blob: e0cb7d0697a77171fba7190d1f6268415b399a11 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/* Copyright (C) 2018 Broadcom */
/**
* DOC: Broadcom V3D scheduling
*
* The shared DRM GPU scheduler is used to coordinate submitting jobs
* to the hardware. Each DRM fd (roughly a client process) gets its
* own scheduler entity, which will process jobs in order. The GPU
* scheduler will round-robin between clients to submit the next job.
*
* For simplicity, and in order to keep latency low for interactive
* jobs when bulk background jobs are queued up, we submit a new job
* to the HW only when it has completed the last one, instead of
* filling up the CT[01]Q FIFOs with jobs. Similarly, we use
* drm_sched_job_add_dependency() to manage the dependency between bin and
* render, instead of having the clients submit jobs using the HW's
* semaphores to interlock between them.
*/
#include <linux/kthread.h>
#include "v3d_drv.h"
#include "v3d_regs.h"
#include "v3d_trace.h"
static struct v3d_job *
to_v3d_job(struct drm_sched_job *sched_job)
{
return container_of(sched_job, struct v3d_job, base);
}
static struct v3d_bin_job *
to_bin_job(struct drm_sched_job *sched_job)
{
return container_of(sched_job, struct v3d_bin_job, base.base);
}
static struct v3d_render_job *
to_render_job(struct drm_sched_job *sched_job)
{
return container_of(sched_job, struct v3d_render_job, base.base);
}
static struct v3d_tfu_job *
to_tfu_job(struct drm_sched_job *sched_job)
{
return container_of(sched_job, struct v3d_tfu_job, base.base);
}
static struct v3d_csd_job *
to_csd_job(struct drm_sched_job *sched_job)
{
return container_of(sched_job, struct v3d_csd_job, base.base);
}
static void
v3d_sched_job_free(struct drm_sched_job *sched_job)
{
struct v3d_job *job = to_v3d_job(sched_job);
v3d_job_cleanup(job);
}
static void
v3d_switch_perfmon(struct v3d_dev *v3d, struct v3d_job *job)
{
if (job->perfmon != v3d->active_perfmon)
v3d_perfmon_stop(v3d, v3d->active_perfmon, true);
if (job->perfmon && v3d->active_perfmon != job->perfmon)
v3d_perfmon_start(v3d, job->perfmon);
}
static struct dma_fence *v3d_bin_job_run(struct drm_sched_job *sched_job)
{
struct v3d_bin_job *job = to_bin_job(sched_job);
struct v3d_dev *v3d = job->base.v3d;
struct drm_device *dev = &v3d->drm;
struct dma_fence *fence;
unsigned long irqflags;
if (unlikely(job->base.base.s_fence->finished.error))
return NULL;
/* Lock required around bin_job update vs
* v3d_overflow_mem_work().
*/
spin_lock_irqsave(&v3d->job_lock, irqflags);
v3d->bin_job = job;
/* Clear out the overflow allocation, so we don't
* reuse the overflow attached to a previous job.
*/
V3D_CORE_WRITE(0, V3D_PTB_BPOS, 0);
spin_unlock_irqrestore(&v3d->job_lock, irqflags);
v3d_invalidate_caches(v3d);
fence = v3d_fence_create(v3d, V3D_BIN);
if (IS_ERR(fence))
return NULL;
if (job->base.irq_fence)
dma_fence_put(job->base.irq_fence);
job->base.irq_fence = dma_fence_get(fence);
trace_v3d_submit_cl(dev, false, to_v3d_fence(fence)->seqno,
job->start, job->end);
v3d_switch_perfmon(v3d, &job->base);
/* Set the current and end address of the control list.
* Writing the end register is what starts the job.
