blob: b2003133deafb86e7b1421914746ec9fcb930fe1 [file] [log] [blame]
/*
* SPDX-License-Identifier: MIT
*
* Copyright © 2017 Intel Corporation
*/
#include <linux/prime_numbers.h>
#include "i915_selftest.h"
#include "gem/i915_gem_region.h"
#include "gem/i915_gem_lmem.h"
#include "gem/i915_gem_pm.h"
#include "gt/intel_gt.h"
#include "igt_gem_utils.h"
#include "mock_context.h"
#include "selftests/mock_drm.h"
#include "selftests/mock_gem_device.h"
#include "selftests/mock_region.h"
#include "selftests/i915_random.h"
static const unsigned int page_sizes[] = {
I915_GTT_PAGE_SIZE_2M,
I915_GTT_PAGE_SIZE_64K,
I915_GTT_PAGE_SIZE_4K,
};
static unsigned int get_largest_page_size(struct drm_i915_private *i915,
u64 rem)
{
int i;
for (i = 0; i < ARRAY_SIZE(page_sizes); ++i) {
unsigned int page_size = page_sizes[i];
if (HAS_PAGE_SIZES(i915, page_size) && rem >= page_size)
return page_size;
}
return 0;
}
static void huge_pages_free_pages(struct sg_table *st)
{
struct scatterlist *sg;
for (sg = st->sgl; sg; sg = __sg_next(sg)) {
if (sg_page(sg))
__free_pages(sg_page(sg), get_order(sg->length));
}
sg_free_table(st);
kfree(st);
}
static int get_huge_pages(struct drm_i915_gem_object *obj)
{
#define GFP (GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY)
unsigned int page_mask = obj->mm.page_mask;
struct sg_table *st;
struct scatterlist *sg;
unsigned int sg_page_sizes;
u64 rem;
st = kmalloc(sizeof(*st), GFP);
if (!st)
return -ENOMEM;
if (sg_alloc_table(st, obj->base.size >> PAGE_SHIFT, GFP)) {
kfree(st);
return -ENOMEM;
}
rem = obj->base.size;
sg = st->sgl;
st->nents = 0;
sg_page_sizes = 0;
/*
* Our goal here is simple, we want to greedily fill the object from
* largest to smallest page-size, while ensuring that we use *every*
* page-size as per the given page-mask.
*/
do {
unsigned int bit = ilog2(page_mask);
unsigned int page_size = BIT(bit);
int order = get_order(page_size);
do {
struct page *page;
GEM_BUG_ON(order >= MAX_ORDER);
page = alloc_pages(GFP | __GFP_ZERO, order);
if (!page)
goto err;
sg_set_page(sg, page, page_size, 0);
sg_page_sizes |= page_size;
st->nents++;
rem -= page_size;
if (!rem) {
sg_mark_end(sg);
break;
}
sg = __sg_next(sg);
} while ((rem - ((page_size-1) & page_mask)) >= page_size);
page_mask &= (page_size-1);
} while (page_mask);
if (i915_gem_gtt_prepare_pages(obj, st))
goto err;
GEM_BUG_ON(sg_page_sizes != obj->mm.page_mask);
__i915_gem_object_set_pages(obj, st, sg_page_sizes);
return 0;
err:
sg_set_page(sg, NULL, 0, 0);
sg_mark_end(sg);
huge_pages_free_pages(st);
return -ENOMEM;
}
static void put_huge_pages(struct drm_i915_gem_object *obj,
struct sg_table *pages)
{
i915_gem_gtt_finish_pages(obj, pages);
huge_pages_free_pages(pages);
obj->mm.dirty = false;
__start_cpu_write(obj);
}
static const struct drm_i915_gem_object_ops huge_page_ops = {
.name = "huge-gem",
.flags = I915_GEM_OBJECT_IS_SHRINKABLE,
.get_pages = get_huge_pages,
.put_pages = put_huge_pages,
};
static struct drm_i915_gem_object *
huge_pages_object(struct drm_i915_private *i915,
u64 size,
unsigned int page_mask)
{
static struct lock_class_key lock_class;
struct drm_i915_gem_object *obj;
unsigned int cache_level;
GEM_BUG_ON(!size);
GEM_BUG_ON(!IS_ALIGNED(size, BIT(__ffs(page_mask))));
if (size >> PAGE_SHIFT > INT_MAX)
return ERR_PTR(-E2BIG);
if (overflows_type(size, obj->base.size))
return ERR_PTR(-E2BIG);
obj = i915_gem_object_alloc();
if (!obj)
return ERR_PTR(-ENOMEM);
drm_gem_private_object_init(&i915->drm, &obj->base, size);
i915_gem_object_init(obj, &huge_page_ops, &lock_class, 0);
obj->mem_flags |= I915_BO_FLAG_STRUCT_PAGE;
i915_gem_object_set_volatile(obj);
obj->write_domain = I915_GEM_DOMAIN_CPU;
obj->read_domains = I915_GEM_DOMAIN_CPU;
cache_level = HAS_LLC(i915) ? I915_CACHE_LLC : I915_CACHE_NONE;
i915_gem_object_set_cache_coherency(obj, cache_level);
obj->mm.page_mask = page_mask;
return obj;
}
static int fake_get_huge_pages(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *i915 = to_i915(obj->base.dev);
const u64 max_len = rounddown_pow_of_two(UINT_MAX);
struct sg_table *st;
struct scatterlist *sg;
unsigned int sg_page_sizes;
u64 rem;
st = kmalloc(sizeof(*st), GFP);
if (!st)
return -ENOMEM;
if (sg_alloc_table(st, obj->base.size >> PAGE_SHIFT, GFP)) {
kfree(st);
return -ENOMEM;
}
/* Use optimal page sized chunks to fill in the sg table */
rem = obj->base.size;
sg = st->sgl;
st->nents = 0;
sg_page_sizes = 0;
do {
unsigned int page_size = get_largest_page_size(i915, rem);
unsigned int len = min(page_size * div_u64(rem, page_size),
max_len);
GEM_BUG_ON(!page_size);
sg->offset = 0;
sg->length = len;
sg_dma_len(sg) = len;
sg_dma_address(sg) = page_size;
sg_page_sizes |= len;
st->nents++;
