blob: 419f984eef70dafd44db8666cc4c82b22f41d5d1 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 */
// Copyright (C) 2005-2017 Andes Technology Corporation
#ifndef _ASMNDS32_PGTABLE_H
#define _ASMNDS32_PGTABLE_H
#include <asm-generic/pgtable-nopmd.h>
#include <linux/sizes.h>
#include <asm/memory.h>
#include <asm/nds32.h>
#ifndef __ASSEMBLY__
#include <asm/fixmap.h>
#include <nds32_intrinsic.h>
#endif
#ifdef CONFIG_ANDES_PAGE_SIZE_4KB
#define PGDIR_SHIFT 22
#define PTRS_PER_PGD 1024
#define PTRS_PER_PTE 1024
#endif
#ifdef CONFIG_ANDES_PAGE_SIZE_8KB
#define PGDIR_SHIFT 24
#define PTRS_PER_PGD 256
#define PTRS_PER_PTE 2048
#endif
#ifndef __ASSEMBLY__
extern void __pte_error(const char *file, int line, unsigned long val);
extern void __pgd_error(const char *file, int line, unsigned long val);
#define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte))
#define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd))
#endif /* !__ASSEMBLY__ */
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
/*
* This is the lowest virtual address we can permit any user space
* mapping to be mapped at. This is particularly important for
* non-high vector CPUs.
*/
#define FIRST_USER_ADDRESS 0x8000
#ifdef CONFIG_HIGHMEM
#define CONSISTENT_BASE ((PKMAP_BASE) - (SZ_2M))
#define CONSISTENT_END (PKMAP_BASE)
#else
#define CONSISTENT_BASE (FIXADDR_START - SZ_2M)
#define CONSISTENT_END (FIXADDR_START)
#endif
#define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
#ifdef CONFIG_HIGHMEM
#ifndef __ASSEMBLY__
#include <asm/highmem.h>
#endif
#endif
#define VMALLOC_RESERVE SZ_128M
#define VMALLOC_END (CONSISTENT_BASE - PAGE_SIZE)
#define VMALLOC_START ((VMALLOC_END) - VMALLOC_RESERVE)
#define VMALLOC_VMADDR(x) ((unsigned long)(x))
#define MAXMEM __pa(VMALLOC_START)
#define MAXMEM_PFN PFN_DOWN(MAXMEM)
#define FIRST_USER_PGD_NR 0
#define USER_PTRS_PER_PGD ((TASK_SIZE/PGDIR_SIZE) + FIRST_USER_PGD_NR)
/* L2 PTE */
#define _PAGE_V (1UL << 0)
#define _PAGE_M_XKRW (0UL << 1)
#define _PAGE_M_UR_KR (1UL << 1)
#define _PAGE_M_UR_KRW (2UL << 1)
#define _PAGE_M_URW_KRW (3UL << 1)
#define _PAGE_M_KR (5UL << 1)
#define _PAGE_M_KRW (7UL << 1)
#define _PAGE_D (1UL << 4)
#define _PAGE_E (1UL << 5)
#define _PAGE_A (1UL << 6)
#define _PAGE_G (1UL << 7)
#define _PAGE_C_DEV (0UL << 8)
#define _PAGE_C_DEV_WB (1UL << 8)
#define _PAGE_C_MEM (2UL << 8)
#define _PAGE_C_MEM_SHRD_WB (4UL << 8)
#define _PAGE_C_MEM_SHRD_WT (5UL << 8)
#define _PAGE_C_MEM_WB (6UL << 8)
#define _PAGE_C_MEM_WT (7UL << 8)
#define _PAGE_L (1UL << 11)
#define _HAVE_PAGE_L (_PAGE_L)
#define _PAGE_FILE (1UL << 1)
