| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Support of MSI, HPET and DMAR interrupts. |
| * |
| * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo |
| * Moved from arch/x86/kernel/apic/io_apic.c. |
| * Jiang Liu <jiang.liu@linux.intel.com> |
| * Convert to hierarchical irqdomain |
| */ |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/pci.h> |
| #include <linux/dmar.h> |
| #include <linux/hpet.h> |
| #include <linux/msi.h> |
| #include <asm/irqdomain.h> |
| #include <asm/hpet.h> |
| #include <asm/hw_irq.h> |
| #include <asm/apic.h> |
| #include <asm/irq_remapping.h> |
| |
| struct irq_domain *x86_pci_msi_default_domain __ro_after_init; |
| |
| static void irq_msi_update_msg(struct irq_data *irqd, struct irq_cfg *cfg) |
| { |
| struct msi_msg msg[2] = { [1] = { }, }; |
| |
| __irq_msi_compose_msg(cfg, msg, false); |
| irq_data_get_irq_chip(irqd)->irq_write_msi_msg(irqd, msg); |
| } |
| |
| static int |
| msi_set_affinity(struct irq_data *irqd, const struct cpumask *mask, bool force) |
| { |
| struct irq_cfg old_cfg, *cfg = irqd_cfg(irqd); |
| struct irq_data *parent = irqd->parent_data; |
| unsigned int cpu; |
| int ret; |
| |
| /* Save the current configuration */ |
| cpu = cpumask_first(irq_data_get_effective_affinity_mask(irqd)); |
| old_cfg = *cfg; |
| |
| /* Allocate a new target vector */ |
| ret = parent->chip->irq_set_affinity(parent, mask, force); |
| if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) |
| return ret; |
| |
| /* |
| * For non-maskable and non-remapped MSI interrupts the migration |
| * to a different destination CPU and a different vector has to be |
| * done careful to handle the possible stray interrupt which can be |
| * caused by the non-atomic update of the address/data pair. |
| * |
| * Direct update is possible when: |
| * - The MSI is maskable (remapped MSI does not use this code path)). |
| * The quirk bit is not set in this case. |
| * - The new vector is the same as the old vector |
| * - The old vector is MANAGED_IRQ_SHUTDOWN_VECTOR (interrupt starts up) |
| * - The interrupt is not yet started up |
| * - The new destination CPU is the same as the old destination CPU |
| */ |
| if (!irqd_msi_nomask_quirk(irqd) || |
| cfg->vector == old_cfg.vector || |
| old_cfg.vector == MANAGED_IRQ_SHUTDOWN_VECTOR || |
| !irqd_is_started(irqd) || |
| cfg->dest_apicid == old_cfg.dest_apicid) { |
| irq_msi_update_msg(irqd, cfg); |
| return ret; |
| } |
| |
| /* |
| * Paranoia: Validate that the interrupt target is the local |
| * CPU. |
| */ |
| if (WARN_ON_ONCE(cpu != smp_processor_id())) { |
| irq_msi_update_msg(irqd, cfg); |
| return ret; |
| } |
| |
| /* |
| * Redirect the interrupt to the new vector on the current CPU |
| * first. This might cause a spurious interrupt on this vector if |
| * the device raises an interrupt right between this update and the |
| * update to the final destination CPU. |
| * |
| * If the vector is in use then the installed device handler will |
| * denote it as spurious which is no harm as this is a rare event |
| * and interrupt handlers have to cope with spurious interrupts |
| * anyway. If the vector is unused, then it is marked so it won't |
| * trigger the 'No irq handler for vector' warning in |
| * common_interrupt(). |
| * |
| * This requires to hold vector lock to prevent concurrent updates to |
| * the affected vector. |
| */ |
| lock_vector_lock(); |
| |
| /* |
| * Mark the new target vector on the local CPU if it is currently |
| * unused. Reuse the VECTOR_RETRIGGERED state which is also used in |
| * the CPU hotplug path for a similar purpose. This cannot be |