rem -= len;
if (!rem) {
sg_mark_end(sg);
break;
}
sg = sg_next(sg);
} while (1);
i915_sg_trim(st);
__i915_gem_object_set_pages(obj, st, sg_page_sizes);
return 0;
}
static int fake_get_huge_pages_single(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *i915 = to_i915(obj->base.dev);
struct sg_table *st;
struct scatterlist *sg;
unsigned int page_size;
st = kmalloc(sizeof(*st), GFP);
if (!st)
return -ENOMEM;
if (sg_alloc_table(st, 1, GFP)) {
kfree(st);
return -ENOMEM;
}
sg = st->sgl;
st->nents = 1;
page_size = get_largest_page_size(i915, obj->base.size);
GEM_BUG_ON(!page_size);
sg->offset = 0;
sg->length = obj->base.size;
sg_dma_len(sg) = obj->base.size;
sg_dma_address(sg) = page_size;
__i915_gem_object_set_pages(obj, st, sg->length);
return 0;
#undef GFP
}
static void fake_free_huge_pages(struct drm_i915_gem_object *obj,
struct sg_table *pages)
{
sg_free_table(pages);
kfree(pages);
}
static void fake_put_huge_pages(struct drm_i915_gem_object *obj,
struct sg_table *pages)
{
fake_free_huge_pages(obj, pages);
obj->mm.dirty = false;
}
static const struct drm_i915_gem_object_ops fake_ops = {
.name = "fake-gem",
.flags = I915_GEM_OBJECT_IS_SHRINKABLE,
.get_pages = fake_get_huge_pages,
.put_pages = fake_put_huge_pages,
};
static const struct drm_i915_gem_object_ops fake_ops_single = {
.name = "fake-gem",
.flags = I915_GEM_OBJECT_IS_SHRINKABLE,
.get_pages = fake_get_huge_pages_single,
.put_pages = fake_put_huge_pages,
};
static struct drm_i915_gem_object *
fake_huge_pages_object(struct drm_i915_private *i915, u64 size, bool single)
{
static struct lock_class_key lock_class;
struct drm_i915_gem_object *obj;
GEM_BUG_ON(!size);
GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
if (size >> PAGE_SHIFT > UINT_MAX)
return ERR_PTR(-E2BIG);
if (overflows_type(size, obj->base.size))
return ERR_PTR(-E2BIG);
obj = i915_gem_object_alloc();
if (!obj)
return ERR_PTR(-ENOMEM);
drm_gem_private_object_init(&i915->drm, &obj->base, size);
if (single)
i915_gem_object_init(obj, &fake_ops_single, &lock_class, 0);
else
i915_gem_object_init(obj, &fake_ops, &lock_class, 0);
i915_gem_object_set_volatile(obj);
obj->write_domain = I915_GEM_DOMAIN_CPU;
obj->read_domains = I915_GEM_DOMAIN_CPU;
obj->cache_level = I915_CACHE_NONE;
return obj;
}
static int igt_check_page_sizes(struct i915_vma *vma)
{
struct drm_i915_private *i915 = vma->vm->i915;
unsigned int supported = INTEL_INFO(i915)->page_sizes;
struct drm_i915_gem_object *obj = vma->obj;
int err;
/* We have to wait for the async bind to complete before our asserts */
err = i915_vma_sync(vma);
if (err)
return err;
if (!HAS_PAGE_SIZES(i915, vma->page_sizes.sg)) {
pr_err("unsupported page_sizes.sg=%u, supported=%u\n",
vma->page_sizes.sg & ~supported, supported);
err = -EINVAL;
}
if (!HAS_PAGE_SIZES(i915, vma->page_sizes.gtt)) {
pr_err("unsupported page_sizes.gtt=%u, supported=%u\n",
vma->page_sizes.gtt & ~supported, supported);
err = -EINVAL;
}
if (vma->page_sizes.phys != obj->mm.page_sizes.phys) {
pr_err("vma->page_sizes.phys(%u) != obj->mm.page_sizes.phys(%u)\n",
vma->page_sizes.phys, obj->mm.page_sizes.phys);
err = -EINVAL;
}
if (vma->page_sizes.sg != obj->mm.page_sizes.sg) {
pr_err("vma->page_sizes.sg(%u) != obj->mm.page_sizes.sg(%u)\n",
vma->page_sizes.sg, obj->mm.page_sizes.sg);
err = -EINVAL;
}
/*
* The dma-api is like a box of chocolates when it comes to the
* alignment of dma addresses, however for LMEM we have total control
* and so can guarantee alignment, likewise when we allocate our blocks
* they should appear in descending order, and if we know that we align
* to the largest page size for the GTT address, we should be able to
* assert that if we see 2M physical pages then we should also get 2M
* GTT pages. If we don't then something might be wrong in our
* construction of the backing pages.
*
* Maintaining alignment is required to utilise huge pages in the ppGGT.
*/
if (i915_gem_object_is_lmem(obj) &&
IS_ALIGNED(vma->node.start, SZ_2M) &&
vma->page_sizes.sg & SZ_2M &&
vma->page_sizes.gtt < SZ_2M) {
pr_err("gtt pages mismatch for LMEM, expected 2M GTT pages, sg(%u), gtt(%u)\n",
vma->page_sizes.sg, vma->page_sizes.gtt);
err = -EINVAL;
}
if (obj->mm.page_sizes.gtt) {
pr_err("obj->page_sizes.gtt(%u) should never be set\n",
obj->mm.page_sizes.gtt);
err = -EINVAL;
}
return err;
}
static int igt_mock_exhaust_device_supported_pages(void *arg)
{
struct i915_ppgtt *ppgtt = arg;
struct drm_i915_private *i915 = ppgtt->vm.i915;
unsigned int saved_mask = INTEL_INFO(i915)->page_sizes;
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
int i, j, single;
int err;
/*
* Sanity check creating objects with every valid page support
* combination for our mock device.