#define _PAGE_YOUNG 0
#define _PAGE_M_MASK _PAGE_M_KRW
#define _PAGE_C_MASK _PAGE_C_MEM_WT
#ifdef CONFIG_SMP
#ifdef CONFIG_CPU_DCACHE_WRITETHROUGH
#define _PAGE_CACHE_SHRD _PAGE_C_MEM_SHRD_WT
#else
#define _PAGE_CACHE_SHRD _PAGE_C_MEM_SHRD_WB
#endif
#else
#ifdef CONFIG_CPU_DCACHE_WRITETHROUGH
#define _PAGE_CACHE_SHRD _PAGE_C_MEM_WT
#else
#define _PAGE_CACHE_SHRD _PAGE_C_MEM_WB
#endif
#endif
#ifdef CONFIG_CPU_DCACHE_WRITETHROUGH
#define _PAGE_CACHE _PAGE_C_MEM_WT
#else
#define _PAGE_CACHE _PAGE_C_MEM_WB
#endif
#define _PAGE_IOREMAP \
(_PAGE_V | _PAGE_M_KRW | _PAGE_D | _PAGE_G | _PAGE_C_DEV)
/*
* + Level 1 descriptor (PMD)
*/
#define PMD_TYPE_TABLE 0
#ifndef __ASSEMBLY__
#define _PAGE_USER_TABLE PMD_TYPE_TABLE
#define _PAGE_KERNEL_TABLE PMD_TYPE_TABLE
#define PAGE_EXEC __pgprot(_PAGE_V | _PAGE_M_XKRW | _PAGE_E)
#define PAGE_NONE __pgprot(_PAGE_V | _PAGE_M_KRW | _PAGE_A)
#define PAGE_READ __pgprot(_PAGE_V | _PAGE_M_UR_KR)
#define PAGE_RDWR __pgprot(_PAGE_V | _PAGE_M_URW_KRW | _PAGE_D)
#define PAGE_COPY __pgprot(_PAGE_V | _PAGE_M_UR_KR)
#define PAGE_UXKRWX_V1 __pgprot(_PAGE_V | _PAGE_M_KRW | _PAGE_D | _PAGE_E | _PAGE_G | _PAGE_CACHE_SHRD)
#define PAGE_UXKRWX_V2 __pgprot(_PAGE_V | _PAGE_M_XKRW | _PAGE_D | _PAGE_E | _PAGE_G | _PAGE_CACHE_SHRD)
#define PAGE_URXKRWX_V2 __pgprot(_PAGE_V | _PAGE_M_UR_KRW | _PAGE_D | _PAGE_E | _PAGE_G | _PAGE_CACHE_SHRD)
#define PAGE_CACHE_L1 __pgprot(_HAVE_PAGE_L | _PAGE_V | _PAGE_M_KRW | _PAGE_D | _PAGE_E | _PAGE_G | _PAGE_CACHE)
#define PAGE_MEMORY __pgprot(_HAVE_PAGE_L | _PAGE_V | _PAGE_M_KRW | _PAGE_D | _PAGE_E | _PAGE_G | _PAGE_CACHE_SHRD)
#define PAGE_KERNEL __pgprot(_PAGE_V | _PAGE_M_KRW | _PAGE_D | _PAGE_E | _PAGE_G | _PAGE_CACHE_SHRD)
#define PAGE_SHARED __pgprot(_PAGE_V | _PAGE_M_URW_KRW | _PAGE_D | _PAGE_CACHE_SHRD)
#define PAGE_DEVICE __pgprot(_PAGE_V | _PAGE_M_KRW | _PAGE_D | _PAGE_G | _PAGE_C_DEV)
#endif /* __ASSEMBLY__ */
/* xwr */
#define __P000 (PAGE_NONE | _PAGE_CACHE_SHRD)
#define __P001 (PAGE_READ | _PAGE_CACHE_SHRD)
#define __P010 (PAGE_COPY | _PAGE_CACHE_SHRD)
#define __P011 (PAGE_COPY | _PAGE_CACHE_SHRD)
#define __P100 (PAGE_EXEC | _PAGE_CACHE_SHRD)
#define __P101 (PAGE_READ | _PAGE_E | _PAGE_CACHE_SHRD)
#define __P110 (PAGE_COPY | _PAGE_E | _PAGE_CACHE_SHRD)
#define __P111 (PAGE_COPY | _PAGE_E | _PAGE_CACHE_SHRD)
#define __S000 (PAGE_NONE | _PAGE_CACHE_SHRD)
#define __S001 (PAGE_READ | _PAGE_CACHE_SHRD)
#define __S010 (PAGE_RDWR | _PAGE_CACHE_SHRD)
#define __S011 (PAGE_RDWR | _PAGE_CACHE_SHRD)
#define __S100 (PAGE_EXEC | _PAGE_CACHE_SHRD)
#define __S101 (PAGE_READ | _PAGE_E | _PAGE_CACHE_SHRD)
