blob: b284623e28634465bf7d0dc01b06b425716b1ce5 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2015 Broadcom
* Copyright (c) 2014 The Linux Foundation. All rights reserved.
* Copyright (C) 2013 Red Hat
* Author: Rob Clark <robdclark@gmail.com>
*/
/**
* DOC: VC4 Falcon HDMI module
*
* The HDMI core has a state machine and a PHY. On BCM2835, most of
* the unit operates off of the HSM clock from CPRMAN. It also
* internally uses the PLLH_PIX clock for the PHY.
*
* HDMI infoframes are kept within a small packet ram, where each
* packet can be individually enabled for including in a frame.
*
* HDMI audio is implemented entirely within the HDMI IP block. A
* register in the HDMI encoder takes SPDIF frames from the DMA engine
* and transfers them over an internal MAI (multi-channel audio
* interconnect) bus to the encoder side for insertion into the video
* blank regions.
*
* The driver's HDMI encoder does not yet support power management.
* The HDMI encoder's power domain and the HSM/pixel clocks are kept
* continuously running, and only the HDMI logic and packet ram are
* powered off/on at disable/enable time.
*
* The driver does not yet support CEC control, though the HDMI
* encoder block has CEC support.
*/
#include <drm/drm_atomic_helper.h>
#include <drm/drm_edid.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_simple_kms_helper.h>
#include <drm/drm_scdc_helper.h>
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/i2c.h>
#include <linux/of_address.h>
#include <linux/of_gpio.h>
#include <linux/of_platform.h>
#include <linux/pm_runtime.h>
#include <linux/rational.h>
#include <linux/reset.h>
#include <sound/dmaengine_pcm.h>
#include <sound/hdmi-codec.h>
#include <sound/pcm_drm_eld.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include "media/cec.h"
#include "vc4_drv.h"
#include "vc4_hdmi.h"
#include "vc4_hdmi_regs.h"
#include "vc4_regs.h"
#define VC5_HDMI_HORZA_HFP_SHIFT 16
#define VC5_HDMI_HORZA_HFP_MASK VC4_MASK(28, 16)
#define VC5_HDMI_HORZA_VPOS BIT(15)
#define VC5_HDMI_HORZA_HPOS BIT(14)
#define VC5_HDMI_HORZA_HAP_SHIFT 0
#define VC5_HDMI_HORZA_HAP_MASK VC4_MASK(13, 0)
#define VC5_HDMI_HORZB_HBP_SHIFT 16
#define VC5_HDMI_HORZB_HBP_MASK VC4_MASK(26, 16)
#define VC5_HDMI_HORZB_HSP_SHIFT 0
#define VC5_HDMI_HORZB_HSP_MASK VC4_MASK(10, 0)
#define VC5_HDMI_VERTA_VSP_SHIFT 24
#define VC5_HDMI_VERTA_VSP_MASK VC4_MASK(28, 24)
#define VC5_HDMI_VERTA_VFP_SHIFT 16
#define VC5_HDMI_VERTA_VFP_MASK VC4_MASK(22, 16)
#define VC5_HDMI_VERTA_VAL_SHIFT 0
#define VC5_HDMI_VERTA_VAL_MASK VC4_MASK(12, 0)
#define VC5_HDMI_VERTB_VSPO_SHIFT 16
#define VC5_HDMI_VERTB_VSPO_MASK VC4_MASK(29, 16)
#define VC5_HDMI_SCRAMBLER_CTL_ENABLE BIT(0)
#define VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE_SHIFT 8
#define VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE_MASK VC4_MASK(10, 8)
#define VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH_SHIFT 0
#define VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH_MASK VC4_MASK(3, 0)
#define VC5_HDMI_GCP_CONFIG_GCP_ENABLE BIT(31)
#define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1_SHIFT 8
#define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1_MASK VC4_MASK(15, 8)
# define VC4_HD_M_SW_RST BIT(2)
# define VC4_HD_M_ENABLE BIT(0)
#define CEC_CLOCK_FREQ 40000
#define HDMI_14_MAX_TMDS_CLK (340 * 1000 * 1000)
static bool vc4_hdmi_mode_needs_scrambling(const struct drm_display_mode *mode)
{
return (mode->clock * 1000) > HDMI_14_MAX_TMDS_CLK;
}
static int vc4_hdmi_debugfs_regs(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *)m->private;
struct vc4_hdmi *vc4_hdmi = node->info_ent->data;
struct drm_printer p = drm_seq_file_printer(m);
drm_print_regset32(&p, &vc4_hdmi->hdmi_regset);
drm_print_regset32(&p, &vc4_hdmi->hd_regset);
return 0;
}
static void vc4_hdmi_reset(struct vc4_hdmi *vc4_hdmi)
{
HDMI_WRITE(HDMI_M_CTL, VC4_HD_M_SW_RST);
udelay(1);
HDMI_WRITE(HDMI_M_CTL, 0);
HDMI_WRITE(HDMI_M_CTL, VC4_HD_M_ENABLE);
HDMI_WRITE(HDMI_SW_RESET_CONTROL,
VC4_HDMI_SW_RESET_HDMI |
VC4_HDMI_SW_RESET_FORMAT_DETECT);
HDMI_WRITE(HDMI_SW_RESET_CONTROL, 0);
}
static void vc5_hdmi_reset(struct vc4_hdmi *vc4_hdmi)
{
reset_control_reset(vc4_hdmi->reset);
HDMI_WRITE(HDMI_DVP_CTL, 0);
HDMI_WRITE(HDMI_CLOCK_STOP,
HDMI_READ(HDMI_CLOCK_STOP) | VC4_DVP_HT_CLOCK_STOP_PIXEL);
}
#ifdef CONFIG_DRM_VC4_HDMI_CEC
static void vc4_hdmi_cec_update_clk_div(struct vc4_hdmi *vc4_hdmi)
{
u16 clk_cnt;
u32 value;
value = HDMI_READ(HDMI_CEC_CNTRL_1);
value &= ~VC4_HDMI_CEC_DIV_CLK_CNT_MASK;
/*
* Set the clock divider: the hsm_clock rate and this divider
* setting will give a 40 kHz CEC clock.
