ |
| rw_attribute(name##_rate_d_term); \ |
| rw_attribute(name##_rate_p_term_inverse); \ |
| read_attribute(name##_rate_debug) |
| |
| #define sysfs_pd_controller_files(name) \ |
| &sysfs_##name##_rate, \ |
| &sysfs_##name##_rate_bytes, \ |
| &sysfs_##name##_rate_d_term, \ |
| &sysfs_##name##_rate_p_term_inverse, \ |
| &sysfs_##name##_rate_debug |
| |
| #define sysfs_pd_controller_show(name, var) \ |
| do { \ |
| sysfs_hprint(name##_rate, (var)->rate.rate); \ |
| sysfs_print(name##_rate_bytes, (var)->rate.rate); \ |
| sysfs_print(name##_rate_d_term, (var)->d_term); \ |
| sysfs_print(name##_rate_p_term_inverse, (var)->p_term_inverse); \ |
| \ |
| if (attr == &sysfs_##name##_rate_debug) \ |
| bch2_pd_controller_debug_to_text(out, var); \ |
| } while (0) |
| |
| #define sysfs_pd_controller_store(name, var) \ |
| do { \ |
| sysfs_strtoul_clamp(name##_rate, \ |
| (var)->rate.rate, 1, UINT_MAX); \ |
| sysfs_strtoul_clamp(name##_rate_bytes, \ |
| (var)->rate.rate, 1, UINT_MAX); \ |
| sysfs_strtoul(name##_rate_d_term, (var)->d_term); \ |
| sysfs_strtoul_clamp(name##_rate_p_term_inverse, \ |
| (var)->p_term_inverse, 1, INT_MAX); \ |
| } while (0) |
| |
| #define container_of_or_null(ptr, type, member) \ |
| ({ \ |
| typeof(ptr) _ptr = ptr; \ |
| _ptr ? container_of(_ptr, type, member) : NULL; \ |
| }) |
| |
| /* Does linear interpolation between powers of two */ |
| static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits) |
| { |
| unsigned fract = x & ~(~0 << fract_bits); |
| |
| x >>= fract_bits; |
| x = 1 << x; |
| x += (x * fract) >> fract_bits; |
| |
| return x; |
| } |
| |
| void bch2_bio_map(struct bio *bio, void *base, size_t); |
| int bch2_bio_alloc_pages(struct bio *, size_t, gfp_t); |
| |
| #define closure_bio_submit(bio, cl) \ |
| do { \ |
| closure_get(cl); \ |
| submit_bio(bio); \ |
| } while (0) |
| |
| #define kthread_wait(cond) \ |
| ({ \ |
| int _ret = 0; \ |
| \ |
| while (1) { \ |
| set_current_state(TASK_INTERRUPTIBLE); \ |
| if (kthread_should_stop()) { \ |
| _ret = -1; \ |
| break; \ |
| } \ |
| \ |
| if (cond) \ |
| break; \ |
| \ |
| schedule(); \ |
| } \ |
| set_current_state(TASK_RUNNING); \ |
| _ret; \ |
| }) |
| |
| #define kthread_wait_freezable(cond) \ |
| ({ \ |
| int _ret = 0; \ |
| while (1) { \ |
| set_current_state(TASK_INTERRUPTIBLE); \ |
| if (kthread_should_stop()) { \ |
| _ret = -1; \ |
| break; \ |
| } \ |
| \ |
| if (cond) \ |
| break; \ |
| \ |
| schedule(); \ |
| try_to_freeze(); \ |
| } \ |
| set_current_state(TASK_RUNNING); \ |
| _ret; \ |
| }) |
| |
| size_t bch2_rand_range(size_t); |
| |
| void memcpy_to_bio(struct bio *, struct bvec_iter, const void *); |
| void memcpy_from_bio(void *, struct bio *, struct bvec_iter); |
| |
| static inline void memcpy_u64s_small(void *dst, const void *src, |
| unsigned u64s) |
| { |
| u64 *d = dst; |
| const u64 *s = src; |
| |
| while (u64s--) |
| *d++ = *s++; |
| } |
| |
| static inline void __memcpy_u64s(void *dst, const void *src, |
| unsigned u64s) |
| { |
| #ifdef CONFIG_X86_64 |
| long d0, d1, d2; |
| |
| asm volatile("rep ; movsq" |
| : "=&c" (d0), "=&D" (d1), "=&S" (d2) |
| : "0" (u64s), "1" (dst), "2" (src) |
| : "memory"); |
| #else |
| u64 *d = dst; |
| const u64 *s = src; |
| |
| while (u64s--) |
| *d++ = *s++; |
| #endif |
| } |
| |
| static inline void memcpy_u64s(void *dst, const void *src, |
| unsigned u64s) |
| { |
| EBUG_ON(!(dst >= src + u64s * sizeof(u64) || |