#define __S110 (PAGE_RDWR | _PAGE_E | _PAGE_CACHE_SHRD)
#define __S111 (PAGE_RDWR | _PAGE_E | _PAGE_CACHE_SHRD)
#ifndef __ASSEMBLY__
/*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
extern struct page *empty_zero_page;
extern void paging_init(void);
#define ZERO_PAGE(vaddr) (empty_zero_page)
#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
#define pfn_pte(pfn,prot) (__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)))
#define pte_none(pte) !(pte_val(pte))
#define pte_clear(mm,addr,ptep) set_pte_at((mm),(addr),(ptep), __pte(0))
#define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
static unsigned long pmd_page_vaddr(pmd_t pmd)
{
return ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK));
}
#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
/*
* Set a level 1 translation table entry, and clean it out of
* any caches such that the MMUs can load it correctly.
*/
static inline void set_pmd(pmd_t * pmdp, pmd_t pmd)
{
*pmdp = pmd;
#if !defined(CONFIG_CPU_DCACHE_DISABLE) && !defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
__asm__ volatile ("\n\tcctl %0, L1D_VA_WB"::"r" (pmdp):"memory");
__nds32__msync_all();
__nds32__dsb();
#endif
}
/*
* Set a PTE and flush it out
*/
static inline void set_pte(pte_t * ptep, pte_t pte)
{
*ptep = pte;
#if !defined(CONFIG_CPU_DCACHE_DISABLE) && !defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
__asm__ volatile ("\n\tcctl %0, L1D_VA_WB"::"r" (ptep):"memory");
__nds32__msync_all();
__nds32__dsb();
#endif
}
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
/*
* pte_write: this page is writeable for user mode
* pte_read: this page is readable for user mode
* pte_kernel_write: this page is writeable for kernel mode
*
* We don't have pte_kernel_read because kernel always can read.
*
* */
#define pte_present(pte) (pte_val(pte) & _PAGE_V)
#define pte_write(pte) ((pte_val(pte) & _PAGE_M_MASK) == _PAGE_M_URW_KRW)
#define pte_read(pte) (((pte_val(pte) & _PAGE_M_MASK) == _PAGE_M_UR_KR) || \
((pte_val(pte) & _PAGE_M_MASK) == _PAGE_M_UR_KRW) || \
((pte_val(pte) & _PAGE_M_MASK) == _PAGE_M_URW_KRW))
#define pte_kernel_write(pte) (((pte_val(pte) & _PAGE_M_MASK) == _PAGE_M_URW_KRW) || \
((pte_val(pte) & _PAGE_M_MASK) == _PAGE_M_UR_KRW) || \
((pte_val(pte) & _PAGE_M_MASK) == _PAGE_M_KRW) || \
(((pte_val(pte) & _PAGE_M_MASK) == _PAGE_M_XKRW) && pte_exec(pte)))
#define pte_exec(pte) (pte_val(pte) & _PAGE_E)
#define pte_dirty(pte) (pte_val(pte) & _PAGE_D)
#define pte_young(pte) (pte_val(pte) & _PAGE_YOUNG)
/*
* The following only works if pte_present() is not true.
