| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _LINUX_FORTIFY_STRING_H_ |
| #define _LINUX_FORTIFY_STRING_H_ |
| |
| #include <linux/const.h> |
| |
| #define __FORTIFY_INLINE extern __always_inline __gnu_inline __overloadable |
| #define __RENAME(x) __asm__(#x) |
| |
| void fortify_panic(const char *name) __noreturn __cold; |
| void __read_overflow(void) __compiletime_error("detected read beyond size of object (1st parameter)"); |
| void __read_overflow2(void) __compiletime_error("detected read beyond size of object (2nd parameter)"); |
| void __read_overflow2_field(size_t avail, size_t wanted) __compiletime_warning("detected read beyond size of field (2nd parameter); maybe use struct_group()?"); |
| void __write_overflow(void) __compiletime_error("detected write beyond size of object (1st parameter)"); |
| void __write_overflow_field(size_t avail, size_t wanted) __compiletime_warning("detected write beyond size of field (1st parameter); maybe use struct_group()?"); |
| |
| #define __compiletime_strlen(p) \ |
| ({ \ |
| unsigned char *__p = (unsigned char *)(p); \ |
| size_t __ret = (size_t)-1; \ |
| size_t __p_size = __builtin_object_size(p, 1); \ |
| if (__p_size != (size_t)-1) { \ |
| size_t __p_len = __p_size - 1; \ |
| if (__builtin_constant_p(__p[__p_len]) && \ |
| __p[__p_len] == '\0') \ |
| __ret = __builtin_strlen(__p); \ |
| } \ |
| __ret; \ |
| }) |
| |
| #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) |
| extern void *__underlying_memchr(const void *p, int c, __kernel_size_t size) __RENAME(memchr); |
| extern int __underlying_memcmp(const void *p, const void *q, __kernel_size_t size) __RENAME(memcmp); |
| extern void *__underlying_memcpy(void *p, const void *q, __kernel_size_t size) __RENAME(memcpy); |
| extern void *__underlying_memmove(void *p, const void *q, __kernel_size_t size) __RENAME(memmove); |
| extern void *__underlying_memset(void *p, int c, __kernel_size_t size) __RENAME(memset); |
| extern char *__underlying_strcat(char *p, const char *q) __RENAME(strcat); |
| extern char *__underlying_strcpy(char *p, const char *q) __RENAME(strcpy); |
| extern __kernel_size_t __underlying_strlen(const char *p) __RENAME(strlen); |
| extern char *__underlying_strncat(char *p, const char *q, __kernel_size_t count) __RENAME(strncat); |
| extern char *__underlying_strncpy(char *p, const char *q, __kernel_size_t size) __RENAME(strncpy); |
| #else |
| #define __underlying_memchr __builtin_memchr |
| #define __underlying_memcmp __builtin_memcmp |
| #define __underlying_memcpy __builtin_memcpy |
| #define __underlying_memmove __builtin_memmove |
| #define __underlying_memset __builtin_memset |
| #define __underlying_strcat __builtin_strcat |
| #define __underlying_strcpy __builtin_strcpy |
| #define __underlying_strlen __builtin_strlen |
| #define __underlying_strncat __builtin_strncat |
| #define __underlying_strncpy __builtin_strncpy |
| #endif |
| |
| /* |
| * Clang's use of __builtin_object_size() within inlines needs hinting via |
| * __pass_object_size(). The preference is to only ever use type 1 (member |
| * size, rather than struct size), but there remain some stragglers using |
| * type 0 that will be converted in the future. |
| */ |
| #define POS __pass_object_size(1) |
| #define POS0 __pass_object_size(0) |
| |
| __FORTIFY_INLINE __diagnose_as(__builtin_strncpy, 1, 2, 3) |
| char *strncpy(char * const POS p, const char *q, __kernel_size_t size) |
| { |
| size_t p_size = __builtin_object_size(p, 1); |
| |
| if (__builtin_constant_p(size) && p_size < size) |
| __write_overflow(); |
| if (p_size < size) |