| dst + u64s * sizeof(u64) <= src)); |
| |
| __memcpy_u64s(dst, src, u64s); |
| } |
| |
| static inline void __memmove_u64s_down(void *dst, const void *src, |
| unsigned u64s) |
| { |
| __memcpy_u64s(dst, src, u64s); |
| } |
| |
| static inline void memmove_u64s_down(void *dst, const void *src, |
| unsigned u64s) |
| { |
| EBUG_ON(dst > src); |
| |
| __memmove_u64s_down(dst, src, u64s); |
| } |
| |
| static inline void __memmove_u64s_down_small(void *dst, const void *src, |
| unsigned u64s) |
| { |
| memcpy_u64s_small(dst, src, u64s); |
| } |
| |
| static inline void memmove_u64s_down_small(void *dst, const void *src, |
| unsigned u64s) |
| { |
| EBUG_ON(dst > src); |
| |
| __memmove_u64s_down_small(dst, src, u64s); |
| } |
| |
| static inline void __memmove_u64s_up_small(void *_dst, const void *_src, |
| unsigned u64s) |
| { |
| u64 *dst = (u64 *) _dst + u64s; |
| u64 *src = (u64 *) _src + u64s; |
| |
| while (u64s--) |
| *--dst = *--src; |
| } |
| |
| static inline void memmove_u64s_up_small(void *dst, const void *src, |
| unsigned u64s) |
| { |
| EBUG_ON(dst < src); |
| |
| __memmove_u64s_up_small(dst, src, u64s); |
| } |
| |
| static inline void __memmove_u64s_up(void *_dst, const void *_src, |
| unsigned u64s) |
| { |
| u64 *dst = (u64 *) _dst + u64s - 1; |
| u64 *src = (u64 *) _src + u64s - 1; |
| |
| #ifdef CONFIG_X86_64 |
| long d0, d1, d2; |
| |
| asm volatile("std ;\n" |
| "rep ; movsq\n" |
| "cld ;\n" |
| : "=&c" (d0), "=&D" (d1), "=&S" (d2) |
| : "0" (u64s), "1" (dst), "2" (src) |
| : "memory"); |
| #else |
| while (u64s--) |
| *dst-- = *src--; |
| #endif |
| } |
| |
| static inline void memmove_u64s_up(void *dst, const void *src, |
| unsigned u64s) |
| { |
| EBUG_ON(dst < src); |
| |
| __memmove_u64s_up(dst, src, u64s); |
| } |
| |
| static inline void memmove_u64s(void *dst, const void *src, |
| unsigned u64s) |
| { |
| if (dst < src) |
| __memmove_u64s_down(dst, src, u64s); |
| else |
| __memmove_u64s_up(dst, src, u64s); |
| } |
| |
| /* Set the last few bytes up to a u64 boundary given an offset into a buffer. */ |
| static inline void memset_u64s_tail(void *s, int c, unsigned bytes) |
| { |
| unsigned rem = round_up(bytes, sizeof(u64)) - bytes; |
| |
| memset(s + bytes, c, rem); |
| } |
| |
| /* just the memmove, doesn't update @_nr */ |
| #define __array_insert_item(_array, _nr, _pos) \ |
| memmove(&(_array)[(_pos) + 1], \ |
| &(_array)[(_pos)], \ |
| sizeof((_array)[0]) * ((_nr) - (_pos))) |
| |
| #define array_insert_item(_array, _nr, _pos, _new_item) \ |
| do { \ |
| __array_insert_item(_array, _nr, _pos); \ |
| (_nr)++; \ |
| (_array)[(_pos)] = (_new_item); \ |
| } while (0) |
| |
| #define array_remove_items(_array, _nr, _pos, _nr_to_remove) \ |
| do { \ |
| (_nr) -= (_nr_to_remove); \ |
| memmove(&(_array)[(_pos)], \ |
| &(_array)[(_pos) + (_nr_to_remove)], \ |
| sizeof((_array)[0]) * ((_nr) - (_pos))); \ |
| } while (0) |
| |
| #define array_remove_item(_array, _nr, _pos) \ |
| array_remove_items(_array, _nr, _pos, 1) |
| |
| static inline void __move_gap(void *array, size_t element_size, |
| size_t nr, size_t size, |
| size_t old_gap, size_t new_gap) |
| { |
| size_t gap_end = old_gap + size - nr; |
| |
| if (new_gap < old_gap) { |
| size_t move = old_gap - new_gap; |
| |
| memmove(array + element_size * (gap_end - move), |
| array + element_size * (old_gap - move), |
| element_size * move); |
| } else if (new_gap > old_gap) { |
| size_t move = new_gap - old_gap; |
| |