*/
if (job->qma) {
V3D_CORE_WRITE(0, V3D_CLE_CT0QMA, job->qma);
V3D_CORE_WRITE(0, V3D_CLE_CT0QMS, job->qms);
}
if (job->qts) {
V3D_CORE_WRITE(0, V3D_CLE_CT0QTS,
V3D_CLE_CT0QTS_ENABLE |
job->qts);
}
V3D_CORE_WRITE(0, V3D_CLE_CT0QBA, job->start);
V3D_CORE_WRITE(0, V3D_CLE_CT0QEA, job->end);
return fence;
}
static struct dma_fence *v3d_render_job_run(struct drm_sched_job *sched_job)
{
struct v3d_render_job *job = to_render_job(sched_job);
struct v3d_dev *v3d = job->base.v3d;
struct drm_device *dev = &v3d->drm;
struct dma_fence *fence;
if (unlikely(job->base.base.s_fence->finished.error))
return NULL;
v3d->render_job = job;
/* Can we avoid this flush? We need to be careful of
* scheduling, though -- imagine job0 rendering to texture and
* job1 reading, and them being executed as bin0, bin1,
* render0, render1, so that render1's flush at bin time
* wasn't enough.
*/
v3d_invalidate_caches(v3d);
fence = v3d_fence_create(v3d, V3D_RENDER);
if (IS_ERR(fence))
return NULL;
if (job->base.irq_fence)
dma_fence_put(job->base.irq_fence);
job->base.irq_fence = dma_fence_get(fence);
trace_v3d_submit_cl(dev, true, to_v3d_fence(fence)->seqno,
job->start, job->end);
v3d_switch_perfmon(v3d, &job->base);
/* XXX: Set the QCFG */
/* Set the current and end address of the control list.
* Writing the end register is what starts the job.
*/
V3D_CORE_WRITE(0, V3D_CLE_CT1QBA, job->start);
V3D_CORE_WRITE(0, V3D_CLE_CT1QEA, job->end);
return fence;
}
static struct dma_fence *
v3d_tfu_job_run(struct drm_sched_job *sched_job)
{
struct v3d_tfu_job *job = to_tfu_job(sched_job);
struct v3d_dev *v3d = job->base.v3d;
struct drm_device *dev = &v3d->drm;
struct dma_fence *fence;
fence = v3d_fence_create(v3d, V3D_TFU);
if (IS_ERR(fence))
return NULL;
v3d->tfu_job = job;
if (job->base.irq_fence)
dma_fence_put(job->base.irq_fence);
job->base.irq_fence = dma_fence_get(fence);
trace_v3d_submit_tfu(dev, to_v3d_fence(fence)->seqno);
V3D_WRITE(V3D_TFU_IIA, job->args.iia);
V3D_WRITE(V3D_TFU_IIS, job->args.iis);
V3D_WRITE(V3D_TFU_ICA, job->args.ica);
V3D_WRITE(V3D_TFU_IUA, job->args.iua);
V3D_WRITE(V3D_TFU_IOA, job->args.ioa);
V3D_WRITE(V3D_TFU_IOS, job->args.ios);
V3D_WRITE(V3D_TFU_COEF0, job->args.coef[0]);
if (job->args.coef[0] & V3D_TFU_COEF0_USECOEF) {
V3D_WRITE(V3D_TFU_COEF1, job->args.coef[1]);
V3D_WRITE(V3D_TFU_COEF2, job->args.coef[2]);
V3D_WRITE(V3D_TFU_COEF3, job->args.coef[3]);
}
/* ICFG kicks off the job. */
V3D_WRITE(V3D_TFU_ICFG, job->args.icfg | V3D_TFU_ICFG_IOC);
return fence;
}
static struct dma_fence *
v3d_csd_job_run(struct drm_sched_job *sched_job)
{
struct v3d_csd_job *job = to_csd_job(sched_job);
struct v3d_dev *v3d = job->base.v3d;
struct drm_device *dev = &v3d->drm;
struct dma_fence *fence;
int i;
v3d->csd_job = job;
v3d_invalidate_caches(v3d);
fence = v3d_fence_create(v3d, V3D_CSD);
if (IS_ERR(fence))
return NULL;
if (job->base.irq_fence)
dma_fence_put(job->base.irq_fence);