| fortify_panic(__func__); |
| return __underlying_strncpy(p, q, size); |
| } |
| |
| __FORTIFY_INLINE __diagnose_as(__builtin_strcat, 1, 2) |
| char *strcat(char * const POS p, const char *q) |
| { |
| size_t p_size = __builtin_object_size(p, 1); |
| |
| if (p_size == (size_t)-1) |
| return __underlying_strcat(p, q); |
| if (strlcat(p, q, p_size) >= p_size) |
| fortify_panic(__func__); |
| return p; |
| } |
| |
| extern __kernel_size_t __real_strnlen(const char *, __kernel_size_t) __RENAME(strnlen); |
| __FORTIFY_INLINE __kernel_size_t strnlen(const char * const POS p, __kernel_size_t maxlen) |
| { |
| size_t p_size = __builtin_object_size(p, 1); |
| size_t p_len = __compiletime_strlen(p); |
| size_t ret; |
| |
| /* We can take compile-time actions when maxlen is const. */ |
| if (__builtin_constant_p(maxlen) && p_len != (size_t)-1) { |
| /* If p is const, we can use its compile-time-known len. */ |
| if (maxlen >= p_size) |
| return p_len; |
| } |
| |
| /* Do not check characters beyond the end of p. */ |
| ret = __real_strnlen(p, maxlen < p_size ? maxlen : p_size); |
| if (p_size <= ret && maxlen != ret) |
| fortify_panic(__func__); |
| return ret; |
| } |
| |
| /* |
| * Defined after fortified strnlen to reuse it. However, it must still be |
| * possible for strlen() to be used on compile-time strings for use in |
| * static initializers (i.e. as a constant expression). |
| */ |
| #define strlen(p) \ |
| __builtin_choose_expr(__is_constexpr(__builtin_strlen(p)), \ |
| __builtin_strlen(p), __fortify_strlen(p)) |
| __FORTIFY_INLINE __diagnose_as(__builtin_strlen, 1) |
| __kernel_size_t __fortify_strlen(const char * const POS p) |
| { |
| __kernel_size_t ret; |
| size_t p_size = __builtin_object_size(p, 1); |
| |
| /* Give up if we don't know how large p is. */ |
| if (p_size == (size_t)-1) |
| return __underlying_strlen(p); |
| ret = strnlen(p, p_size); |
| if (p_size <= ret) |
| fortify_panic(__func__); |
| return ret; |
| } |
| |
| /* defined after fortified strlen to reuse it */ |
| extern size_t __real_strlcpy(char *, const char *, size_t) __RENAME(strlcpy); |
| __FORTIFY_INLINE size_t strlcpy(char * const POS p, const char * const POS q, size_t size) |
| { |
| size_t p_size = __builtin_object_size(p, 1); |
| size_t q_size = __builtin_object_size(q, 1); |
| size_t q_len; /* Full count of source string length. */ |
| size_t len; /* Count of characters going into destination. */ |
| |
| if (p_size == (size_t)-1 && q_size == (size_t)-1) |
| return __real_strlcpy(p, q, size); |
| q_len = strlen(q); |
| len = (q_len >= size) ? size - 1 : q_len; |
| if (__builtin_constant_p(size) && __builtin_constant_p(q_len) && size) { |
| /* Write size is always larger than destination. */ |
| if (len >= p_size) |
| __write_overflow(); |
| } |
| if (size) { |
| if (len >= p_size) |
| fortify_panic(__func__); |
| __underlying_memcpy(p, q, len); |
| p[len] = '\0'; |
| } |
| return q_len; |
| } |
| |
| /* defined after fortified strnlen to reuse it */ |
| extern ssize_t __real_strscpy(char *, const char *, size_t) __RENAME(strscpy); |
| __FORTIFY_INLINE ssize_t strscpy(char * const POS p, const char * const POS q, size_t size) |
| { |
| size_t len; |
| /* Use string size rather than possible enclosing struct size. */ |
| size_t p_size = __builtin_object_size(p, 1); |
| size_t q_size = __builtin_object_size(q, 1); |
| |
| /* If we cannot get size of p and q default to call strscpy. */ |
| if (p_size == (size_t) -1 && q_size == (size_t) -1) |
| return __real_strscpy(p, q, size); |
| |
| /* |
| * If size can be known at compile time and is greater than |
