| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * The file intends to implement the platform dependent EEH operations on pseries. |
| * Actually, the pseries platform is built based on RTAS heavily. That means the |
| * pseries platform dependent EEH operations will be built on RTAS calls. The functions |
| * are derived from arch/powerpc/platforms/pseries/eeh.c and necessary cleanup has |
| * been done. |
| * |
| * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2011. |
| * Copyright IBM Corporation 2001, 2005, 2006 |
| * Copyright Dave Engebretsen & Todd Inglett 2001 |
| * Copyright Linas Vepstas 2005, 2006 |
| */ |
| |
| #include <linux/atomic.h> |
| #include <linux/delay.h> |
| #include <linux/export.h> |
| #include <linux/init.h> |
| #include <linux/list.h> |
| #include <linux/of.h> |
| #include <linux/pci.h> |
| #include <linux/proc_fs.h> |
| #include <linux/rbtree.h> |
| #include <linux/sched.h> |
| #include <linux/seq_file.h> |
| #include <linux/spinlock.h> |
| #include <linux/crash_dump.h> |
| |
| #include <asm/eeh.h> |
| #include <asm/eeh_event.h> |
| #include <asm/io.h> |
| #include <asm/machdep.h> |
| #include <asm/ppc-pci.h> |
| #include <asm/rtas.h> |
| |
| /* RTAS tokens */ |
| static int ibm_set_eeh_option; |
| static int ibm_set_slot_reset; |
| static int ibm_read_slot_reset_state; |
| static int ibm_read_slot_reset_state2; |
| static int ibm_slot_error_detail; |
| static int ibm_get_config_addr_info; |
| static int ibm_get_config_addr_info2; |
| static int ibm_configure_pe; |
| |
| static void pseries_pcibios_bus_add_device(struct pci_dev *pdev) |
| { |
| struct pci_dn *pdn = pci_get_pdn(pdev); |
| |
| if (eeh_has_flag(EEH_FORCE_DISABLED)) |
| return; |
| |
| dev_dbg(&pdev->dev, "EEH: Setting up device\n"); |
| #ifdef CONFIG_PCI_IOV |
| if (pdev->is_virtfn) { |
| pdn->device_id = pdev->device; |
| pdn->vendor_id = pdev->vendor; |
| pdn->class_code = pdev->class; |
| /* |
| * Last allow unfreeze return code used for retrieval |
| * by user space in eeh-sysfs to show the last command |
| * completion from platform. |
| */ |
| pdn->last_allow_rc = 0; |
| } |
| #endif |
| pseries_eeh_init_edev(pdn); |
| #ifdef CONFIG_PCI_IOV |
| if (pdev->is_virtfn) { |
| /* |
| * FIXME: This really should be handled by choosing the right |
| * parent PE in in pseries_eeh_init_edev(). |
| */ |
| struct eeh_pe *physfn_pe = pci_dev_to_eeh_dev(pdev->physfn)->pe; |
| struct eeh_dev *edev = pdn_to_eeh_dev(pdn); |
| |
| edev->pe_config_addr = (pdn->busno << 16) | (pdn->devfn << 8); |
| eeh_pe_tree_remove(edev); /* Remove as it is adding to bus pe */ |
| eeh_pe_tree_insert(edev, physfn_pe); /* Add as VF PE type */ |
| } |
| #endif |
| eeh_probe_device(pdev); |
| } |
| |
| |
| /** |
| * pseries_eeh_get_pe_config_addr - Find the pe_config_addr for a device |
| * @pdn: pci_dn of the input device |
| * |
| * The EEH RTAS calls use a tuple consisting of: (buid_hi, buid_lo, |
| * pe_config_addr) as a handle to a given PE. This function finds the |
| * pe_config_addr based on the device's config addr. |
| * |
| * Keep in mind that the pe_config_addr *might* be numerically identical to the |
| * device's config addr, but the two are conceptually distinct. |
| * |
| * Returns the pe_config_addr, or a negative error code. |
| */ |
| static int pseries_eeh_get_pe_config_addr(struct pci_dn *pdn) |