*/
clk_cnt = clk_get_rate(vc4_hdmi->cec_clock) / CEC_CLOCK_FREQ;
value |= clk_cnt << VC4_HDMI_CEC_DIV_CLK_CNT_SHIFT;
HDMI_WRITE(HDMI_CEC_CNTRL_1, value);
}
#else
static void vc4_hdmi_cec_update_clk_div(struct vc4_hdmi *vc4_hdmi) {}
#endif
static enum drm_connector_status
vc4_hdmi_connector_detect(struct drm_connector *connector, bool force)
{
struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector);
bool connected = false;
if (vc4_hdmi->hpd_gpio &&
gpiod_get_value_cansleep(vc4_hdmi->hpd_gpio)) {
connected = true;
} else if (drm_probe_ddc(vc4_hdmi->ddc)) {
connected = true;
} else if (HDMI_READ(HDMI_HOTPLUG) & VC4_HDMI_HOTPLUG_CONNECTED) {
connected = true;
}
if (connected) {
if (connector->status != connector_status_connected) {
struct edid *edid = drm_get_edid(connector, vc4_hdmi->ddc);
if (edid) {
cec_s_phys_addr_from_edid(vc4_hdmi->cec_adap, edid);
vc4_hdmi->encoder.hdmi_monitor = drm_detect_hdmi_monitor(edid);
kfree(edid);
}
}
return connector_status_connected;
}
cec_phys_addr_invalidate(vc4_hdmi->cec_adap);
return connector_status_disconnected;
}
static void vc4_hdmi_connector_destroy(struct drm_connector *connector)
{
drm_connector_unregister(connector);
drm_connector_cleanup(connector);
}
static int vc4_hdmi_connector_get_modes(struct drm_connector *connector)
{
struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector);
struct vc4_hdmi_encoder *vc4_encoder = &vc4_hdmi->encoder;
int ret = 0;
struct edid *edid;
edid = drm_get_edid(connector, vc4_hdmi->ddc);
cec_s_phys_addr_from_edid(vc4_hdmi->cec_adap, edid);
if (!edid)
return -ENODEV;
vc4_encoder->hdmi_monitor = drm_detect_hdmi_monitor(edid);
drm_connector_update_edid_property(connector, edid);
ret = drm_add_edid_modes(connector, edid);
kfree(edid);
if (vc4_hdmi->disable_4kp60) {
struct drm_device *drm = connector->dev;
struct drm_display_mode *mode;
list_for_each_entry(mode, &connector->probed_modes, head) {
if (vc4_hdmi_mode_needs_scrambling(mode)) {
drm_warn_once(drm, "The core clock cannot reach frequencies high enough to support 4k @ 60Hz.");
drm_warn_once(drm, "Please change your config.txt file to add hdmi_enable_4kp60.");
}
}
}
return ret;
}
static int vc4_hdmi_connector_atomic_check(struct drm_connector *connector,
struct drm_atomic_state *state)
{
struct drm_connector_state *old_state =
drm_atomic_get_old_connector_state(state, connector);
struct drm_connector_state *new_state =
drm_atomic_get_new_connector_state(state, connector);
struct drm_crtc *crtc = new_state->crtc;
if (!crtc)
return 0;
if (old_state->colorspace != new_state->colorspace ||
!drm_connector_atomic_hdr_metadata_equal(old_state, new_state)) {
struct drm_crtc_state *crtc_state;
crtc_state = drm_atomic_get_crtc_state(state, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
crtc_state->mode_changed = true;
}
return 0;
}
static void vc4_hdmi_connector_reset(struct drm_connector *connector)
{
struct vc4_hdmi_connector_state *old_state =
conn_state_to_vc4_hdmi_conn_state(connector->state);
struct vc4_hdmi_connector_state *new_state =
kzalloc(sizeof(*new_state), GFP_KERNEL);
if (connector->state)
__drm_atomic_helper_connector_destroy_state(connector->state);
kfree(old_state);
__drm_atomic_helper_connector_reset(connector, &new_state->base);
if (!new_state)
return;
new_state->base.max_bpc = 8;
new_state->base.max_requested_bpc = 8;
drm_atomic_helper_connector_tv_reset(connector);
}
static struct drm_connector_state *
vc4_hdmi_connector_duplicate_state(struct drm_connector *connector)
{
struct drm_connector_state *conn_state = connector->state;
struct vc4_hdmi_connector_state *vc4_state = conn_state_to_vc4_hdmi_conn_state(conn_state);
struct vc4_hdmi_connector_state *new_state;
new_state = kzalloc(sizeof(*new_state), GFP_KERNEL);
if (!new_state)
return NULL;
new_state->pixel_rate = vc4_state->pixel_rate;
__drm_atomic_helper_connector_duplicate_state(connector, &new_state->base);
return &new_state->base;
}
static const struct drm_connector_funcs vc4_hdmi_connector_funcs = {
.detect = vc4_hdmi_connector_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = vc4_hdmi_connector_destroy,
.reset = vc4_hdmi_connector_reset,
.atomic_duplicate_state = vc4_hdmi_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static const struct drm_connector_helper_funcs vc4_hdmi_connector_helper_funcs = {
.get_modes = vc4_hdmi_connector_get_modes,
.atomic_check = vc4_hdmi_connector_atomic_check,
};
static int vc4_hdmi_connector_init(struct drm_device *dev,
struct vc4_hdmi *vc4_hdmi)
{
struct drm_connector *connector = &vc4_hdmi->connector;
struct drm_encoder *encoder = &vc4_hdmi->encoder.base.base;
int ret;
drm_connector_init_with_ddc(dev, connector,
&vc4_hdmi_connector_funcs,
DRM_MODE_CONNECTOR_HDMIA,
vc4_hdmi->ddc);
drm_connector_helper_add(connector, &vc4_hdmi_connector_helper_funcs);
/*
* Some of the properties below require access to state, like bpc.