| memmove(array + element_size * old_gap, |
| array + element_size * gap_end, |
| element_size * move); |
| } |
| } |
| |
| /* Move the gap in a gap buffer: */ |
| #define move_gap(_d, _new_gap) \ |
| do { \ |
| BUG_ON(_new_gap > (_d)->nr); \ |
| BUG_ON((_d)->gap > (_d)->nr); \ |
| \ |
| __move_gap((_d)->data, sizeof((_d)->data[0]), \ |
| (_d)->nr, (_d)->size, (_d)->gap, _new_gap); \ |
| (_d)->gap = _new_gap; \ |
| } while (0) |
| |
| #define bubble_sort(_base, _nr, _cmp) \ |
| do { \ |
| ssize_t _i, _last; \ |
| bool _swapped = true; \ |
| \ |
| for (_last= (ssize_t) (_nr) - 1; _last > 0 && _swapped; --_last) {\ |
| _swapped = false; \ |
| for (_i = 0; _i < _last; _i++) \ |
| if (_cmp((_base)[_i], (_base)[_i + 1]) > 0) { \ |
| swap((_base)[_i], (_base)[_i + 1]); \ |
| _swapped = true; \ |
| } \ |
| } \ |
| } while (0) |
| |
| static inline u64 percpu_u64_get(u64 __percpu *src) |
| { |
| u64 ret = 0; |
| int cpu; |
| |
| for_each_possible_cpu(cpu) |
| ret += *per_cpu_ptr(src, cpu); |
| return ret; |
| } |
| |
| static inline void percpu_u64_set(u64 __percpu *dst, u64 src) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) |
| *per_cpu_ptr(dst, cpu) = 0; |
| this_cpu_write(*dst, src); |
| } |
| |
| static inline void acc_u64s(u64 *acc, const u64 *src, unsigned nr) |
| { |
| unsigned i; |
| |
| for (i = 0; i < nr; i++) |
| acc[i] += src[i]; |
| } |
| |
| static inline void acc_u64s_percpu(u64 *acc, const u64 __percpu *src, |
| unsigned nr) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) |
| acc_u64s(acc, per_cpu_ptr(src, cpu), nr); |
| } |
| |
| static inline void percpu_memset(void __percpu *p, int c, size_t bytes) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) |
| memset(per_cpu_ptr(p, cpu), c, bytes); |
| } |
| |
| u64 *bch2_acc_percpu_u64s(u64 __percpu *, unsigned); |
| |
| #define cmp_int(l, r) ((l > r) - (l < r)) |
| |
| static inline int u8_cmp(u8 l, u8 r) |
| { |
| return cmp_int(l, r); |
| } |
| |
| static inline int cmp_le32(__le32 l, __le32 r) |
| { |
| return cmp_int(le32_to_cpu(l), le32_to_cpu(r)); |
| } |
| |
| #include <linux/uuid.h> |
| |
| #define QSTR(n) { { { .len = strlen(n) } }, .name = n } |
| |
| static inline bool qstr_eq(const struct qstr l, const struct qstr r) |
| { |
| return l.len == r.len && !memcmp(l.name, r.name, l.len); |
| } |
| |
| void bch2_darray_str_exit(darray_str *); |
| int bch2_split_devs(const char *, darray_str *); |
| |
| #ifdef __KERNEL__ |
| |
| __must_check |
| static inline int copy_to_user_errcode(void __user *to, const void *from, unsigned long n) |
| { |
| return copy_to_user(to, from, n) ? -EFAULT : 0; |
| } |
| |
| __must_check |
| static inline int copy_from_user_errcode(void *to, const void __user *from, unsigned long n) |
| { |
| return copy_from_user(to, from, n) ? -EFAULT : 0; |
| } |
| |
| #endif |
| |
| static inline void mod_bit(long nr, volatile unsigned long *addr, bool v) |
| { |
| if (v) |
| set_bit(nr, addr); |
| else |
| clear_bit(nr, addr); |
| } |
| |
| static inline void __set_bit_le64(size_t bit, __le64 *addr) |
| { |
| addr[bit / 64] |= cpu_to_le64(BIT_ULL(bit % 64)); |
| } |
| |
| static inline void __clear_bit_le64(size_t bit, __le64 *addr) |
| { |
| addr[bit / 64] &= ~cpu_to_le64(BIT_ULL(bit % 64)); |
| } |
| |
| static inline bool test_bit_le64(size_t bit, __le64 *addr) |
| { |
| return (addr[bit / 64] & cpu_to_le64(BIT_ULL(bit % 64))) != 0; |
| } |
| |
| #endif /* _BCACHEFS_UTIL_H */ |