*/
#define pte_file(pte) (pte_val(pte) & _PAGE_FILE)
#define pte_to_pgoff(x) (pte_val(x) >> 2)
#define pgoff_to_pte(x) __pte(((x) << 2) | _PAGE_FILE)
#define PTE_FILE_MAX_BITS 29
#define PTE_BIT_FUNC(fn,op) \
static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
static inline pte_t pte_wrprotect(pte_t pte)
{
pte_val(pte) = pte_val(pte) & ~_PAGE_M_MASK;
pte_val(pte) = pte_val(pte) | _PAGE_M_UR_KR;
return pte;
}
static inline pte_t pte_mkwrite(pte_t pte)
{
pte_val(pte) = pte_val(pte) & ~_PAGE_M_MASK;
pte_val(pte) = pte_val(pte) | _PAGE_M_URW_KRW;
return pte;
}
PTE_BIT_FUNC(exprotect, &=~_PAGE_E);
PTE_BIT_FUNC(mkexec, |=_PAGE_E);
PTE_BIT_FUNC(mkclean, &=~_PAGE_D);
PTE_BIT_FUNC(mkdirty, |=_PAGE_D);
PTE_BIT_FUNC(mkold, &=~_PAGE_YOUNG);
PTE_BIT_FUNC(mkyoung, |=_PAGE_YOUNG);
/*
* Mark the prot value as uncacheable and unbufferable.
*/
#define pgprot_noncached(prot) __pgprot((pgprot_val(prot)&~_PAGE_C_MASK) | _PAGE_C_DEV)
#define pgprot_writecombine(prot) __pgprot((pgprot_val(prot)&~_PAGE_C_MASK) | _PAGE_C_DEV_WB)
#define pmd_none(pmd) (pmd_val(pmd)&0x1)
#define pmd_present(pmd) (!pmd_none(pmd))
#define pmd_bad(pmd) pmd_none(pmd)
#define copy_pmd(pmdpd,pmdps) set_pmd((pmdpd), *(pmdps))
#define pmd_clear(pmdp) set_pmd((pmdp), __pmd(1))
static inline pmd_t __mk_pmd(pte_t * ptep, unsigned long prot)
{
unsigned long ptr = (unsigned long)ptep;
pmd_t pmd;
/*
* The pmd must be loaded with the physical
* address of the PTE table
*/
pmd_val(pmd) = __virt_to_phys(ptr) | prot;
return pmd;
}
#define pmd_page(pmd) virt_to_page(__va(pmd_val(pmd)))
/*
* Permanent address of a page. We never have highmem, so this is trivial.
*/
#define pages_to_mb(x) ((x) >> (20 - PAGE_SHIFT))
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
#define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
/*
* The "pgd_xxx()" functions here are trivial for a folded two-level
* setup: the pgd is never bad, and a pmd always exists (as it's folded
* into the pgd entry)
*/
#define pgd_none(pgd) (0)
#define pgd_bad(pgd) (0)
#define pgd_present(pgd) (1)
#define pgd_clear(pgdp) do { } while (0)
#define page_pte_prot(page,prot) mk_pte(page, prot)
#define page_pte(page) mk_pte(page, __pgprot(0))
/*
* L1PTE = $mr1 + ((virt >> PMD_SHIFT) << 2);
* L2PTE = (((virt >> PAGE_SHIFT) & (PTRS_PER_PTE -1 )) << 2);
* PPN = (phys & 0xfffff000);
*
*/
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
const unsigned long mask = 0xfff;
pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
return pte;
}
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
/* Encode and decode a swap entry.
*
* We support up to 32GB of swap on 4k machines
*/
#define __swp_type(x) (((x).val >> 2) & 0x7f)
#define __swp_offset(x) ((x).val >> 9)
#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((offset) << 9) })
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
#define kern_addr_valid(addr) (1)
/*
* We provide our own arch_get_unmapped_area to cope with VIPT caches.
*/
#define HAVE_ARCH_UNMAPPED_AREA
/*
* remap a physical address `phys' of size `size' with page protection `prot'
* into virtual address `from'
*/
#endif /* !__ASSEMBLY__ */
#endif /* _ASMNDS32_PGTABLE_H */