*/
for (i = 1; i < BIT(ARRAY_SIZE(page_sizes)); i++) {
unsigned int combination = SZ_4K; /* Required for ppGTT */
for (j = 0; j < ARRAY_SIZE(page_sizes); j++) {
if (i & BIT(j))
combination |= page_sizes[j];
}
mkwrite_device_info(i915)->page_sizes = combination;
for (single = 0; single <= 1; ++single) {
obj = fake_huge_pages_object(i915, combination, !!single);
if (IS_ERR(obj)) {
err = PTR_ERR(obj);
goto out_device;
}
if (obj->base.size != combination) {
pr_err("obj->base.size=%zu, expected=%u\n",
obj->base.size, combination);
err = -EINVAL;
goto out_put;
}
vma = i915_vma_instance(obj, &ppgtt->vm, NULL);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto out_put;
}
err = i915_vma_pin(vma, 0, 0, PIN_USER);
if (err)
goto out_put;
err = igt_check_page_sizes(vma);
if (vma->page_sizes.sg != combination) {
pr_err("page_sizes.sg=%u, expected=%u\n",
vma->page_sizes.sg, combination);
err = -EINVAL;
}
i915_vma_unpin(vma);
i915_gem_object_put(obj);
if (err)
goto out_device;
}
}
goto out_device;
out_put:
i915_gem_object_put(obj);
out_device:
mkwrite_device_info(i915)->page_sizes = saved_mask;
return err;
}
static int igt_mock_memory_region_huge_pages(void *arg)
{
const unsigned int flags[] = { 0, I915_BO_ALLOC_CONTIGUOUS };
struct i915_ppgtt *ppgtt = arg;
struct drm_i915_private *i915 = ppgtt->vm.i915;
unsigned long supported = INTEL_INFO(i915)->page_sizes;
struct intel_memory_region *mem;
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
int bit;
int err = 0;
mem = mock_region_create(i915, 0, SZ_2G, I915_GTT_PAGE_SIZE_4K, 0);
if (IS_ERR(mem)) {
pr_err("%s failed to create memory region\n", __func__);
return PTR_ERR(mem);
}
for_each_set_bit(bit, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
unsigned int page_size = BIT(bit);
resource_size_t phys;
int i;
for (i = 0; i < ARRAY_SIZE(flags); ++i) {
obj = i915_gem_object_create_region(mem,
page_size, page_size,
flags[i]);
if (IS_ERR(obj)) {
err = PTR_ERR(obj);
goto out_region;
}
vma = i915_vma_instance(obj, &ppgtt->vm, NULL);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto out_put;
}
err = i915_vma_pin(vma, 0, 0, PIN_USER);
if (err)
goto out_put;
err = igt_check_page_sizes(vma);
if (err)
goto out_unpin;
phys = i915_gem_object_get_dma_address(obj, 0);
if (!IS_ALIGNED(phys, page_size)) {
pr_err("%s addr misaligned(%pa) page_size=%u\n",
__func__, &phys, page_size);
err = -EINVAL;
goto out_unpin;
}
if (vma->page_sizes.gtt != page_size) {
pr_err("%s page_sizes.gtt=%u, expected=%u\n",
__func__, vma->page_sizes.gtt,
page_size);
err = -EINVAL;
goto out_unpin;
}
i915_vma_unpin(vma);
__i915_gem_object_put_pages(obj);
i915_gem_object_put(obj);
}
}
goto out_region;
out_unpin:
i915_vma_unpin(vma);
out_put:
i915_gem_object_put(obj);
out_region:
intel_memory_region_put(mem);
return err;
}
static int igt_mock_ppgtt_misaligned_dma(void *arg)
{
struct i915_ppgtt *ppgtt = arg;
struct drm_i915_private *i915 = ppgtt->vm.i915;
unsigned long supported = INTEL_INFO(i915)->page_sizes;
struct drm_i915_gem_object *obj;
int bit;
int err;
/*
* Sanity check dma misalignment for huge pages -- the dma addresses we
* insert into the paging structures need to always respect the page
* size alignment.
*/
bit = ilog2(I915_GTT_PAGE_SIZE_64K);
for_each_set_bit_from(bit, &supported,
ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
IGT_TIMEOUT(end_time);
unsigned int page_size = BIT(bit);
unsigned int flags = PIN_USER | PIN_OFFSET_FIXED;
unsigned int offset;
unsigned int size =
round_up(page_size, I915_GTT_PAGE_SIZE_2M) << 1;
struct i915_vma *vma;
obj = fake_huge_pages_object(i915, size, true);
if (IS_ERR(obj))
return PTR_ERR(obj);
if (obj->base.size != size) {
pr_err("obj->base.size=%zu, expected=%u\n",
obj->base.size, size);
err = -EINVAL;
goto out_put;
}
err = i915_gem_object_pin_pages_unlocked(obj);
if (err)
goto out_put;
/* Force the page size for this object */
obj->mm.page_sizes.sg = page_size;
vma = i915_vma_instance(obj, &ppgtt->vm, NULL);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto out_unpin;
}
err = i915_vma_pin(vma, 0, 0, flags);
if (err)
goto out_unpin;
err = igt_check_page_sizes(vma);
if (vma->page_sizes.gtt != page_size) {
pr_err("page_sizes.gtt=%u, expected %u\n",
vma->page_sizes.gtt, page_size);
err = -EINVAL;
}
i915_vma_unpin(vma);
if (err)
goto out_unpin;
/*
* Try all the other valid offsets until the next
* boundary -- should always fall back to using 4K
* pages.