| { |
| int config_addr = rtas_config_addr(pdn->busno, pdn->devfn, 0); |
| struct pci_controller *phb = pdn->phb; |
| int ret, rets[3]; |
| |
| if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) { |
| /* |
| * First of all, use function 1 to determine if this device is |
| * part of a PE or not. ret[0] being zero indicates it's not. |
| */ |
| ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets, |
| config_addr, BUID_HI(phb->buid), |
| BUID_LO(phb->buid), 1); |
| if (ret || (rets[0] == 0)) |
| return -ENOENT; |
| |
| /* Retrieve the associated PE config address with function 0 */ |
| ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets, |
| config_addr, BUID_HI(phb->buid), |
| BUID_LO(phb->buid), 0); |
| if (ret) { |
| pr_warn("%s: Failed to get address for PHB#%x-PE#%x\n", |
| __func__, phb->global_number, config_addr); |
| return -ENXIO; |
| } |
| |
| return rets[0]; |
| } |
| |
| if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) { |
| ret = rtas_call(ibm_get_config_addr_info, 4, 2, rets, |
| config_addr, BUID_HI(phb->buid), |
| BUID_LO(phb->buid), 0); |
| if (ret) { |
| pr_warn("%s: Failed to get address for PHB#%x-PE#%x\n", |
| __func__, phb->global_number, config_addr); |
| return -ENXIO; |
| } |
| |
| return rets[0]; |
| } |
| |
| /* |
| * PAPR does describe a process for finding the pe_config_addr that was |
| * used before the ibm,get-config-addr-info calls were added. However, |
| * I haven't found *any* systems that don't have that RTAS call |
| * implemented. If you happen to find one that needs the old DT based |
| * process, patches are welcome! |
| */ |
| return -ENOENT; |
| } |
| |
| /** |
| * pseries_eeh_phb_reset - Reset the specified PHB |
| * @phb: PCI controller |
| * @config_adddr: the associated config address |
| * @option: reset option |
| * |
| * Reset the specified PHB/PE |
| */ |
| static int pseries_eeh_phb_reset(struct pci_controller *phb, int config_addr, int option) |
| { |
| int ret; |
| |
| /* Reset PE through RTAS call */ |
| ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL, |
| config_addr, BUID_HI(phb->buid), |
| BUID_LO(phb->buid), option); |
| |
| /* If fundamental-reset not supported, try hot-reset */ |
| if (option == EEH_RESET_FUNDAMENTAL && ret == -8) { |
| option = EEH_RESET_HOT; |
| ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL, |
| config_addr, BUID_HI(phb->buid), |
| BUID_LO(phb->buid), option); |
| } |
| |
| /* We need reset hold or settlement delay */ |
| if (option == EEH_RESET_FUNDAMENTAL || option == EEH_RESET_HOT) |
| msleep(EEH_PE_RST_HOLD_TIME); |
| else |
| msleep(EEH_PE_RST_SETTLE_TIME); |
| |
| return ret; |
| } |
| |
| /** |
| * pseries_eeh_phb_configure_bridge - Configure PCI bridges in the indicated PE |
| * @phb: PCI controller |
| * @config_adddr: the associated config address |
| * |
| * The function will be called to reconfigure the bridges included |
| * in the specified PE so that the mulfunctional PE would be recovered |
| * again. |
| */ |
| static int pseries_eeh_phb_configure_bridge(struct pci_controller *phb, int config_addr) |
| { |
| int ret; |
| /* Waiting 0.2s maximum before skipping configuration */ |
| int max_wait = 200; |
| |
| while (max_wait > 0) { |
| ret = rtas_call(ibm_configure_pe, 3, 1, NULL, |
| config_addr, BUID_HI(phb->buid), |
| BUID_LO(phb->buid)); |
| |