* Allocate some default initial connector state with our reset helper.
*/
if (connector->funcs->reset)
connector->funcs->reset(connector);
/* Create and attach TV margin props to this connector. */
ret = drm_mode_create_tv_margin_properties(dev);
if (ret)
return ret;
ret = drm_mode_create_hdmi_colorspace_property(connector);
if (ret)
return ret;
drm_connector_attach_colorspace_property(connector);
drm_connector_attach_tv_margin_properties(connector);
drm_connector_attach_max_bpc_property(connector, 8, 12);
connector->polled = (DRM_CONNECTOR_POLL_CONNECT |
DRM_CONNECTOR_POLL_DISCONNECT);
connector->interlace_allowed = 1;
connector->doublescan_allowed = 0;
if (vc4_hdmi->variant->supports_hdr)
drm_connector_attach_hdr_output_metadata_property(connector);
drm_connector_attach_encoder(connector, encoder);
return 0;
}
static int vc4_hdmi_stop_packet(struct drm_encoder *encoder,
enum hdmi_infoframe_type type,
bool poll)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
u32 packet_id = type - 0x80;
HDMI_WRITE(HDMI_RAM_PACKET_CONFIG,
HDMI_READ(HDMI_RAM_PACKET_CONFIG) & ~BIT(packet_id));
if (!poll)
return 0;
return wait_for(!(HDMI_READ(HDMI_RAM_PACKET_STATUS) &
BIT(packet_id)), 100);
}
static void vc4_hdmi_write_infoframe(struct drm_encoder *encoder,
union hdmi_infoframe *frame)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
u32 packet_id = frame->any.type - 0x80;
const struct vc4_hdmi_register *ram_packet_start =
&vc4_hdmi->variant->registers[HDMI_RAM_PACKET_START];
u32 packet_reg = ram_packet_start->offset + VC4_HDMI_PACKET_STRIDE * packet_id;
void __iomem *base = __vc4_hdmi_get_field_base(vc4_hdmi,
ram_packet_start->reg);
uint8_t buffer[VC4_HDMI_PACKET_STRIDE];
ssize_t len, i;
int ret;
WARN_ONCE(!(HDMI_READ(HDMI_RAM_PACKET_CONFIG) &
VC4_HDMI_RAM_PACKET_ENABLE),
"Packet RAM has to be on to store the packet.");
len = hdmi_infoframe_pack(frame, buffer, sizeof(buffer));
if (len < 0)
return;
ret = vc4_hdmi_stop_packet(encoder, frame->any.type, true);
if (ret) {
DRM_ERROR("Failed to wait for infoframe to go idle: %d\n", ret);
return;
}
for (i = 0; i < len; i += 7) {
writel(buffer[i + 0] << 0 |
buffer[i + 1] << 8 |
buffer[i + 2] << 16,
base + packet_reg);
packet_reg += 4;
writel(buffer[i + 3] << 0 |
buffer[i + 4] << 8 |
buffer[i + 5] << 16 |
buffer[i + 6] << 24,
base + packet_reg);
packet_reg += 4;
}
HDMI_WRITE(HDMI_RAM_PACKET_CONFIG,
HDMI_READ(HDMI_RAM_PACKET_CONFIG) | BIT(packet_id));
ret = wait_for((HDMI_READ(HDMI_RAM_PACKET_STATUS) &
BIT(packet_id)), 100);
if (ret)
DRM_ERROR("Failed to wait for infoframe to start: %d\n", ret);
}
static void vc4_hdmi_set_avi_infoframe(struct drm_encoder *encoder)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
struct vc4_hdmi_encoder *vc4_encoder = to_vc4_hdmi_encoder(encoder);
struct drm_connector *connector = &vc4_hdmi->connector;
struct drm_connector_state *cstate = connector->state;
struct drm_crtc *crtc = encoder->crtc;
const struct drm_display_mode *mode = &crtc->state->adjusted_mode;
union hdmi_infoframe frame;
int ret;
ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
connector, mode);
if (ret < 0) {
DRM_ERROR("couldn't fill AVI infoframe\n");
return;
}
drm_hdmi_avi_infoframe_quant_range(&frame.avi,
connector, mode,
vc4_encoder->limited_rgb_range ?