| * p_size, generate a compile time write overflow error. |
| */ |
| if (__builtin_constant_p(size) && size > p_size) |
| __write_overflow(); |
| |
| /* |
| * This call protects from read overflow, because len will default to q |
| * length if it smaller than size. |
| */ |
| len = strnlen(q, size); |
| /* |
| * If len equals size, we will copy only size bytes which leads to |
| * -E2BIG being returned. |
| * Otherwise we will copy len + 1 because of the final '\O'. |
| */ |
| len = len == size ? size : len + 1; |
| |
| /* |
| * Generate a runtime write overflow error if len is greater than |
| * p_size. |
| */ |
| if (len > p_size) |
| fortify_panic(__func__); |
| |
| /* |
| * We can now safely call vanilla strscpy because we are protected from: |
| * 1. Read overflow thanks to call to strnlen(). |
| * 2. Write overflow thanks to above ifs. |
| */ |
| return __real_strscpy(p, q, len); |
| } |
| |
| /* defined after fortified strlen and strnlen to reuse them */ |
| __FORTIFY_INLINE __diagnose_as(__builtin_strncat, 1, 2, 3) |
| char *strncat(char * const POS p, const char * const POS q, __kernel_size_t count) |
| { |
| size_t p_len, copy_len; |
| size_t p_size = __builtin_object_size(p, 1); |
| size_t q_size = __builtin_object_size(q, 1); |
| |
| if (p_size == (size_t)-1 && q_size == (size_t)-1) |
| return __underlying_strncat(p, q, count); |
| p_len = strlen(p); |
| copy_len = strnlen(q, count); |
| if (p_size < p_len + copy_len + 1) |
| fortify_panic(__func__); |
| __underlying_memcpy(p + p_len, q, copy_len); |
| p[p_len + copy_len] = '\0'; |
| return p; |
| } |
| |
| __FORTIFY_INLINE void fortify_memset_chk(__kernel_size_t size, |
| const size_t p_size, |
| const size_t p_size_field) |
| { |
| if (__builtin_constant_p(size)) { |
| /* |
| * Length argument is a constant expression, so we |
| * can perform compile-time bounds checking where |
| * buffer sizes are known. |
| */ |
| |
| /* Error when size is larger than enclosing struct. */ |
| if (p_size > p_size_field && p_size < size) |
| __write_overflow(); |
| |
| /* Warn when write size is larger than dest field. */ |
| if (p_size_field < size) |
| __write_overflow_field(p_size_field, size); |
| } |
| /* |
| * At this point, length argument may not be a constant expression, |
| * so run-time bounds checking can be done where buffer sizes are |
| * known. (This is not an "else" because the above checks may only |
| * be compile-time warnings, and we want to still warn for run-time |
| * overflows.) |
| */ |
| |
| /* |
| * Always stop accesses beyond the struct that contains the |
| * field, when the buffer's remaining size is known. |
| * (The -1 test is to optimize away checks where the buffer |
| * lengths are unknown.) |
| */ |
| if (p_size != (size_t)(-1) && p_size < size) |
| fortify_panic("memset"); |
| } |
| |
| #define __fortify_memset_chk(p, c, size, p_size, p_size_field) ({ \ |
| size_t __fortify_size = (size_t)(size); \ |
| fortify_memset_chk(__fortify_size, p_size, p_size_field), \ |
| __underlying_memset(p, c, __fortify_size); \ |
| }) |
| |
| /* |
| * __builtin_object_size() must be captured here to avoid evaluating argument |
| * side-effects further into the macro layers. |
| */ |
| #define memset(p, c, s) __fortify_memset_chk(p, c, s, \ |
| __builtin_object_size(p, 0), __builtin_object_size(p, 1)) |
| |
| /* |
| * To make sure the compiler can enforce protection against buffer overflows, |
| * memcpy(), memmove(), and memset() must not be used beyond individual |
| * struct members. If you need to copy across multiple members, please use |