| if (!ret) |
| return ret; |
| if (ret < 0) |
| break; |
| |
| /* |
| * If RTAS returns a delay value that's above 100ms, cut it |
| * down to 100ms in case firmware made a mistake. For more |
| * on how these delay values work see rtas_busy_delay_time |
| */ |
| if (ret > RTAS_EXTENDED_DELAY_MIN+2 && |
| ret <= RTAS_EXTENDED_DELAY_MAX) |
| ret = RTAS_EXTENDED_DELAY_MIN+2; |
| |
| max_wait -= rtas_busy_delay_time(ret); |
| |
| if (max_wait < 0) |
| break; |
| |
| rtas_busy_delay(ret); |
| } |
| |
| pr_warn("%s: Unable to configure bridge PHB#%x-PE#%x (%d)\n", |
| __func__, phb->global_number, config_addr, ret); |
| /* PAPR defines -3 as "Parameter Error" for this function: */ |
| if (ret == -3) |
| return -EINVAL; |
| else |
| return -EIO; |
| } |
| |
| /* |
| * Buffer for reporting slot-error-detail rtas calls. Its here |
| * in BSS, and not dynamically alloced, so that it ends up in |
| * RMO where RTAS can access it. |
| */ |
| static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX]; |
| static DEFINE_SPINLOCK(slot_errbuf_lock); |
| static int eeh_error_buf_size; |
| |
| static int pseries_eeh_cap_start(struct pci_dn *pdn) |
| { |
| u32 status; |
| |
| if (!pdn) |
| return 0; |
| |
| rtas_read_config(pdn, PCI_STATUS, 2, &status); |
| if (!(status & PCI_STATUS_CAP_LIST)) |
| return 0; |
| |
| return PCI_CAPABILITY_LIST; |
| } |
| |
| |
| static int pseries_eeh_find_cap(struct pci_dn *pdn, int cap) |
| { |
| int pos = pseries_eeh_cap_start(pdn); |
| int cnt = 48; /* Maximal number of capabilities */ |
| u32 id; |
| |
| if (!pos) |
| return 0; |
| |
| while (cnt--) { |
| rtas_read_config(pdn, pos, 1, &pos); |
| if (pos < 0x40) |
| break; |
| pos &= ~3; |
| rtas_read_config(pdn, pos + PCI_CAP_LIST_ID, 1, &id); |
| if (id == 0xff) |
| break; |
| if (id == cap) |
| return pos; |
| pos += PCI_CAP_LIST_NEXT; |
| } |
| |
| return 0; |
| } |
| |
| static int pseries_eeh_find_ecap(struct pci_dn *pdn, int cap) |
| { |
| struct eeh_dev *edev = pdn_to_eeh_dev(pdn); |
| u32 header; |
| int pos = 256; |
| int ttl = (4096 - 256) / 8; |
| |
| if (!edev || !edev->pcie_cap) |
| return 0; |
| if (rtas_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL) |
| return 0; |
| else if (!header) |
| return 0; |
| |
| while (ttl-- > 0) { |
| if (PCI_EXT_CAP_ID(header) == cap && pos) |
| return pos; |
| |
| pos = PCI_EXT_CAP_NEXT(header); |
| if (pos < 256) |
| break; |
| |
| if (rtas_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL) |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * pseries_eeh_pe_get_parent - Retrieve the parent PE |
| * @edev: EEH device |
| * |
| * The whole PEs existing in the system are organized as hierarchy |
| * tree. The function is used to retrieve the parent PE according |
| * to the parent EEH device. |
| */ |
| static struct eeh_pe *pseries_eeh_pe_get_parent(struct eeh_dev *edev) |
| { |
| struct eeh_dev *parent; |
| struct pci_dn *pdn = eeh_dev_to_pdn(edev); |
| |
| /* |
| * It might have the case for the indirect parent |
| * EEH device already having associated PE, but |
| * the direct parent EEH device doesn't have yet. |
| */ |
| if (edev->physfn) |
| pdn = pci_get_pdn(edev->physfn); |
| else |
| pdn = pdn ? pdn->parent : NULL; |
| while (pdn) { |
| /* We're poking out of PCI territory */ |
| parent = pdn_to_eeh_dev(pdn); |
| if (!parent) |
| return NULL; |