*/
for (offset = 4096; offset < page_size; offset += 4096) {
err = i915_vma_unbind(vma);
if (err)
goto out_unpin;
err = i915_vma_pin(vma, 0, 0, flags | offset);
if (err)
goto out_unpin;
err = igt_check_page_sizes(vma);
if (vma->page_sizes.gtt != I915_GTT_PAGE_SIZE_4K) {
pr_err("page_sizes.gtt=%u, expected %llu\n",
vma->page_sizes.gtt, I915_GTT_PAGE_SIZE_4K);
err = -EINVAL;
}
i915_vma_unpin(vma);
if (err)
goto out_unpin;
if (igt_timeout(end_time,
"%s timed out at offset %x with page-size %x\n",
__func__, offset, page_size))
break;
}
i915_gem_object_lock(obj, NULL);
i915_gem_object_unpin_pages(obj);
__i915_gem_object_put_pages(obj);
i915_gem_object_unlock(obj);
i915_gem_object_put(obj);
}
return 0;
out_unpin:
i915_gem_object_lock(obj, NULL);
i915_gem_object_unpin_pages(obj);
i915_gem_object_unlock(obj);
out_put:
i915_gem_object_put(obj);
return err;
}
static void close_object_list(struct list_head *objects,
struct i915_ppgtt *ppgtt)
{
struct drm_i915_gem_object *obj, *on;
list_for_each_entry_safe(obj, on, objects, st_link) {
list_del(&obj->st_link);
i915_gem_object_lock(obj, NULL);
i915_gem_object_unpin_pages(obj);
__i915_gem_object_put_pages(obj);
i915_gem_object_unlock(obj);
i915_gem_object_put(obj);
}
}
static int igt_mock_ppgtt_huge_fill(void *arg)
{
struct i915_ppgtt *ppgtt = arg;
struct drm_i915_private *i915 = ppgtt->vm.i915;
unsigned long max_pages = ppgtt->vm.total >> PAGE_SHIFT;
unsigned long page_num;
bool single = false;
LIST_HEAD(objects);
IGT_TIMEOUT(end_time);
int err = -ENODEV;
for_each_prime_number_from(page_num, 1, max_pages) {
struct drm_i915_gem_object *obj;
u64 size = page_num << PAGE_SHIFT;
struct i915_vma *vma;
unsigned int expected_gtt = 0;
int i;
obj = fake_huge_pages_object(i915, size, single);
if (IS_ERR(obj)) {
err = PTR_ERR(obj);
break;
}
if (obj->base.size != size) {
pr_err("obj->base.size=%zd, expected=%llu\n",
obj->base.size, size);
i915_gem_object_put(obj);
err = -EINVAL;
break;
}
err = i915_gem_object_pin_pages_unlocked(obj);
if (err) {
i915_gem_object_put(obj);
break;
}
list_add(&obj->st_link, &objects);
vma = i915_vma_instance(obj, &ppgtt->vm, NULL);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
break;
}
err = i915_vma_pin(vma, 0, 0, PIN_USER);
if (err)
break;
err = igt_check_page_sizes(vma);
if (err) {
i915_vma_unpin(vma);
break;
}
/*
* Figure out the expected gtt page size knowing that we go from
* largest to smallest page size sg chunks, and that we align to
* the largest page size.
*/
for (i = 0; i < ARRAY_SIZE(page_sizes); ++i) {
unsigned int page_size = page_sizes[i];
if (HAS_PAGE_SIZES(i915, page_size) &&
size >= page_size) {
expected_gtt |= page_size;
size &= page_size-1;
}
}
GEM_BUG_ON(!expected_gtt);
GEM_BUG_ON(size);
if (expected_gtt & I915_GTT_PAGE_SIZE_4K)
expected_gtt &= ~I915_GTT_PAGE_SIZE_64K;
i915_vma_unpin(vma);
if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K) {
if (!IS_ALIGNED(vma->node.start,
I915_GTT_PAGE_SIZE_2M)) {
pr_err("node.start(%llx) not aligned to 2M\n",
vma->node.start);
err = -EINVAL;
break;
}
if (!IS_ALIGNED(vma->node.size,
I915_GTT_PAGE_SIZE_2M)) {
pr_err("node.size(%llx) not aligned to 2M\n",
vma->node.size);
err = -EINVAL;
break;
}
}
if (vma->page_sizes.gtt != expected_gtt) {
pr_err("gtt=%u, expected=%u, size=%zd, single=%s\n",
vma->page_sizes.gtt, expected_gtt,
obj->base.size, yesno(!!single));
err = -EINVAL;
break;
}
if (igt_timeout(end_time,
"%s timed out at size %zd\n",
__func__, obj->base.size))
break;
single = !single;
}
close_object_list(&objects, ppgtt);
if (err == -ENOMEM || err == -ENOSPC)
err = 0;
return err;
}
static int igt_mock_ppgtt_64K(void *arg)
{
struct i915_ppgtt *ppgtt = arg;
struct drm_i915_private *i915 = ppgtt->vm.i915;
struct drm_i915_gem_object *obj;
const struct object_info {
unsigned int size;
unsigned int gtt;
unsigned int offset;
} objects[] = {
/* Cases with forced padding/alignment */
{
.size = SZ_64K,
.gtt = I915_GTT_PAGE_SIZE_64K,
.offset = 0,
},
{
.size = SZ_64K + SZ_4K,
.gtt = I915_GTT_PAGE_SIZE_4K,
.offset = 0,
},
{
.size = SZ_64K - SZ_4K,
.gtt = I915_GTT_PAGE_SIZE_4K,
.offset = 0,
},
{
.size = SZ_2M,
.gtt = I915_GTT_PAGE_SIZE_64K,
.offset = 0,
},
{
.size = SZ_2M - SZ_4K,
.gtt = I915_GTT_PAGE_SIZE_4K,
.offset = 0,
},
{
.size = SZ_2M + SZ_4K,
.gtt = I915_GTT_PAGE_SIZE_64K | I915_GTT_PAGE_SIZE_4K,
.offset = 0,
},
{
.size = SZ_2M + SZ_64K,
.gtt = I915_GTT_PAGE_SIZE_64K,
.offset = 0,
},
{
.size = SZ_2M - SZ_64K,
.gtt = I915_GTT_PAGE_SIZE_64K,
.offset = 0,
},
/* Try without any forced padding/alignment */
{
.size = SZ_64K,
.offset = SZ_2M,
.gtt = I915_GTT_PAGE_SIZE_4K,
},
{
.size = SZ_128K,
.offset = SZ_2M - SZ_64K,
.gtt = I915_GTT_PAGE_SIZE_4K,
},
};
struct i915_vma *vma;
int i, single;
int err;
/*
* Sanity check some of the trickiness with 64K pages -- either we can
* safely mark the whole page-table(2M block) as 64K, or we have to
* always fallback to 4K.