| * undone here as the current CPU has interrupts disabled and |
| * cannot handle the interrupt before the whole set_affinity() |
| * section is done. In the CPU unplug case, the current CPU is |
| * about to vanish and will not handle any interrupts anymore. The |
| * vector is cleaned up when the CPU comes online again. |
| */ |
| if (IS_ERR_OR_NULL(this_cpu_read(vector_irq[cfg->vector]))) |
| this_cpu_write(vector_irq[cfg->vector], VECTOR_RETRIGGERED); |
| |
| /* Redirect it to the new vector on the local CPU temporarily */ |
| old_cfg.vector = cfg->vector; |
| irq_msi_update_msg(irqd, &old_cfg); |
| |
| /* Now transition it to the target CPU */ |
| irq_msi_update_msg(irqd, cfg); |
| |
| /* |
| * All interrupts after this point are now targeted at the new |
| * vector/CPU. |
| * |
| * Drop vector lock before testing whether the temporary assignment |
| * to the local CPU was hit by an interrupt raised in the device, |
| * because the retrigger function acquires vector lock again. |
| */ |
| unlock_vector_lock(); |
| |
| /* |
| * Check whether the transition raced with a device interrupt and |
| * is pending in the local APICs IRR. It is safe to do this outside |
| * of vector lock as the irq_desc::lock of this interrupt is still |
| * held and interrupts are disabled: The check is not accessing the |
| * underlying vector store. It's just checking the local APIC's |
| * IRR. |
| */ |
| if (lapic_vector_set_in_irr(cfg->vector)) |
| irq_data_get_irq_chip(irqd)->irq_retrigger(irqd); |
| |
| return ret; |
| } |
| |
| /* |
| * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices, |
| * which implement the MSI or MSI-X Capability Structure. |
| */ |
| static struct irq_chip pci_msi_controller = { |
| .name = "PCI-MSI", |
| .irq_unmask = pci_msi_unmask_irq, |
| .irq_mask = pci_msi_mask_irq, |
| .irq_ack = irq_chip_ack_parent, |
| .irq_retrigger = irq_chip_retrigger_hierarchy, |
| .irq_set_affinity = msi_set_affinity, |
| .flags = IRQCHIP_SKIP_SET_WAKE | |
| IRQCHIP_AFFINITY_PRE_STARTUP, |
| }; |
| |
| int pci_msi_prepare(struct irq_domain *domain, struct device *dev, int nvec, |
| msi_alloc_info_t *arg) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct msi_desc *desc = first_pci_msi_entry(pdev); |
| |
| init_irq_alloc_info(arg, NULL); |
| if (desc->msi_attrib.is_msix) { |
| arg->type = X86_IRQ_ALLOC_TYPE_PCI_MSIX; |
| } else { |
| arg->type = X86_IRQ_ALLOC_TYPE_PCI_MSI; |
| arg->flags |= X86_IRQ_ALLOC_CONTIGUOUS_VECTORS; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(pci_msi_prepare); |
| |
| static struct msi_domain_ops pci_msi_domain_ops = { |
| .msi_prepare = pci_msi_prepare, |
| }; |
| |
| static struct msi_domain_info pci_msi_domain_info = { |
| .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | |
| MSI_FLAG_PCI_MSIX, |
| .ops = &pci_msi_domain_ops, |
| .chip = &pci_msi_controller, |
| .handler = handle_edge_irq, |
| .handler_name = "edge", |
| }; |
| |
| struct irq_domain * __init native_create_pci_msi_domain(void) |
| { |
| struct fwnode_handle *fn; |
| struct irq_domain *d; |
| |
| if (disable_apic) |
| return NULL; |
| |
| fn = irq_domain_alloc_named_fwnode("PCI-MSI"); |
| if (!fn) |
| return NULL; |
| |
| d = pci_msi_create_irq_domain(fn, &pci_msi_domain_info, |
| x86_vector_domain); |
| if (!d) { |
| irq_domain_free_fwnode(fn); |
| pr_warn("Failed to initialize PCI-MSI irqdomain.\n"); |
| } else { |
| d->flags |= IRQ_DOMAIN_MSI_NOMASK_QUIRK; |
| } |
| return d; |
| } |
| |
| void __init x86_create_pci_msi_domain(void) |
| { |
| x86_pci_msi_default_domain = x86_init.irqs.create_pci_msi_domain(); |
| } |
| |
| #ifdef CONFIG_IRQ_REMAP |
| static struct irq_chip pci_msi_ir_controller = { |