| |
| if (parent->pe) |
| return parent->pe; |
| |
| pdn = pdn->parent; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * pseries_eeh_init_edev - initialise the eeh_dev and eeh_pe for a pci_dn |
| * |
| * @pdn: PCI device node |
| * |
| * When we discover a new PCI device via the device-tree we create a |
| * corresponding pci_dn and we allocate, but don't initialise, an eeh_dev. |
| * This function takes care of the initialisation and inserts the eeh_dev |
| * into the correct eeh_pe. If no eeh_pe exists we'll allocate one. |
| */ |
| void pseries_eeh_init_edev(struct pci_dn *pdn) |
| { |
| struct eeh_pe pe, *parent; |
| struct eeh_dev *edev; |
| u32 pcie_flags; |
| int ret; |
| |
| if (WARN_ON_ONCE(!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))) |
| return; |
| |
| /* |
| * Find the eeh_dev for this pdn. The storage for the eeh_dev was |
| * allocated at the same time as the pci_dn. |
| * |
| * XXX: We should probably re-visit that. |
| */ |
| edev = pdn_to_eeh_dev(pdn); |
| if (!edev) |
| return; |
| |
| /* |
| * If ->pe is set then we've already probed this device. We hit |
| * this path when a pci_dev is removed and rescanned while recovering |
| * a PE (i.e. for devices where the driver doesn't support error |
| * recovery). |
| */ |
| if (edev->pe) |
| return; |
| |
| /* Check class/vendor/device IDs */ |
| if (!pdn->vendor_id || !pdn->device_id || !pdn->class_code) |
| return; |
| |
| /* Skip for PCI-ISA bridge */ |
| if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_ISA) |
| return; |
| |
| eeh_edev_dbg(edev, "Probing device\n"); |
| |
| /* |
| * Update class code and mode of eeh device. We need |
| * correctly reflects that current device is root port |
| * or PCIe switch downstream port. |
| */ |
| edev->pcix_cap = pseries_eeh_find_cap(pdn, PCI_CAP_ID_PCIX); |
| edev->pcie_cap = pseries_eeh_find_cap(pdn, PCI_CAP_ID_EXP); |
| edev->aer_cap = pseries_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR); |
| edev->mode &= 0xFFFFFF00; |
| if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) { |
| edev->mode |= EEH_DEV_BRIDGE; |
| if (edev->pcie_cap) { |
| rtas_read_config(pdn, edev->pcie_cap + PCI_EXP_FLAGS, |
| 2, &pcie_flags); |
| pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4; |
| if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT) |
| edev->mode |= EEH_DEV_ROOT_PORT; |
| else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM) |
| edev->mode |= EEH_DEV_DS_PORT; |
| } |
| } |
| |
| /* first up, find the pe_config_addr for the PE containing the device */ |
| ret = pseries_eeh_get_pe_config_addr(pdn); |
| if (ret < 0) { |
| eeh_edev_dbg(edev, "Unable to find pe_config_addr\n"); |
| goto err; |
| } |
| |
| /* Try enable EEH on the fake PE */ |
| memset(&pe, 0, sizeof(struct eeh_pe)); |
| pe.phb = pdn->phb; |
| pe.addr = ret; |
| |
| eeh_edev_dbg(edev, "Enabling EEH on device\n"); |
| ret = eeh_ops->set_option(&pe, EEH_OPT_ENABLE); |
| if (ret) { |
| eeh_edev_dbg(edev, "EEH failed to enable on device (code %d)\n", ret); |
| goto err; |
| } |
| |
| edev->pe_config_addr = pe.addr; |
| |
| eeh_add_flag(EEH_ENABLED); |
| |
| parent = pseries_eeh_pe_get_parent(edev); |
| eeh_pe_tree_insert(edev, parent); |
| eeh_save_bars(edev); |
| eeh_edev_dbg(edev, "EEH enabled for device"); |
| |
| return; |
| |
| err: |