*/
if (!HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K))
return 0;
for (i = 0; i < ARRAY_SIZE(objects); ++i) {
unsigned int size = objects[i].size;
unsigned int expected_gtt = objects[i].gtt;
unsigned int offset = objects[i].offset;
unsigned int flags = PIN_USER;
for (single = 0; single <= 1; single++) {
obj = fake_huge_pages_object(i915, size, !!single);
if (IS_ERR(obj))
return PTR_ERR(obj);
err = i915_gem_object_pin_pages_unlocked(obj);
if (err)
goto out_object_put;
/*
* Disable 2M pages -- We only want to use 64K/4K pages
* for this test.
*/
obj->mm.page_sizes.sg &= ~I915_GTT_PAGE_SIZE_2M;
vma = i915_vma_instance(obj, &ppgtt->vm, NULL);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto out_object_unpin;
}
if (offset)
flags |= PIN_OFFSET_FIXED | offset;
err = i915_vma_pin(vma, 0, 0, flags);
if (err)
goto out_object_unpin;
err = igt_check_page_sizes(vma);
if (err)
goto out_vma_unpin;
if (!offset && vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K) {
if (!IS_ALIGNED(vma->node.start,
I915_GTT_PAGE_SIZE_2M)) {
pr_err("node.start(%llx) not aligned to 2M\n",
vma->node.start);
err = -EINVAL;
goto out_vma_unpin;
}
if (!IS_ALIGNED(vma->node.size,
I915_GTT_PAGE_SIZE_2M)) {
pr_err("node.size(%llx) not aligned to 2M\n",
vma->node.size);
err = -EINVAL;
goto out_vma_unpin;
}
}
if (vma->page_sizes.gtt != expected_gtt) {
pr_err("gtt=%u, expected=%u, i=%d, single=%s\n",
vma->page_sizes.gtt, expected_gtt, i,
yesno(!!single));
err = -EINVAL;
goto out_vma_unpin;
}
i915_vma_unpin(vma);
i915_gem_object_lock(obj, NULL);
i915_gem_object_unpin_pages(obj);
__i915_gem_object_put_pages(obj);
i915_gem_object_unlock(obj);
i915_gem_object_put(obj);
}
}
return 0;
out_vma_unpin:
i915_vma_unpin(vma);
out_object_unpin:
i915_gem_object_lock(obj, NULL);
i915_gem_object_unpin_pages(obj);
i915_gem_object_unlock(obj);
out_object_put:
i915_gem_object_put(obj);
return err;
}
static int gpu_write(struct intel_context *ce,
struct i915_vma *vma,
u32 dw,
u32 val)
{
int err;
i915_gem_object_lock(vma->obj, NULL);
err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
i915_gem_object_unlock(vma->obj);
if (err)
return err;
return igt_gpu_fill_dw(ce, vma, dw * sizeof(u32),
vma->size >> PAGE_SHIFT, val);
}
static int
__cpu_check_shmem(struct drm_i915_gem_object *obj, u32 dword, u32 val)
{
unsigned int needs_flush;
unsigned long n;
int err;
i915_gem_object_lock(obj, NULL);
err = i915_gem_object_prepare_read(obj, &needs_flush);
if (err)
goto err_unlock;
for (n = 0; n < obj->base.size >> PAGE_SHIFT; ++n) {
u32 *ptr = kmap_atomic(i915_gem_object_get_page(obj, n));
if (needs_flush & CLFLUSH_BEFORE)
drm_clflush_virt_range(ptr, PAGE_SIZE);
if (ptr[dword] != val) {
pr_err("n=%lu ptr[%u]=%u, val=%u\n",
n, dword, ptr[dword], val);
kunmap_atomic(ptr);
err = -EINVAL;
break;
}
kunmap_atomic(ptr);
}
i915_gem_object_finish_access(obj);
err_unlock:
i915_gem_object_unlock(obj);
return err;
}
static int __cpu_check_vmap(struct drm_i915_gem_object *obj, u32 dword, u32 val)
{
unsigned long n = obj->base.size >> PAGE_SHIFT;
u32 *ptr;
int err;
err = i915_gem_object_wait(obj, 0, MAX_SCHEDULE_TIMEOUT);
if (err)
return err;
ptr = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC);
if (IS_ERR(ptr))
return PTR_ERR(ptr);
ptr += dword;
while (n--) {
if (*ptr != val) {
pr_err("base[%u]=%08x, val=%08x\n",
dword, *ptr, val);
err = -EINVAL;
break;
}
ptr += PAGE_SIZE / sizeof(*ptr);
}
i915_gem_object_unpin_map(obj);
return err;
}
static int cpu_check(struct drm_i915_gem_object *obj, u32 dword, u32 val)
{
if (i915_gem_object_has_struct_page(obj))
return __cpu_check_shmem(obj, dword, val);
else
return __cpu_check_vmap(obj, dword, val);
}
static int __igt_write_huge(struct intel_context *ce,
struct drm_i915_gem_object *obj,
u64 size, u64 offset,
u32 dword, u32 val)
{
unsigned int flags = PIN_USER | PIN_OFFSET_FIXED;
struct i915_vma *vma;
int err;
vma = i915_vma_instance(obj, ce->vm, NULL);
if (IS_ERR(vma))
return PTR_ERR(vma);
err = i915_vma_unbind(vma);
if (err)
return err;
err = i915_vma_pin(vma, size, 0, flags | offset);
if (err) {
/*
* The ggtt may have some pages reserved so
* refrain from erroring out.