HDMI_QUANTIZATION_RANGE_LIMITED :
HDMI_QUANTIZATION_RANGE_FULL);
drm_hdmi_avi_infoframe_colorspace(&frame.avi, cstate);
drm_hdmi_avi_infoframe_bars(&frame.avi, cstate);
vc4_hdmi_write_infoframe(encoder, &frame);
}
static void vc4_hdmi_set_spd_infoframe(struct drm_encoder *encoder)
{
union hdmi_infoframe frame;
int ret;
ret = hdmi_spd_infoframe_init(&frame.spd, "Broadcom", "Videocore");
if (ret < 0) {
DRM_ERROR("couldn't fill SPD infoframe\n");
return;
}
frame.spd.sdi = HDMI_SPD_SDI_PC;
vc4_hdmi_write_infoframe(encoder, &frame);
}
static void vc4_hdmi_set_audio_infoframe(struct drm_encoder *encoder)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
struct hdmi_audio_infoframe *audio = &vc4_hdmi->audio.infoframe;
union hdmi_infoframe frame;
memcpy(&frame.audio, audio, sizeof(*audio));
vc4_hdmi_write_infoframe(encoder, &frame);
}
static void vc4_hdmi_set_hdr_infoframe(struct drm_encoder *encoder)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
struct drm_connector *connector = &vc4_hdmi->connector;
struct drm_connector_state *conn_state = connector->state;
union hdmi_infoframe frame;
if (!vc4_hdmi->variant->supports_hdr)
return;
if (!conn_state->hdr_output_metadata)
return;
if (drm_hdmi_infoframe_set_hdr_metadata(&frame.drm, conn_state))
return;
vc4_hdmi_write_infoframe(encoder, &frame);
}
static void vc4_hdmi_set_infoframes(struct drm_encoder *encoder)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
vc4_hdmi_set_avi_infoframe(encoder);
vc4_hdmi_set_spd_infoframe(encoder);
/*
* If audio was streaming, then we need to reenabled the audio
* infoframe here during encoder_enable.
*/
if (vc4_hdmi->audio.streaming)
vc4_hdmi_set_audio_infoframe(encoder);
vc4_hdmi_set_hdr_infoframe(encoder);
}
static bool vc4_hdmi_supports_scrambling(struct drm_encoder *encoder,
struct drm_display_mode *mode)
{
struct vc4_hdmi_encoder *vc4_encoder = to_vc4_hdmi_encoder(encoder);
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
struct drm_display_info *display = &vc4_hdmi->connector.display_info;
if (!vc4_encoder->hdmi_monitor)
return false;
if (!display->hdmi.scdc.supported ||
!display->hdmi.scdc.scrambling.supported)
return false;
return true;
}
#define SCRAMBLING_POLLING_DELAY_MS 1000
static void vc4_hdmi_enable_scrambling(struct drm_encoder *encoder)
{
struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
if (!vc4_hdmi_supports_scrambling(encoder, mode))
return;
if (!vc4_hdmi_mode_needs_scrambling(mode))
return;
drm_scdc_set_high_tmds_clock_ratio(vc4_hdmi->ddc, true);
drm_scdc_set_scrambling(vc4_hdmi->ddc, true);
HDMI_WRITE(HDMI_SCRAMBLER_CTL, HDMI_READ(HDMI_SCRAMBLER_CTL) |
VC5_HDMI_SCRAMBLER_CTL_ENABLE);
queue_delayed_work(system_wq, &vc4_hdmi->scrambling_work,
msecs_to_jiffies(SCRAMBLING_POLLING_DELAY_MS));
}
static void vc4_hdmi_disable_scrambling(struct drm_encoder *encoder)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
struct drm_crtc *crtc = encoder->crtc;
/*
* At boot, encoder->crtc will be NULL. Since we don't know the
* state of the scrambler and in order to avoid any
* inconsistency, let's disable it all the time.