| eeh_edev_dbg(edev, "EEH is unsupported on device (code = %d)\n", ret); |
| } |
| |
| static struct eeh_dev *pseries_eeh_probe(struct pci_dev *pdev) |
| { |
| struct eeh_dev *edev; |
| struct pci_dn *pdn; |
| |
| pdn = pci_get_pdn_by_devfn(pdev->bus, pdev->devfn); |
| if (!pdn) |
| return NULL; |
| |
| /* |
| * If the system supports EEH on this device then the eeh_dev was |
| * configured and inserted into a PE in pseries_eeh_init_edev() |
| */ |
| edev = pdn_to_eeh_dev(pdn); |
| if (!edev || !edev->pe) |
| return NULL; |
| |
| return edev; |
| } |
| |
| /** |
| * pseries_eeh_init_edev_recursive - Enable EEH for the indicated device |
| * @pdn: PCI device node |
| * |
| * This routine must be used to perform EEH initialization for the |
| * indicated PCI device that was added after system boot (e.g. |
| * hotplug, dlpar). |
| */ |
| void pseries_eeh_init_edev_recursive(struct pci_dn *pdn) |
| { |
| struct pci_dn *n; |
| |
| if (!pdn) |
| return; |
| |
| list_for_each_entry(n, &pdn->child_list, list) |
| pseries_eeh_init_edev_recursive(n); |
| |
| pseries_eeh_init_edev(pdn); |
| } |
| EXPORT_SYMBOL_GPL(pseries_eeh_init_edev_recursive); |
| |
| /** |
| * pseries_eeh_set_option - Initialize EEH or MMIO/DMA reenable |
| * @pe: EEH PE |
| * @option: operation to be issued |
| * |
| * The function is used to control the EEH functionality globally. |
| * Currently, following options are support according to PAPR: |
| * Enable EEH, Disable EEH, Enable MMIO and Enable DMA |
| */ |
| static int pseries_eeh_set_option(struct eeh_pe *pe, int option) |
| { |
| int ret = 0; |
| |
| /* |
| * When we're enabling or disabling EEH functioality on |
| * the particular PE, the PE config address is possibly |
| * unavailable. Therefore, we have to figure it out from |
| * the FDT node. |
| */ |
| switch (option) { |
| case EEH_OPT_DISABLE: |
| case EEH_OPT_ENABLE: |
| case EEH_OPT_THAW_MMIO: |
| case EEH_OPT_THAW_DMA: |
| break; |
| case EEH_OPT_FREEZE_PE: |
| /* Not support */ |
| return 0; |
| default: |
| pr_err("%s: Invalid option %d\n", __func__, option); |
| return -EINVAL; |
| } |
| |
| ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL, |
| pe->addr, BUID_HI(pe->phb->buid), |
| BUID_LO(pe->phb->buid), option); |
| |
| return ret; |
| } |
| |
| /** |
| * pseries_eeh_get_state - Retrieve PE state |
| * @pe: EEH PE |
| * @delay: suggested time to wait if state is unavailable |
| * |
| * Retrieve the state of the specified PE. On RTAS compliant |
| * pseries platform, there already has one dedicated RTAS function |
| * for the purpose. It's notable that the associated PE config address |
| * might be ready when calling the function. Therefore, endeavour to |
| * use the PE config address if possible. Further more, there're 2 |
| * RTAS calls for the purpose, we need to try the new one and back |
| * to the old one if the new one couldn't work properly. |
| */ |
| static int pseries_eeh_get_state(struct eeh_pe *pe, int *delay) |
| { |
| int ret; |
| int rets[4]; |
| int result; |
| |
| if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) { |
| ret = rtas_call(ibm_read_slot_reset_state2, 3, 4, rets, |
| pe->addr, BUID_HI(pe->phb->buid), |
| BUID_LO(pe->phb->buid)); |
| } else if (ibm_read_slot_reset_state != RTAS_UNKNOWN_SERVICE) { |
| /* Fake PE unavailable info */ |
| rets[2] = 0; |
| ret = rtas_call(ibm_read_slot_reset_state, 3, 3, rets, |