*/
if (err == -ENOSPC && i915_is_ggtt(ce->vm))
err = 0;
return err;
}
err = igt_check_page_sizes(vma);
if (err)
goto out_vma_unpin;
err = gpu_write(ce, vma, dword, val);
if (err) {
pr_err("gpu-write failed at offset=%llx\n", offset);
goto out_vma_unpin;
}
err = cpu_check(obj, dword, val);
if (err) {
pr_err("cpu-check failed at offset=%llx\n", offset);
goto out_vma_unpin;
}
out_vma_unpin:
i915_vma_unpin(vma);
return err;
}
static int igt_write_huge(struct i915_gem_context *ctx,
struct drm_i915_gem_object *obj)
{
struct i915_gem_engines *engines;
struct i915_gem_engines_iter it;
struct intel_context *ce;
I915_RND_STATE(prng);
IGT_TIMEOUT(end_time);
unsigned int max_page_size;
unsigned int count;
u64 max;
u64 num;
u64 size;
int *order;
int i, n;
int err = 0;
GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
size = obj->base.size;
if (obj->mm.page_sizes.sg & I915_GTT_PAGE_SIZE_64K)
size = round_up(size, I915_GTT_PAGE_SIZE_2M);
n = 0;
count = 0;
max = U64_MAX;
for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
count++;
if (!intel_engine_can_store_dword(ce->engine))
continue;
max = min(max, ce->vm->total);
n++;
}
i915_gem_context_unlock_engines(ctx);
if (!n)
return 0;
/*
* To keep things interesting when alternating between engines in our
* randomized order, lets also make feeding to the same engine a few
* times in succession a possibility by enlarging the permutation array.
*/
order = i915_random_order(count * count, &prng);
if (!order)
return -ENOMEM;
max_page_size = rounddown_pow_of_two(obj->mm.page_sizes.sg);
max = div_u64(max - size, max_page_size);
/*
* Try various offsets in an ascending/descending fashion until we
* timeout -- we want to avoid issues hidden by effectively always using
* offset = 0.
*/
i = 0;
engines = i915_gem_context_lock_engines(ctx);
for_each_prime_number_from(num, 0, max) {
u64 offset_low = num * max_page_size;
u64 offset_high = (max - num) * max_page_size;
u32 dword = offset_in_page(num) / 4;
struct intel_context *ce;
ce = engines->engines[order[i] % engines->num_engines];
i = (i + 1) % (count * count);
if (!ce || !intel_engine_can_store_dword(ce->engine))
continue;
/*
* In order to utilize 64K pages we need to both pad the vma
* size and ensure the vma offset is at the start of the pt
* boundary, however to improve coverage we opt for testing both
* aligned and unaligned offsets.
*/
if (obj->mm.page_sizes.sg & I915_GTT_PAGE_SIZE_64K)
offset_low = round_down(offset_low,
I915_GTT_PAGE_SIZE_2M);
err = __igt_write_huge(ce, obj, size, offset_low,
dword, num + 1);
if (err)
break;
err = __igt_write_huge(ce, obj, size, offset_high,
dword, num + 1);
if (err)
break;
if (igt_timeout(end_time,
"%s timed out on %s, offset_low=%llx offset_high=%llx, max_page_size=%x\n",
__func__, ce->engine->name, offset_low, offset_high,
max_page_size))
break;
}
i915_gem_context_unlock_engines(ctx);
kfree(order);
return err;
}
typedef struct drm_i915_gem_object *
(*igt_create_fn)(struct drm_i915_private *i915, u32 size, u32 flags);
static inline bool igt_can_allocate_thp(struct drm_i915_private *i915)
{
return i915->mm.gemfs && has_transparent_hugepage();
}
static struct drm_i915_gem_object *
igt_create_shmem(struct drm_i915_private *i915, u32 size, u32 flags)
{
if (!igt_can_allocate_thp(i915)) {
pr_info("%s missing THP support, skipping\n", __func__);
return ERR_PTR(-ENODEV);
}
return i915_gem_object_create_shmem(i915, size);
}
static struct drm_i915_gem_object *
igt_create_internal(struct drm_i915_private *i915, u32 size, u32 flags)
{
return i915_gem_object_create_internal(i915, size);
}
static struct drm_i915_gem_object *
igt_create_system(struct drm_i915_private *i915, u32 size, u32 flags)
{
return huge_pages_object(i915, size, size);
}
static struct drm_i915_gem_object *
igt_create_local(struct drm_i915_private *i915, u32 size, u32 flags)
{
return i915_gem_object_create_lmem(i915, size, flags);
}
static u32 igt_random_size(struct rnd_state *prng,
u32 min_page_size,
u32 max_page_size)
{
u64 mask;
u32 size;
GEM_BUG_ON(!is_power_of_2(min_page_size));
GEM_BUG_ON(!is_power_of_2(max_page_size));
GEM_BUG_ON(min_page_size < PAGE_SIZE);
GEM_BUG_ON(min_page_size > max_page_size);
mask = ((max_page_size << 1ULL) - 1) & PAGE_MASK;
size = prandom_u32_state(prng) & mask;
if (size < min_page_size)
size |= min_page_size;
return size;
}
static int igt_ppgtt_smoke_huge(void *arg)
{
struct i915_gem_context *ctx = arg;
struct drm_i915_private *i915 = ctx->i915;
struct drm_i915_gem_object *obj;
I915_RND_STATE(prng);
struct {
igt_create_fn fn;
u32 min;
u32 max;
} backends[] = {
{ igt_create_internal, SZ_64K, SZ_2M, },
{ igt_create_shmem, SZ_64K, SZ_32M, },
{ igt_create_local, SZ_64K, SZ_1G, },
};
int err;
int i;
/*
* Sanity check that the HW uses huge pages correctly through our
* various backends -- ensure that our writes land in the right place.