| * struct_group() to create a named mirror of an anonymous struct union. |
| * (e.g. see struct sk_buff.) Read overflow checking is currently only |
| * done when a write overflow is also present, or when building with W=1. |
| * |
| * Mitigation coverage matrix |
| * Bounds checking at: |
| * +-------+-------+-------+-------+ |
| * | Compile time | Run time | |
| * memcpy() argument sizes: | write | read | write | read | |
| * dest source length +-------+-------+-------+-------+ |
| * memcpy(known, known, constant) | y | y | n/a | n/a | |
| * memcpy(known, unknown, constant) | y | n | n/a | V | |
| * memcpy(known, known, dynamic) | n | n | B | B | |
| * memcpy(known, unknown, dynamic) | n | n | B | V | |
| * memcpy(unknown, known, constant) | n | y | V | n/a | |
| * memcpy(unknown, unknown, constant) | n | n | V | V | |
| * memcpy(unknown, known, dynamic) | n | n | V | B | |
| * memcpy(unknown, unknown, dynamic) | n | n | V | V | |
| * +-------+-------+-------+-------+ |
| * |
| * y = perform deterministic compile-time bounds checking |
| * n = cannot perform deterministic compile-time bounds checking |
| * n/a = no run-time bounds checking needed since compile-time deterministic |
| * B = can perform run-time bounds checking (currently unimplemented) |
| * V = vulnerable to run-time overflow (will need refactoring to solve) |
| * |
| */ |
| __FORTIFY_INLINE void fortify_memcpy_chk(__kernel_size_t size, |
| const size_t p_size, |
| const size_t q_size, |
| const size_t p_size_field, |
| const size_t q_size_field, |
| const char *func) |
| { |
| if (__builtin_constant_p(size)) { |
| /* |
| * Length argument is a constant expression, so we |
| * can perform compile-time bounds checking where |
| * buffer sizes are known. |
| */ |
| |
| /* Error when size is larger than enclosing struct. */ |
| if (p_size > p_size_field && p_size < size) |
| __write_overflow(); |
| if (q_size > q_size_field && q_size < size) |
| __read_overflow2(); |
| |
| /* Warn when write size argument larger than dest field. */ |
| if (p_size_field < size) |
| __write_overflow_field(p_size_field, size); |
| /* |
| * Warn for source field over-read when building with W=1 |
| * or when an over-write happened, so both can be fixed at |
| * the same time. |
| */ |
| if ((IS_ENABLED(KBUILD_EXTRA_WARN1) || p_size_field < size) && |
| q_size_field < size) |
| __read_overflow2_field(q_size_field, size); |
| } |
| /* |
| * At this point, length argument may not be a constant expression, |
| * so run-time bounds checking can be done where buffer sizes are |
| * known. (This is not an "else" because the above checks may only |
| * be compile-time warnings, and we want to still warn for run-time |
| * overflows.) |
| */ |
| |
| /* |
| * Always stop accesses beyond the struct that contains the |
| * field, when the buffer's remaining size is known. |
| * (The -1 test is to optimize away checks where the buffer |
| * lengths are unknown.) |
| */ |
| if ((p_size != (size_t)(-1) && p_size < size) || |
| (q_size != (size_t)(-1) && q_size < size)) |
| fortify_panic(func); |
| } |
| |
| #define __fortify_memcpy_chk(p, q, size, p_size, q_size, \ |
| p_size_field, q_size_field, op) ({ \ |
| size_t __fortify_size = (size_t)(size); \ |
| fortify_memcpy_chk(__fortify_size, p_size, q_size, \ |
| p_size_field, q_size_field, #op); \ |
| __underlying_##op(p, q, __fortify_size); \ |
| }) |
| |
| /* |
| * __builtin_object_size() must be captured here to avoid evaluating argument |
| * side-effects further into the macro layers. |
| */ |
| #define memcpy(p, q, s) __fortify_memcpy_chk(p, q, s, \ |