| pe->addr, BUID_HI(pe->phb->buid), |
| BUID_LO(pe->phb->buid)); |
| } else { |
| return EEH_STATE_NOT_SUPPORT; |
| } |
| |
| if (ret) |
| return ret; |
| |
| /* Parse the result out */ |
| if (!rets[1]) |
| return EEH_STATE_NOT_SUPPORT; |
| |
| switch(rets[0]) { |
| case 0: |
| result = EEH_STATE_MMIO_ACTIVE | |
| EEH_STATE_DMA_ACTIVE; |
| break; |
| case 1: |
| result = EEH_STATE_RESET_ACTIVE | |
| EEH_STATE_MMIO_ACTIVE | |
| EEH_STATE_DMA_ACTIVE; |
| break; |
| case 2: |
| result = 0; |
| break; |
| case 4: |
| result = EEH_STATE_MMIO_ENABLED; |
| break; |
| case 5: |
| if (rets[2]) { |
| if (delay) |
| *delay = rets[2]; |
| result = EEH_STATE_UNAVAILABLE; |
| } else { |
| result = EEH_STATE_NOT_SUPPORT; |
| } |
| break; |
| default: |
| result = EEH_STATE_NOT_SUPPORT; |
| } |
| |
| return result; |
| } |
| |
| /** |
| * pseries_eeh_reset - Reset the specified PE |
| * @pe: EEH PE |
| * @option: reset option |
| * |
| * Reset the specified PE |
| */ |
| static int pseries_eeh_reset(struct eeh_pe *pe, int option) |
| { |
| return pseries_eeh_phb_reset(pe->phb, pe->addr, option); |
| } |
| |
| /** |
| * pseries_eeh_get_log - Retrieve error log |
| * @pe: EEH PE |
| * @severity: temporary or permanent error log |
| * @drv_log: driver log to be combined with retrieved error log |
| * @len: length of driver log |
| * |
| * Retrieve the temporary or permanent error from the PE. |
| * Actually, the error will be retrieved through the dedicated |
| * RTAS call. |
| */ |
| static int pseries_eeh_get_log(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len) |
| { |
| unsigned long flags; |
| int ret; |
| |
| spin_lock_irqsave(&slot_errbuf_lock, flags); |
| memset(slot_errbuf, 0, eeh_error_buf_size); |
| |
| ret = rtas_call(ibm_slot_error_detail, 8, 1, NULL, pe->addr, |
| BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid), |
| virt_to_phys(drv_log), len, |
| virt_to_phys(slot_errbuf), eeh_error_buf_size, |
| severity); |
| if (!ret) |
| log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0); |
| spin_unlock_irqrestore(&slot_errbuf_lock, flags); |
| |
| return ret; |
| } |
| |
| /** |
| * pseries_eeh_configure_bridge - Configure PCI bridges in the indicated PE |
| * @pe: EEH PE |
| * |
| */ |
| static int pseries_eeh_configure_bridge(struct eeh_pe *pe) |
| { |
| return pseries_eeh_phb_configure_bridge(pe->phb, pe->addr); |
| } |
| |
| /** |
| * pseries_eeh_read_config - Read PCI config space |
| * @edev: EEH device handle |
| * @where: PCI config space offset |
| * @size: size to read |
| * @val: return value |
| * |
| * Read config space from the speicifed device |
| */ |
| static int pseries_eeh_read_config(struct eeh_dev *edev, int where, int size, u32 *val) |
| { |
| struct pci_dn *pdn = eeh_dev_to_pdn(edev); |
| |
| return rtas_read_config(pdn, where, size, val); |
| } |
| |
| /** |
| * pseries_eeh_write_config - Write PCI config space |
| * @edev: EEH device handle |
| * @where: PCI config space offset |
| * @size: size to write |
| * @val: value to be written |
| * |
| * Write config space to the specified device |
| */ |
| static int pseries_eeh_write_config(struct eeh_dev *edev, int where, int size, u32 val) |
| { |
| struct pci_dn *pdn = eeh_dev_to_pdn(edev); |
| |
| return rtas_write_config(pdn, where, size, val); |
| } |
| |
| #ifdef CONFIG_PCI_IOV |