*/
for (i = 0; i < ARRAY_SIZE(backends); ++i) {
u32 min = backends[i].min;
u32 max = backends[i].max;
u32 size = max;
try_again:
size = igt_random_size(&prng, min, rounddown_pow_of_two(size));
obj = backends[i].fn(i915, size, 0);
if (IS_ERR(obj)) {
err = PTR_ERR(obj);
if (err == -E2BIG) {
size >>= 1;
goto try_again;
} else if (err == -ENODEV) {
err = 0;
continue;
}
return err;
}
err = i915_gem_object_pin_pages_unlocked(obj);
if (err) {
if (err == -ENXIO || err == -E2BIG) {
i915_gem_object_put(obj);
size >>= 1;
goto try_again;
}
goto out_put;
}
if (obj->mm.page_sizes.phys < min) {
pr_info("%s unable to allocate huge-page(s) with size=%u, i=%d\n",
__func__, size, i);
err = -ENOMEM;
goto out_unpin;
}
err = igt_write_huge(ctx, obj);
if (err) {
pr_err("%s write-huge failed with size=%u, i=%d\n",
__func__, size, i);
}
out_unpin:
i915_gem_object_lock(obj, NULL);
i915_gem_object_unpin_pages(obj);
__i915_gem_object_put_pages(obj);
i915_gem_object_unlock(obj);
out_put:
i915_gem_object_put(obj);
if (err == -ENOMEM || err == -ENXIO)
err = 0;
if (err)
break;
cond_resched();
}
return err;
}
static int igt_ppgtt_sanity_check(void *arg)
{
struct i915_gem_context *ctx = arg;
struct drm_i915_private *i915 = ctx->i915;
unsigned int supported = INTEL_INFO(i915)->page_sizes;
struct {
igt_create_fn fn;
unsigned int flags;
} backends[] = {
{ igt_create_system, 0, },
{ igt_create_local, 0, },
{ igt_create_local, I915_BO_ALLOC_CONTIGUOUS, },
};
struct {
u32 size;
u32 pages;
} combos[] = {
{ SZ_64K, SZ_64K },
{ SZ_2M, SZ_2M },
{ SZ_2M, SZ_64K },
{ SZ_2M - SZ_64K, SZ_64K },
{ SZ_2M - SZ_4K, SZ_64K | SZ_4K },
{ SZ_2M + SZ_4K, SZ_64K | SZ_4K },
{ SZ_2M + SZ_4K, SZ_2M | SZ_4K },
{ SZ_2M + SZ_64K, SZ_2M | SZ_64K },
};
int i, j;
int err;
if (supported == I915_GTT_PAGE_SIZE_4K)
return 0;
/*
* Sanity check that the HW behaves with a limited set of combinations.
* We already have a bunch of randomised testing, which should give us
* a decent amount of variation between runs, however we should keep
* this to limit the chances of introducing a temporary regression, by
* testing the most obvious cases that might make something blow up.
*/
for (i = 0; i < ARRAY_SIZE(backends); ++i) {
for (j = 0; j < ARRAY_SIZE(combos); ++j) {
struct drm_i915_gem_object *obj;
u32 size = combos[j].size;
u32 pages = combos[j].pages;
obj = backends[i].fn(i915, size, backends[i].flags);
if (IS_ERR(obj)) {
err = PTR_ERR(obj);
if (err == -ENODEV) {
pr_info("Device lacks local memory, skipping\n");
err = 0;
break;
}
return err;
}
err = i915_gem_object_pin_pages_unlocked(obj);
if (err) {
i915_gem_object_put(obj);
goto out;
}
GEM_BUG_ON(pages > obj->base.size);
pages = pages & supported;
if (pages)
obj->mm.page_sizes.sg = pages;
err = igt_write_huge(ctx, obj);
i915_gem_object_lock(obj, NULL);
i915_gem_object_unpin_pages(obj);
__i915_gem_object_put_pages(obj);
i915_gem_object_unlock(obj);
i915_gem_object_put(obj);
if (err) {
pr_err("%s write-huge failed with size=%u pages=%u i=%d, j=%d\n",
__func__, size, pages, i, j);
goto out;
}
}
cond_resched();
}
out:
if (err == -ENOMEM)
err = 0;
return err;
}
static int igt_tmpfs_fallback(void *arg)
{
struct i915_gem_context *ctx = arg;
struct drm_i915_private *i915 = ctx->i915;
struct vfsmount *gemfs = i915->mm.gemfs;
struct i915_address_space *vm = i915_gem_context_get_eb_vm(ctx);
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
u32 *vaddr;
int err = 0;
/*
* Make sure that we don't burst into a ball of flames upon falling back
* to tmpfs, which we rely on if on the off-chance we encouter a failure
* when setting up gemfs.
*/
i915->mm.gemfs = NULL;
obj = i915_gem_object_create_shmem(i915, PAGE_SIZE);
if (IS_ERR(obj)) {
err = PTR_ERR(obj);
goto out_restore;
}
vaddr = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WB);
if (IS_ERR(vaddr)) {
err = PTR_ERR(vaddr);
goto out_put;
}
*vaddr = 0xdeadbeaf;
__i915_gem_object_flush_map(obj, 0, 64);
i915_gem_object_unpin_map(obj);
vma = i915_vma_instance(obj, vm, NULL);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto out_put;
}
err = i915_vma_pin(vma, 0, 0, PIN_USER);
if (err)
goto out_put;
err = igt_check_page_sizes(vma);
i915_vma_unpin(vma);
out_put:
i915_gem_object_put(obj);
out_restore:
i915->mm.gemfs = gemfs;
i915_vm_put(vm);
return err;
}
static int igt_shrink_thp(void *arg)
{
struct i915_gem_context *ctx = arg;
struct drm_i915_private *i915 = ctx->i915;
struct i915_address_space *vm = i915_gem_context_get_eb_vm(ctx);
struct drm_i915_gem_object *obj;
struct i915_gem_engines_iter it;
struct intel_context *ce;
struct i915_vma *vma;
unsigned int flags = PIN_USER;
unsigned int n;
bool should_swap;
int err = 0;
/*
* Sanity check shrinking huge-paged object -- make sure nothing blows
* up.