*/
if (crtc && !vc4_hdmi_supports_scrambling(encoder, &crtc->mode))
return;
if (crtc && !vc4_hdmi_mode_needs_scrambling(&crtc->mode))
return;
if (delayed_work_pending(&vc4_hdmi->scrambling_work))
cancel_delayed_work_sync(&vc4_hdmi->scrambling_work);
HDMI_WRITE(HDMI_SCRAMBLER_CTL, HDMI_READ(HDMI_SCRAMBLER_CTL) &
~VC5_HDMI_SCRAMBLER_CTL_ENABLE);
drm_scdc_set_scrambling(vc4_hdmi->ddc, false);
drm_scdc_set_high_tmds_clock_ratio(vc4_hdmi->ddc, false);
}
static void vc4_hdmi_scrambling_wq(struct work_struct *work)
{
struct vc4_hdmi *vc4_hdmi = container_of(to_delayed_work(work),
struct vc4_hdmi,
scrambling_work);
if (drm_scdc_get_scrambling_status(vc4_hdmi->ddc))
return;
drm_scdc_set_high_tmds_clock_ratio(vc4_hdmi->ddc, true);
drm_scdc_set_scrambling(vc4_hdmi->ddc, true);
queue_delayed_work(system_wq, &vc4_hdmi->scrambling_work,
msecs_to_jiffies(SCRAMBLING_POLLING_DELAY_MS));
}
static void vc4_hdmi_encoder_post_crtc_disable(struct drm_encoder *encoder,
struct drm_atomic_state *state)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
HDMI_WRITE(HDMI_RAM_PACKET_CONFIG, 0);
HDMI_WRITE(HDMI_VID_CTL, HDMI_READ(HDMI_VID_CTL) | VC4_HD_VID_CTL_CLRRGB);
mdelay(1);
HDMI_WRITE(HDMI_VID_CTL,
HDMI_READ(HDMI_VID_CTL) & ~VC4_HD_VID_CTL_ENABLE);
vc4_hdmi_disable_scrambling(encoder);
}
static void vc4_hdmi_encoder_post_crtc_powerdown(struct drm_encoder *encoder,
struct drm_atomic_state *state)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
int ret;
HDMI_WRITE(HDMI_VID_CTL,
HDMI_READ(HDMI_VID_CTL) | VC4_HD_VID_CTL_BLANKPIX);
if (vc4_hdmi->variant->phy_disable)
vc4_hdmi->variant->phy_disable(vc4_hdmi);
clk_disable_unprepare(vc4_hdmi->pixel_bvb_clock);
clk_disable_unprepare(vc4_hdmi->hsm_clock);
clk_disable_unprepare(vc4_hdmi->pixel_clock);
ret = pm_runtime_put(&vc4_hdmi->pdev->dev);
if (ret < 0)
DRM_ERROR("Failed to release power domain: %d\n", ret);
}
static void vc4_hdmi_encoder_disable(struct drm_encoder *encoder)
{
}
static void vc4_hdmi_csc_setup(struct vc4_hdmi *vc4_hdmi, bool enable)
{
u32 csc_ctl;
csc_ctl = VC4_SET_FIELD(VC4_HD_CSC_CTL_ORDER_BGR,
VC4_HD_CSC_CTL_ORDER);
if (enable) {
/* CEA VICs other than #1 requre limited range RGB
* output unless overridden by an AVI infoframe.
* Apply a colorspace conversion to squash 0-255 down
* to 16-235. The matrix here is:
*
* [ 0 0 0.8594 16]
* [ 0 0.8594 0 16]
* [ 0.8594 0 0 16]
* [ 0 0 0 1]
*/
csc_ctl |= VC4_HD_CSC_CTL_ENABLE;
csc_ctl |= VC4_HD_CSC_CTL_RGB2YCC;
csc_ctl |= VC4_SET_FIELD(VC4_HD_CSC_CTL_MODE_CUSTOM,
VC4_HD_CSC_CTL_MODE);
HDMI_WRITE(HDMI_CSC_12_11, (0x000 << 16) | 0x000);
HDMI_WRITE(HDMI_CSC_14_13, (0x100 << 16) | 0x6e0);
HDMI_WRITE(HDMI_CSC_22_21, (0x6e0 << 16) | 0x000);
HDMI_WRITE(HDMI_CSC_24_23, (0x100 << 16) | 0x000);
HDMI_WRITE(HDMI_CSC_32_31, (0x000 << 16) | 0x6e0);
HDMI_WRITE(HDMI_CSC_34_33, (0x100 << 16) | 0x000);
}
/* The RGB order applies even when CSC is disabled. */
HDMI_WRITE(HDMI_CSC_CTL, csc_ctl);
}
static void vc5_hdmi_csc_setup(struct vc4_hdmi *vc4_hdmi, bool enable)
{
u32 csc_ctl;
csc_ctl = 0x07; /* RGB_CONVERT_MODE = custom matrix, || USE_RGB_TO_YCBCR */
if (enable) {
/* CEA VICs other than #1 requre limited range RGB
* output unless overridden by an AVI infoframe.
* Apply a colorspace conversion to squash 0-255 down
* to 16-235. The matrix here is:
*
* [ 0.8594 0 0 16]
* [ 0 0.8594 0 16]
* [ 0 0 0.8594 16]
* [ 0 0 0 1]
* Matrix is signed 2p13 fixed point, with signed 9p6 offsets
*/
HDMI_WRITE(HDMI_CSC_12_11, (0x0000 << 16) | 0x1b80);
HDMI_WRITE(HDMI_CSC_14_13, (0x0400 << 16) | 0x0000);
HDMI_WRITE(HDMI_CSC_22_21, (0x1b80 << 16) | 0x0000);
HDMI_WRITE(HDMI_CSC_24_23, (0x0400 << 16) | 0x0000);
HDMI_WRITE(HDMI_CSC_32_31, (0x0000 << 16) | 0x0000);
HDMI_WRITE(HDMI_CSC_34_33, (0x0400 << 16) | 0x1b80);
} else {
/* Still use the matrix for full range, but make it unity.