| .name = "IR-PCI-MSI", |
| .irq_unmask = pci_msi_unmask_irq, |
| .irq_mask = pci_msi_mask_irq, |
| .irq_ack = irq_chip_ack_parent, |
| .irq_retrigger = irq_chip_retrigger_hierarchy, |
| .flags = IRQCHIP_SKIP_SET_WAKE | |
| IRQCHIP_AFFINITY_PRE_STARTUP, |
| }; |
| |
| static struct msi_domain_info pci_msi_ir_domain_info = { |
| .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | |
| MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX, |
| .ops = &pci_msi_domain_ops, |
| .chip = &pci_msi_ir_controller, |
| .handler = handle_edge_irq, |
| .handler_name = "edge", |
| }; |
| |
| struct irq_domain *arch_create_remap_msi_irq_domain(struct irq_domain *parent, |
| const char *name, int id) |
| { |
| struct fwnode_handle *fn; |
| struct irq_domain *d; |
| |
| fn = irq_domain_alloc_named_id_fwnode(name, id); |
| if (!fn) |
| return NULL; |
| d = pci_msi_create_irq_domain(fn, &pci_msi_ir_domain_info, parent); |
| if (!d) |
| irq_domain_free_fwnode(fn); |
| return d; |
| } |
| #endif |
| |
| #ifdef CONFIG_DMAR_TABLE |
| /* |
| * The Intel IOMMU (ab)uses the high bits of the MSI address to contain the |
| * high bits of the destination APIC ID. This can't be done in the general |
| * case for MSIs as it would be targeting real memory above 4GiB not the |
| * APIC. |
| */ |
| static void dmar_msi_compose_msg(struct irq_data *data, struct msi_msg *msg) |
| { |
| __irq_msi_compose_msg(irqd_cfg(data), msg, true); |
| } |
| |
| static void dmar_msi_write_msg(struct irq_data *data, struct msi_msg *msg) |
| { |
| dmar_msi_write(data->irq, msg); |
| } |
| |
| static struct irq_chip dmar_msi_controller = { |
| .name = "DMAR-MSI", |
| .irq_unmask = dmar_msi_unmask, |
| .irq_mask = dmar_msi_mask, |
| .irq_ack = irq_chip_ack_parent, |
| .irq_set_affinity = msi_domain_set_affinity, |
| .irq_retrigger = irq_chip_retrigger_hierarchy, |
| .irq_compose_msi_msg = dmar_msi_compose_msg, |
| .irq_write_msi_msg = dmar_msi_write_msg, |
| .flags = IRQCHIP_SKIP_SET_WAKE | |
| IRQCHIP_AFFINITY_PRE_STARTUP, |
| }; |
| |
| static int dmar_msi_init(struct irq_domain *domain, |
| struct msi_domain_info *info, unsigned int virq, |
| irq_hw_number_t hwirq, msi_alloc_info_t *arg) |
| { |
| irq_domain_set_info(domain, virq, arg->devid, info->chip, NULL, |
| handle_edge_irq, arg->data, "edge"); |
| |
| return 0; |
| } |
| |
| static struct msi_domain_ops dmar_msi_domain_ops = { |
| .msi_init = dmar_msi_init, |
| }; |
| |
| static struct msi_domain_info dmar_msi_domain_info = { |
| .ops = &dmar_msi_domain_ops, |
| .chip = &dmar_msi_controller, |
| .flags = MSI_FLAG_USE_DEF_DOM_OPS, |
| }; |
| |
| static struct irq_domain *dmar_get_irq_domain(void) |
| { |
| static struct irq_domain *dmar_domain; |
| static DEFINE_MUTEX(dmar_lock); |
| struct fwnode_handle *fn; |
| |
| mutex_lock(&dmar_lock); |
| if (dmar_domain) |
| goto out; |
| |
| fn = irq_domain_alloc_named_fwnode("DMAR-MSI"); |
| if (fn) { |
| dmar_domain = msi_create_irq_domain(fn, &dmar_msi_domain_info, |
| x86_vector_domain); |
| if (!dmar_domain) |
| irq_domain_free_fwnode(fn); |
| } |
| out: |
| mutex_unlock(&dmar_lock); |
| return dmar_domain; |
| } |
| |
| int dmar_alloc_hwirq(int id, int node, void *arg) |
| { |
| struct irq_domain *domain = dmar_get_irq_domain(); |
| struct irq_alloc_info info; |
| |
| if (!domain) |
| return -1; |
| |
| init_irq_alloc_info(&info, NULL); |
| info.type = X86_IRQ_ALLOC_TYPE_DMAR; |
| info.devid = id; |
| info.hwirq = id; |
| info.data = arg; |
| |
| return irq_domain_alloc_irqs(domain, 1, node, &info); |
| } |
| |
| void dmar_free_hwirq(int irq) |
| { |
| irq_domain_free_irqs(irq, 1); |
| } |
| #endif |