*/
if (!igt_can_allocate_thp(i915)) {
pr_info("missing THP support, skipping\n");
goto out_vm;
}
obj = i915_gem_object_create_shmem(i915, SZ_2M);
if (IS_ERR(obj)) {
err = PTR_ERR(obj);
goto out_vm;
}
vma = i915_vma_instance(obj, vm, NULL);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto out_put;
}
err = i915_vma_pin(vma, 0, 0, flags);
if (err)
goto out_put;
if (obj->mm.page_sizes.phys < I915_GTT_PAGE_SIZE_2M) {
pr_info("failed to allocate THP, finishing test early\n");
goto out_unpin;
}
err = igt_check_page_sizes(vma);
if (err)
goto out_unpin;
n = 0;
for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
if (!intel_engine_can_store_dword(ce->engine))
continue;
err = gpu_write(ce, vma, n++, 0xdeadbeaf);
if (err)
break;
}
i915_gem_context_unlock_engines(ctx);
/*
* Nuke everything *before* we unpin the pages so we can be reasonably
* sure that when later checking get_nr_swap_pages() that some random
* leftover object doesn't steal the remaining swap space.
*/
i915_gem_shrink(NULL, i915, -1UL, NULL,
I915_SHRINK_BOUND |
I915_SHRINK_UNBOUND |
I915_SHRINK_ACTIVE);
i915_vma_unpin(vma);
if (err)
goto out_put;
/*
* Now that the pages are *unpinned* shrinking should invoke
* shmem to truncate our pages, if we have available swap.
*/
should_swap = get_nr_swap_pages() > 0;
i915_gem_shrink(NULL, i915, -1UL, NULL,
I915_SHRINK_BOUND |
I915_SHRINK_UNBOUND |
I915_SHRINK_ACTIVE |
I915_SHRINK_WRITEBACK);
if (should_swap == i915_gem_object_has_pages(obj)) {
pr_err("unexpected pages mismatch, should_swap=%s\n",
yesno(should_swap));
err = -EINVAL;
goto out_put;
}
if (should_swap == (obj->mm.page_sizes.sg || obj->mm.page_sizes.phys)) {
pr_err("unexpected residual page-size bits, should_swap=%s\n",
yesno(should_swap));
err = -EINVAL;
goto out_put;
}
err = i915_vma_pin(vma, 0, 0, flags);
if (err)
goto out_put;
while (n--) {
err = cpu_check(obj, n, 0xdeadbeaf);
if (err)
break;
}
out_unpin:
i915_vma_unpin(vma);
out_put:
i915_gem_object_put(obj);
out_vm:
i915_vm_put(vm);
return err;
}
int i915_gem_huge_page_mock_selftests(void)
{
static const struct i915_subtest tests[] = {
SUBTEST(igt_mock_exhaust_device_supported_pages),
SUBTEST(igt_mock_memory_region_huge_pages),
SUBTEST(igt_mock_ppgtt_misaligned_dma),
SUBTEST(igt_mock_ppgtt_huge_fill),
SUBTEST(igt_mock_ppgtt_64K),
};
struct drm_i915_private *dev_priv;
struct i915_ppgtt *ppgtt;
int err;
dev_priv = mock_gem_device();
if (!dev_priv)
return -ENOMEM;
/* Pretend to be a device which supports the 48b PPGTT */
mkwrite_device_info(dev_priv)->ppgtt_type = INTEL_PPGTT_FULL;
mkwrite_device_info(dev_priv)->ppgtt_size = 48;
ppgtt = i915_ppgtt_create(&dev_priv->gt, 0);
if (IS_ERR(ppgtt)) {
err = PTR_ERR(ppgtt);
goto out_unlock;
}
if (!i915_vm_is_4lvl(&ppgtt->vm)) {
pr_err("failed to create 48b PPGTT\n");
err = -EINVAL;
goto out_put;
}
/* If we were ever hit this then it's time to mock the 64K scratch */
if (!i915_vm_has_scratch_64K(&ppgtt->vm)) {
pr_err("PPGTT missing 64K scratch page\n");
err = -EINVAL;
goto out_put;
}
err = i915_subtests(tests, ppgtt);
out_put:
i915_vm_put(&ppgtt->vm);
out_unlock:
mock_destroy_device(dev_priv);
return err;
}
int i915_gem_huge_page_live_selftests(struct drm_i915_private *i915)
{
static const struct i915_subtest tests[] = {
SUBTEST(igt_shrink_thp),
SUBTEST(igt_tmpfs_fallback),
SUBTEST(igt_ppgtt_smoke_huge),
SUBTEST(igt_ppgtt_sanity_check),
};
struct i915_gem_context *ctx;
struct i915_address_space *vm;
struct file *file;
int err;
if (!HAS_PPGTT(i915)) {
pr_info("PPGTT not supported, skipping live-selftests\n");
return 0;
}
if (intel_gt_is_wedged(&i915->gt))
return 0;
file = mock_file(i915);
if (IS_ERR(file))
return PTR_ERR(file);
ctx = live_context(i915, file);
if (IS_ERR(ctx)) {
err = PTR_ERR(ctx);
goto out_file;
}
vm = ctx->vm;
if (vm)
WRITE_ONCE(vm->scrub_64K, true);
err = i915_subtests(tests, ctx);
out_file:
fput(file);
return err;
}