* Matrix is signed 2p13 fixed point, with signed 9p6 offsets
*/
HDMI_WRITE(HDMI_CSC_12_11, (0x0000 << 16) | 0x2000);
HDMI_WRITE(HDMI_CSC_14_13, (0x0000 << 16) | 0x0000);
HDMI_WRITE(HDMI_CSC_22_21, (0x2000 << 16) | 0x0000);
HDMI_WRITE(HDMI_CSC_24_23, (0x0000 << 16) | 0x0000);
HDMI_WRITE(HDMI_CSC_32_31, (0x0000 << 16) | 0x0000);
HDMI_WRITE(HDMI_CSC_34_33, (0x0000 << 16) | 0x2000);
}
HDMI_WRITE(HDMI_CSC_CTL, csc_ctl);
}
static void vc4_hdmi_set_timings(struct vc4_hdmi *vc4_hdmi,
struct drm_connector_state *state,
struct drm_display_mode *mode)
{
bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC;
bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC;
bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
u32 verta = (VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
VC4_HDMI_VERTA_VSP) |
VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
VC4_HDMI_VERTA_VFP) |
VC4_SET_FIELD(mode->crtc_vdisplay, VC4_HDMI_VERTA_VAL));
u32 vertb = (VC4_SET_FIELD(0, VC4_HDMI_VERTB_VSPO) |
VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
VC4_HDMI_VERTB_VBP));
u32 vertb_even = (VC4_SET_FIELD(0, VC4_HDMI_VERTB_VSPO) |
VC4_SET_FIELD(mode->crtc_vtotal -
mode->crtc_vsync_end -
interlaced,
VC4_HDMI_VERTB_VBP));
HDMI_WRITE(HDMI_HORZA,
(vsync_pos ? VC4_HDMI_HORZA_VPOS : 0) |
(hsync_pos ? VC4_HDMI_HORZA_HPOS : 0) |
VC4_SET_FIELD(mode->hdisplay * pixel_rep,
VC4_HDMI_HORZA_HAP));
HDMI_WRITE(HDMI_HORZB,
VC4_SET_FIELD((mode->htotal -
mode->hsync_end) * pixel_rep,
VC4_HDMI_HORZB_HBP) |
VC4_SET_FIELD((mode->hsync_end -
mode->hsync_start) * pixel_rep,
VC4_HDMI_HORZB_HSP) |
VC4_SET_FIELD((mode->hsync_start -
mode->hdisplay) * pixel_rep,
VC4_HDMI_HORZB_HFP));
HDMI_WRITE(HDMI_VERTA0, verta);
HDMI_WRITE(HDMI_VERTA1, verta);
HDMI_WRITE(HDMI_VERTB0, vertb_even);
HDMI_WRITE(HDMI_VERTB1, vertb);
}
static void vc5_hdmi_set_timings(struct vc4_hdmi *vc4_hdmi,
struct drm_connector_state *state,
struct drm_display_mode *mode)
{
bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC;
bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC;
bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
u32 verta = (VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
VC5_HDMI_VERTA_VSP) |
VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
VC5_HDMI_VERTA_VFP) |
VC4_SET_FIELD(mode->crtc_vdisplay, VC5_HDMI_VERTA_VAL));
u32 vertb = (VC4_SET_FIELD(0, VC5_HDMI_VERTB_VSPO) |
VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
VC4_HDMI_VERTB_VBP));
u32 vertb_even = (VC4_SET_FIELD(0, VC5_HDMI_VERTB_VSPO) |
VC4_SET_FIELD(mode->crtc_vtotal -
mode->crtc_vsync_end -
interlaced,
VC4_HDMI_VERTB_VBP));
unsigned char gcp;
bool gcp_en;
u32 reg;
HDMI_WRITE(HDMI_VEC_INTERFACE_XBAR, 0x354021);
HDMI_WRITE(HDMI_HORZA,
(vsync_pos ? VC5_HDMI_HORZA_VPOS : 0) |
(hsync_pos ? VC5_HDMI_HORZA_HPOS : 0) |
VC4_SET_FIELD(mode->hdisplay * pixel_rep,
VC5_HDMI_HORZA_HAP) |
VC4_SET_FIELD((mode->hsync_start -
mode->hdisplay) * pixel_rep,
VC5_HDMI_HORZA_HFP));
HDMI_WRITE(HDMI_HORZB,
VC4_SET_FIELD((mode->htotal -
mode->hsync_end) * pixel_rep,
VC5_HDMI_HORZB_HBP) |
VC4_SET_FIELD((mode->hsync_end -
mode->hsync_start) * pixel_rep,
VC5_HDMI_HORZB_HSP));
HDMI_WRITE(HDMI_VERTA0, verta);
HDMI_WRITE(HDMI_VERTA1, verta);
HDMI_WRITE(HDMI_VERTB0, vertb_even);
HDMI_WRITE(HDMI_VERTB1, vertb);
switch (state->max_bpc) {
case 12:
gcp = 6;
gcp_en = true;
break;
case 10:
gcp = 5;
gcp_en = true;
break;
case 8:
default:
gcp = 4;
gcp_en = false;
break;
}
reg = HDMI_READ(HDMI_DEEP_COLOR_CONFIG_1);
reg &= ~(VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE_MASK |
VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH_MASK);
reg |= VC4_SET_FIELD(2, VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE) |
VC4_SET_FIELD(gcp, VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH);
HDMI_WRITE(HDMI_DEEP_COLOR_CONFIG_1, reg);
reg = HDMI_READ(HDMI_GCP_WORD_1);
reg &= ~VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1_MASK;
reg |= VC4_SET_FIELD(gcp, VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1);
HDMI_WRITE(HDMI_GCP_WORD_1, reg);
reg = HDMI_READ(HDMI_GCP_CONFIG);
reg &= ~VC5_HDMI_GCP_CONFIG_GCP_ENABLE;
reg |= gcp_en ? VC5_HDMI_GCP_CONFIG_GCP_ENABLE : 0;
HDMI_WRITE(HDMI_GCP_CONFIG, reg);
HDMI_WRITE(HDMI_CLOCK_STOP, 0);
}
static void vc4_hdmi_recenter_fifo(struct vc4_hdmi *vc4_hdmi)
{
u32 drift;
int ret;
drift = HDMI_READ(HDMI_FIFO_CTL);
drift &= VC4_HDMI_FIFO_VALID_WRITE_MASK;
HDMI_WRITE(HDMI_FIFO_CTL,
drift & ~VC4_HDMI_FIFO_CTL_RECENTER);
HDMI_WRITE(HDMI_FIFO_CTL,
drift | VC4_HDMI_FIFO_CTL_RECENTER);
usleep_range(1000, 1100);
HDMI_WRITE(HDMI_FIFO_CTL,
drift & ~VC4_HDMI_FIFO_CTL_RECENTER);
HDMI_WRITE(HDMI_FIFO_CTL,
drift | VC4_HDMI_FIFO_CTL_RECENTER);
ret = wait_for(HDMI_READ(HDMI_FIFO_CTL) &
VC4_HDMI_FIFO_CTL_RECENTER_DONE, 1);
WARN_ONCE(ret, "Timeout waiting for "
"VC4_HDMI_FIFO_CTL_RECENTER_DONE");
}
static struct drm_connector_state *
vc4_hdmi_encoder_get_connector_state(struct drm_encoder *encoder,
struct drm_atomic_state *state)
{
struct drm_connector_state *conn_state;
struct drm_connector *connector;
unsigned int i;
for_each_new_connector_in_state(state, connector, conn_state, i) {
if (conn_state->best_encoder == encoder)
return conn_state;
}
return NULL;
}
static void vc4_hdmi_encoder_pre_crtc_configure(struct drm_encoder *encoder,
struct drm_atomic_state *state)
{
struct drm_connector_state *conn_state =
vc4_hdmi_encoder_get_connector_state(encoder, state);
struct vc4_hdmi_connector_state *vc4_conn_state =
conn_state_to_vc4_hdmi_conn_state(conn_state);
struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
unsigned long bvb_rate, pixel_rate, hsm_rate;
int ret;
ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
if (ret < 0) {
DRM_ERROR("Failed to retain power domain: %d\n", ret);
return;
}
pixel_rate = vc4_conn_state->pixel_rate;
ret = clk_set_rate(vc4_hdmi->pixel_clock, pixel_rate);
if (ret) {
DRM_ERROR("Failed to set pixel clock rate: %d\n", ret);
return;
}
ret = clk_prepare_enable(vc4_hdmi->pixel_clock);
if (ret) {
DRM_ERROR("Failed to turn on pixel clock: %d\n", ret);
return;
}
/*
* As stated in RPi's vc4 firmware "HDMI state machine (HSM) clock must
* be faster than pixel clock, infinitesimally faster, tested in
* simulation. Otherwise, exact value is unimportant for HDMI
* operation." This conflicts with bcm2835's vc4 documentation, which
* states HSM's clock has to be at least 108% of the pixel clock.
*
* Real life tests reveal that vc4's firmware statement holds up, and
* users are able to use pixel clocks closer to HSM's, namely for
* 1920x1200@60Hz. So it was decided to have leave a 1% margin between
* both clocks. Which, for RPi0-3 implies a maximum pixel clock of
* 162MHz.
*
* Additionally, the AXI clock needs to be at least 25% of
* pixel clock, but HSM ends up being the limiting factor.