job->base.irq_fence = dma_fence_get(fence);
trace_v3d_submit_csd(dev, to_v3d_fence(fence)->seqno);
v3d_switch_perfmon(v3d, &job->base);
for (i = 1; i <= 6; i++)
V3D_CORE_WRITE(0, V3D_CSD_QUEUED_CFG0 + 4 * i, job->args.cfg[i]);
/* CFG0 write kicks off the job. */
V3D_CORE_WRITE(0, V3D_CSD_QUEUED_CFG0, job->args.cfg[0]);
return fence;
}
static struct dma_fence *
v3d_cache_clean_job_run(struct drm_sched_job *sched_job)
{
struct v3d_job *job = to_v3d_job(sched_job);
struct v3d_dev *v3d = job->v3d;
v3d_clean_caches(v3d);
return NULL;
}
static enum drm_gpu_sched_stat
v3d_gpu_reset_for_timeout(struct v3d_dev *v3d, struct drm_sched_job *sched_job)
{
enum v3d_queue q;
mutex_lock(&v3d->reset_lock);
/* block scheduler */
for (q = 0; q < V3D_MAX_QUEUES; q++)
drm_sched_stop(&v3d->queue[q].sched, sched_job);
if (sched_job)
drm_sched_increase_karma(sched_job);
/* get the GPU back into the init state */
v3d_reset(v3d);
for (q = 0; q < V3D_MAX_QUEUES; q++)
drm_sched_resubmit_jobs(&v3d->queue[q].sched);
/* Unblock schedulers and restart their jobs. */
for (q = 0; q < V3D_MAX_QUEUES; q++) {
drm_sched_start(&v3d->queue[q].sched, true);
}
mutex_unlock(&v3d->reset_lock);
return DRM_GPU_SCHED_STAT_NOMINAL;
}
/* If the current address or return address have changed, then the GPU
* has probably made progress and we should delay the reset. This
* could fail if the GPU got in an infinite loop in the CL, but that
* is pretty unlikely outside of an i-g-t testcase.
*/
static enum drm_gpu_sched_stat
v3d_cl_job_timedout(struct drm_sched_job *sched_job, enum v3d_queue q,
u32 *timedout_ctca, u32 *timedout_ctra)
{
struct v3d_job *job = to_v3d_job(sched_job);
struct v3d_dev *v3d = job->v3d;
u32 ctca = V3D_CORE_READ(0, V3D_CLE_CTNCA(q));
u32 ctra = V3D_CORE_READ(0, V3D_CLE_CTNRA(q));
if (*timedout_ctca != ctca || *timedout_ctra != ctra) {
*timedout_ctca = ctca;
*timedout_ctra = ctra;
return DRM_GPU_SCHED_STAT_NOMINAL;
}
return v3d_gpu_reset_for_timeout(v3d, sched_job);
}
static enum drm_gpu_sched_stat
v3d_bin_job_timedout(struct drm_sched_job *sched_job)
{
struct v3d_bin_job *job = to_bin_job(sched_job);
return v3d_cl_job_timedout(sched_job, V3D_BIN,
&job->timedout_ctca, &job->timedout_ctra);
}
static enum drm_gpu_sched_stat
v3d_render_job_timedout(struct drm_sched_job *sched_job)
{
struct v3d_render_job *job = to_render_job(sched_job);
return v3d_cl_job_timedout(sched_job, V3D_RENDER,
&job->timedout_ctca, &job->timedout_ctra);
}
static enum drm_gpu_sched_stat
v3d_generic_job_timedout(struct drm_sched_job *sched_job)
{
struct v3d_job *job = to_v3d_job(sched_job);
return v3d_gpu_reset_for_timeout(job->v3d, sched_job);
}
static enum drm_gpu_sched_stat
v3d_csd_job_timedout(struct drm_sched_job *sched_job)
{
struct v3d_csd_job *job = to_csd_job(sched_job);
struct v3d_dev *v3d = job->base.v3d;
u32 batches = V3D_CORE_READ(0, V3D_CSD_CURRENT_CFG4);
/* If we've made progress, skip reset and let the timer get
* rearmed.