| static int pseries_send_allow_unfreeze(struct pci_dn *pdn, u16 *vf_pe_array, int cur_vfs) |
| { |
| int rc; |
| int ibm_allow_unfreeze = rtas_token("ibm,open-sriov-allow-unfreeze"); |
| unsigned long buid, addr; |
| |
| addr = rtas_config_addr(pdn->busno, pdn->devfn, 0); |
| buid = pdn->phb->buid; |
| spin_lock(&rtas_data_buf_lock); |
| memcpy(rtas_data_buf, vf_pe_array, RTAS_DATA_BUF_SIZE); |
| rc = rtas_call(ibm_allow_unfreeze, 5, 1, NULL, |
| addr, |
| BUID_HI(buid), |
| BUID_LO(buid), |
| rtas_data_buf, cur_vfs * sizeof(u16)); |
| spin_unlock(&rtas_data_buf_lock); |
| if (rc) |
| pr_warn("%s: Failed to allow unfreeze for PHB#%x-PE#%lx, rc=%x\n", |
| __func__, |
| pdn->phb->global_number, addr, rc); |
| return rc; |
| } |
| |
| static int pseries_call_allow_unfreeze(struct eeh_dev *edev) |
| { |
| int cur_vfs = 0, rc = 0, vf_index, bus, devfn, vf_pe_num; |
| struct pci_dn *pdn, *tmp, *parent, *physfn_pdn; |
| u16 *vf_pe_array; |
| |
| vf_pe_array = kzalloc(RTAS_DATA_BUF_SIZE, GFP_KERNEL); |
| if (!vf_pe_array) |
| return -ENOMEM; |
| if (pci_num_vf(edev->physfn ? edev->physfn : edev->pdev)) { |
| if (edev->pdev->is_physfn) { |
| cur_vfs = pci_num_vf(edev->pdev); |
| pdn = eeh_dev_to_pdn(edev); |
| parent = pdn->parent; |
| for (vf_index = 0; vf_index < cur_vfs; vf_index++) |
| vf_pe_array[vf_index] = |
| cpu_to_be16(pdn->pe_num_map[vf_index]); |
| rc = pseries_send_allow_unfreeze(pdn, vf_pe_array, |
| cur_vfs); |
| pdn->last_allow_rc = rc; |
| for (vf_index = 0; vf_index < cur_vfs; vf_index++) { |
| list_for_each_entry_safe(pdn, tmp, |
| &parent->child_list, |
| list) { |
| bus = pci_iov_virtfn_bus(edev->pdev, |
| vf_index); |
| devfn = pci_iov_virtfn_devfn(edev->pdev, |
| vf_index); |
| if (pdn->busno != bus || |
| pdn->devfn != devfn) |
| continue; |
| pdn->last_allow_rc = rc; |
| } |
| } |
| } else { |
| pdn = pci_get_pdn(edev->pdev); |
| physfn_pdn = pci_get_pdn(edev->physfn); |
| |
| vf_pe_num = physfn_pdn->pe_num_map[edev->vf_index]; |
| vf_pe_array[0] = cpu_to_be16(vf_pe_num); |
| rc = pseries_send_allow_unfreeze(physfn_pdn, |
| vf_pe_array, 1); |
| pdn->last_allow_rc = rc; |
| } |
| } |
| |
| kfree(vf_pe_array); |
| return rc; |
| } |
| |
| static int pseries_notify_resume(struct eeh_dev *edev) |
| { |
| if (!edev) |
| return -EEXIST; |
| |
| if (rtas_token("ibm,open-sriov-allow-unfreeze") == RTAS_UNKNOWN_SERVICE) |
| return -EINVAL; |
| |
| if (edev->pdev->is_physfn || edev->pdev->is_virtfn) |
| return pseries_call_allow_unfreeze(edev); |
| |
| return 0; |
| } |
| #endif |
| |
| static struct eeh_ops pseries_eeh_ops = { |
| .name = "pseries", |
| .probe = pseries_eeh_probe, |
| .set_option = pseries_eeh_set_option, |
| .get_state = pseries_eeh_get_state, |
| .reset = pseries_eeh_reset, |
| .get_log = pseries_eeh_get_log, |
| .configure_bridge = pseries_eeh_configure_bridge, |
| .err_inject = NULL, |
| .read_config = pseries_eeh_read_config, |
| .write_config = pseries_eeh_write_config, |
| .next_error = NULL, |
| .restore_config = NULL, /* NB: configure_bridge() does this */ |
| #ifdef CONFIG_PCI_IOV |
| .notify_resume = pseries_notify_resume |
| #endif |
| }; |
| |
| /** |
| * eeh_pseries_init - Register platform dependent EEH operations |
| * |
| * EEH initialization on pseries platform. This function should be |
| * called before any EEH related functions. |