| __builtin_object_size(p, 0), __builtin_object_size(q, 0), \ |
| __builtin_object_size(p, 1), __builtin_object_size(q, 1), \ |
| memcpy) |
| #define memmove(p, q, s) __fortify_memcpy_chk(p, q, s, \ |
| __builtin_object_size(p, 0), __builtin_object_size(q, 0), \ |
| __builtin_object_size(p, 1), __builtin_object_size(q, 1), \ |
| memmove) |
| |
| extern void *__real_memscan(void *, int, __kernel_size_t) __RENAME(memscan); |
| __FORTIFY_INLINE void *memscan(void * const POS0 p, int c, __kernel_size_t size) |
| { |
| size_t p_size = __builtin_object_size(p, 0); |
| |
| if (__builtin_constant_p(size) && p_size < size) |
| __read_overflow(); |
| if (p_size < size) |
| fortify_panic(__func__); |
| return __real_memscan(p, c, size); |
| } |
| |
| __FORTIFY_INLINE __diagnose_as(__builtin_memcmp, 1, 2, 3) |
| int memcmp(const void * const POS0 p, const void * const POS0 q, __kernel_size_t size) |
| { |
| size_t p_size = __builtin_object_size(p, 0); |
| size_t q_size = __builtin_object_size(q, 0); |
| |
| if (__builtin_constant_p(size)) { |
| if (p_size < size) |
| __read_overflow(); |
| if (q_size < size) |
| __read_overflow2(); |
| } |
| if (p_size < size || q_size < size) |
| fortify_panic(__func__); |
| return __underlying_memcmp(p, q, size); |
| } |
| |
| __FORTIFY_INLINE __diagnose_as(__builtin_memchr, 1, 2, 3) |
| void *memchr(const void * const POS0 p, int c, __kernel_size_t size) |
| { |
| size_t p_size = __builtin_object_size(p, 0); |
| |
| if (__builtin_constant_p(size) && p_size < size) |
| __read_overflow(); |
| if (p_size < size) |
| fortify_panic(__func__); |
| return __underlying_memchr(p, c, size); |
| } |
| |
| void *__real_memchr_inv(const void *s, int c, size_t n) __RENAME(memchr_inv); |
| __FORTIFY_INLINE void *memchr_inv(const void * const POS0 p, int c, size_t size) |
| { |
| size_t p_size = __builtin_object_size(p, 0); |
| |
| if (__builtin_constant_p(size) && p_size < size) |
| __read_overflow(); |
| if (p_size < size) |
| fortify_panic(__func__); |
| return __real_memchr_inv(p, c, size); |
| } |
| |
| extern void *__real_kmemdup(const void *src, size_t len, gfp_t gfp) __RENAME(kmemdup); |
| __FORTIFY_INLINE void *kmemdup(const void * const POS0 p, size_t size, gfp_t gfp) |
| { |
| size_t p_size = __builtin_object_size(p, 0); |
| |
| if (__builtin_constant_p(size) && p_size < size) |
| __read_overflow(); |
| if (p_size < size) |
| fortify_panic(__func__); |
| return __real_kmemdup(p, size, gfp); |
| } |
| |
| /* Defined after fortified strlen to reuse it. */ |
| __FORTIFY_INLINE __diagnose_as(__builtin_strcpy, 1, 2) |
| char *strcpy(char * const POS p, const char * const POS q) |
| { |
| size_t p_size = __builtin_object_size(p, 1); |
| size_t q_size = __builtin_object_size(q, 1); |
| size_t size; |
| |
| /* If neither buffer size is known, immediately give up. */ |
| if (p_size == (size_t)-1 && q_size == (size_t)-1) |
| return __underlying_strcpy(p, q); |
| size = strlen(q) + 1; |
| /* Compile-time check for const size overflow. */ |
| if (__builtin_constant_p(size) && p_size < size) |
| __write_overflow(); |
| /* Run-time check for dynamic size overflow. */ |
| if (p_size < size) |
| fortify_panic(__func__); |
| __underlying_memcpy(p, q, size); |
| return p; |
| } |
| |
| /* Don't use these outside the FORITFY_SOURCE implementation */ |
| #undef __underlying_memchr |
| #undef __underlying_memcmp |
| #undef __underlying_strcat |
| #undef __underlying_strcpy |
| #undef __underlying_strlen |
| #undef __underlying_strncat |
| #undef __underlying_strncpy |
| |
| #undef POS |
| #undef POS0 |
| |
| #endif /* _LINUX_FORTIFY_STRING_H_ */ |