*/
if (job->timedout_batches != batches) {
job->timedout_batches = batches;
return DRM_GPU_SCHED_STAT_NOMINAL;
}
return v3d_gpu_reset_for_timeout(v3d, sched_job);
}
static const struct drm_sched_backend_ops v3d_bin_sched_ops = {
.run_job = v3d_bin_job_run,
.timedout_job = v3d_bin_job_timedout,
.free_job = v3d_sched_job_free,
};
static const struct drm_sched_backend_ops v3d_render_sched_ops = {
.run_job = v3d_render_job_run,
.timedout_job = v3d_render_job_timedout,
.free_job = v3d_sched_job_free,
};
static const struct drm_sched_backend_ops v3d_tfu_sched_ops = {
.run_job = v3d_tfu_job_run,
.timedout_job = v3d_generic_job_timedout,
.free_job = v3d_sched_job_free,
};
static const struct drm_sched_backend_ops v3d_csd_sched_ops = {
.run_job = v3d_csd_job_run,
.timedout_job = v3d_csd_job_timedout,
.free_job = v3d_sched_job_free
};
static const struct drm_sched_backend_ops v3d_cache_clean_sched_ops = {
.run_job = v3d_cache_clean_job_run,
.timedout_job = v3d_generic_job_timedout,
.free_job = v3d_sched_job_free
};
int
v3d_sched_init(struct v3d_dev *v3d)
{
int hw_jobs_limit = 1;
int job_hang_limit = 0;
int hang_limit_ms = 500;
int ret;
ret = drm_sched_init(&v3d->queue[V3D_BIN].sched,
&v3d_bin_sched_ops,
hw_jobs_limit, job_hang_limit,
msecs_to_jiffies(hang_limit_ms), NULL,
NULL, "v3d_bin");
if (ret) {
dev_err(v3d->drm.dev, "Failed to create bin scheduler: %d.", ret);
return ret;
}
ret = drm_sched_init(&v3d->queue[V3D_RENDER].sched,
&v3d_render_sched_ops,
hw_jobs_limit, job_hang_limit,
msecs_to_jiffies(hang_limit_ms), NULL,
NULL, "v3d_render");
if (ret) {
dev_err(v3d->drm.dev, "Failed to create render scheduler: %d.",
ret);
v3d_sched_fini(v3d);
return ret;
}
ret = drm_sched_init(&v3d->queue[V3D_TFU].sched,
&v3d_tfu_sched_ops,
hw_jobs_limit, job_hang_limit,
msecs_to_jiffies(hang_limit_ms), NULL,
NULL, "v3d_tfu");
if (ret) {
dev_err(v3d->drm.dev, "Failed to create TFU scheduler: %d.",
ret);
v3d_sched_fini(v3d);
return ret;
}
if (v3d_has_csd(v3d)) {
ret = drm_sched_init(&v3d->queue[V3D_CSD].sched,
&v3d_csd_sched_ops,
hw_jobs_limit, job_hang_limit,
msecs_to_jiffies(hang_limit_ms), NULL,
NULL, "v3d_csd");
if (ret) {
dev_err(v3d->drm.dev, "Failed to create CSD scheduler: %d.",
ret);
v3d_sched_fini(v3d);
return ret;
}
ret = drm_sched_init(&v3d->queue[V3D_CACHE_CLEAN].sched,
&v3d_cache_clean_sched_ops,
hw_jobs_limit, job_hang_limit,
msecs_to_jiffies(hang_limit_ms), NULL,
NULL, "v3d_cache_clean");
if (ret) {
dev_err(v3d->drm.dev, "Failed to create CACHE_CLEAN scheduler: %d.",
ret);
v3d_sched_fini(v3d);
return ret;
}
}
return 0;
}
void
v3d_sched_fini(struct v3d_dev *v3d)
{
enum v3d_queue q;
for (q = 0; q < V3D_MAX_QUEUES; q++) {
if (v3d->queue[q].sched.ready)
drm_sched_fini(&v3d->queue[q].sched);
}
}