| */ |
| static int __init eeh_pseries_init(void) |
| { |
| struct pci_controller *phb; |
| struct pci_dn *pdn; |
| int ret, config_addr; |
| |
| /* figure out EEH RTAS function call tokens */ |
| ibm_set_eeh_option = rtas_token("ibm,set-eeh-option"); |
| ibm_set_slot_reset = rtas_token("ibm,set-slot-reset"); |
| ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2"); |
| ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state"); |
| ibm_slot_error_detail = rtas_token("ibm,slot-error-detail"); |
| ibm_get_config_addr_info2 = rtas_token("ibm,get-config-addr-info2"); |
| ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info"); |
| ibm_configure_pe = rtas_token("ibm,configure-pe"); |
| |
| /* |
| * ibm,configure-pe and ibm,configure-bridge have the same semantics, |
| * however ibm,configure-pe can be faster. If we can't find |
| * ibm,configure-pe then fall back to using ibm,configure-bridge. |
| */ |
| if (ibm_configure_pe == RTAS_UNKNOWN_SERVICE) |
| ibm_configure_pe = rtas_token("ibm,configure-bridge"); |
| |
| /* |
| * Necessary sanity check. We needn't check "get-config-addr-info" |
| * and its variant since the old firmware probably support address |
| * of domain/bus/slot/function for EEH RTAS operations. |
| */ |
| if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE || |
| ibm_set_slot_reset == RTAS_UNKNOWN_SERVICE || |
| (ibm_read_slot_reset_state2 == RTAS_UNKNOWN_SERVICE && |
| ibm_read_slot_reset_state == RTAS_UNKNOWN_SERVICE) || |
| ibm_slot_error_detail == RTAS_UNKNOWN_SERVICE || |
| ibm_configure_pe == RTAS_UNKNOWN_SERVICE) { |
| pr_info("EEH functionality not supported\n"); |
| return -EINVAL; |
| } |
| |
| /* Initialize error log lock and size */ |
| spin_lock_init(&slot_errbuf_lock); |
| eeh_error_buf_size = rtas_token("rtas-error-log-max"); |
| if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) { |
| pr_info("%s: unknown EEH error log size\n", |
| __func__); |
| eeh_error_buf_size = 1024; |
| } else if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) { |
| pr_info("%s: EEH error log size %d exceeds the maximal %d\n", |
| __func__, eeh_error_buf_size, RTAS_ERROR_LOG_MAX); |
| eeh_error_buf_size = RTAS_ERROR_LOG_MAX; |
| } |
| |
| /* Set EEH probe mode */ |
| eeh_add_flag(EEH_PROBE_MODE_DEVTREE | EEH_ENABLE_IO_FOR_LOG); |
| |
| /* Set EEH machine dependent code */ |
| ppc_md.pcibios_bus_add_device = pseries_pcibios_bus_add_device; |
| |
| if (is_kdump_kernel() || reset_devices) { |
| pr_info("Issue PHB reset ...\n"); |
| list_for_each_entry(phb, &hose_list, list_node) { |
| // Skip if the slot is empty |
| if (list_empty(&PCI_DN(phb->dn)->child_list)) |
| continue; |
| |
| pdn = list_first_entry(&PCI_DN(phb->dn)->child_list, struct pci_dn, list); |
| config_addr = pseries_eeh_get_pe_config_addr(pdn); |
| |
| /* invalid PE config addr */ |
| if (config_addr < 0) |
| continue; |
| |
| pseries_eeh_phb_reset(phb, config_addr, EEH_RESET_FUNDAMENTAL); |
| pseries_eeh_phb_reset(phb, config_addr, EEH_RESET_DEACTIVATE); |
| pseries_eeh_phb_configure_bridge(phb, config_addr); |
| } |
| } |
| |
| ret = eeh_init(&pseries_eeh_ops); |
| if (!ret) |
| pr_info("EEH: pSeries platform initialized\n"); |
| else |
| pr_info("EEH: pSeries platform initialization failure (%d)\n", |
| ret); |
| return ret; |
| } |
| machine_arch_initcall(pseries, eeh_pseries_init); |