*/
hsm_rate = max_t(unsigned long, 120000000, (pixel_rate / 100) * 101);
ret = clk_set_min_rate(vc4_hdmi->hsm_clock, hsm_rate);
if (ret) {
DRM_ERROR("Failed to set HSM clock rate: %d\n", ret);
return;
}
ret = clk_prepare_enable(vc4_hdmi->hsm_clock);
if (ret) {
DRM_ERROR("Failed to turn on HSM clock: %d\n", ret);
clk_disable_unprepare(vc4_hdmi->pixel_clock);
return;
}
vc4_hdmi_cec_update_clk_div(vc4_hdmi);
if (pixel_rate > 297000000)
bvb_rate = 300000000;
else if (pixel_rate > 148500000)
bvb_rate = 150000000;
else
bvb_rate = 75000000;
ret = clk_set_min_rate(vc4_hdmi->pixel_bvb_clock, bvb_rate);
if (ret) {
DRM_ERROR("Failed to set pixel bvb clock rate: %d\n", ret);
clk_disable_unprepare(vc4_hdmi->hsm_clock);
clk_disable_unprepare(vc4_hdmi->pixel_clock);
return;
}
ret = clk_prepare_enable(vc4_hdmi->pixel_bvb_clock);
if (ret) {
DRM_ERROR("Failed to turn on pixel bvb clock: %d\n", ret);
clk_disable_unprepare(vc4_hdmi->hsm_clock);
clk_disable_unprepare(vc4_hdmi->pixel_clock);
return;
}
if (vc4_hdmi->variant->phy_init)
vc4_hdmi->variant->phy_init(vc4_hdmi, vc4_conn_state);
HDMI_WRITE(HDMI_SCHEDULER_CONTROL,
HDMI_READ(HDMI_SCHEDULER_CONTROL) |
VC4_HDMI_SCHEDULER_CONTROL_MANUAL_FORMAT |
VC4_HDMI_SCHEDULER_CONTROL_IGNORE_VSYNC_PREDICTS);
if (vc4_hdmi->variant->set_timings)
vc4_hdmi->variant->set_timings(vc4_hdmi, conn_state, mode);
}
static void vc4_hdmi_encoder_pre_crtc_enable(struct drm_encoder *encoder,
struct drm_atomic_state *state)
{
struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
struct vc4_hdmi_encoder *vc4_encoder = to_vc4_hdmi_encoder(encoder);
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
if (vc4_encoder->hdmi_monitor &&
drm_default_rgb_quant_range(mode) == HDMI_QUANTIZATION_RANGE_LIMITED) {
if (vc4_hdmi->variant->csc_setup)
vc4_hdmi->variant->csc_setup(vc4_hdmi, true);
vc4_encoder->limited_rgb_range = true;
} else {
if (vc4_hdmi->variant->csc_setup)
vc4_hdmi->variant->csc_setup(vc4_hdmi, false);
vc4_encoder->limited_rgb_range = false;
}
HDMI_WRITE(HDMI_FIFO_CTL, VC4_HDMI_FIFO_CTL_MASTER_SLAVE_N);
}
static void vc4_hdmi_encoder_post_crtc_enable(struct drm_encoder *encoder,
struct drm_atomic_state *state)
{
struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
struct vc4_hdmi_encoder *vc4_encoder = to_vc4_hdmi_encoder(encoder);
bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC;
bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC;
int ret;
HDMI_WRITE(HDMI_VID_CTL,
VC4_HD_VID_CTL_ENABLE |
VC4_HD_VID_CTL_CLRRGB |
VC4_HD_VID_CTL_UNDERFLOW_ENABLE |
VC4_HD_VID_CTL_FRAME_COUNTER_RESET |
(vsync_pos ? 0 : VC4_HD_VID_CTL_VSYNC_LOW) |
(hsync_pos ? 0 : VC4_HD_VID_CTL_HSYNC_LOW));
HDMI_WRITE(HDMI_VID_CTL,
HDMI_READ(HDMI_VID_CTL) & ~VC4_HD_VID_CTL_BLANKPIX);
if (vc4_encoder->hdmi_monitor) {
HDMI_WRITE(HDMI_SCHEDULER_CONTROL,
HDMI_READ(HDMI_SCHEDULER_CONTROL) |
VC4_HDMI_SCHEDULER_CONTROL_MODE_HDMI);
ret = wait_for(HDMI_READ(HDMI_SCHEDULER_CONTROL) &
VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE, 1000);
WARN_ONCE(ret, "Timeout waiting for "
"VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE\n");
} else {
HDMI_WRITE(HDMI_RAM_PACKET_CONFIG,
HDMI_READ(HDMI_RAM_PACKET_CONFIG) &
~(VC4_HDMI_RAM_PACKET_ENABLE));
HDMI_WRITE(HDMI_SCHEDULER_CONTROL,
HDMI_READ(HDMI_SCHEDULER_CONTROL) &
~VC4_HDMI_SCHEDULER_CONTROL_MODE_HDMI);
ret = wait_for(!(HDMI_READ(HDMI_SCHEDULER_CONTROL) &
VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE), 1000);
WARN_ONCE(ret, "Timeout waiting for "
"!VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE\n");
}
if (vc4_encoder->hdmi_monitor) {
WARN_ON(!(HDMI_READ(HDMI_SCHEDULER_CONTROL) &
VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE));
HDMI_WRITE(HDMI_SCHEDULER_CONTROL,
HDMI_READ(HDMI_SCHEDULER_CONTROL) |
VC4_HDMI_SCHEDULER_CONTROL_VERT_ALWAYS_KEEPOUT);
HDMI_WRITE(HDMI_RAM_PACKET_CONFIG,
VC4_HDMI_RAM_PACKET_ENABLE);
vc4_hdmi_set_infoframes(encoder);
}
vc4_hdmi_recenter_fifo(vc4_hdmi);
vc4_hdmi_enable_scrambling(encoder);
}
static void vc4_hdmi_encoder_enable(struct drm_encoder *encoder)
{
}
#define WIFI_2_4GHz_CH1_MIN_FREQ 2400000000ULL
#define WIFI_2_4GHz_CH1_MAX_FREQ 2422000000ULL
static int vc4_hdmi_encoder_atomic_check(struct drm_encoder *encoder,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct vc4_hdmi_connector_state *vc4_state = conn_state_to_vc4_hdmi_conn_state(conn_state);
struct drm_display_mode *mode = &crtc_state->adjusted_mode;
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
unsigned long long pixel_rate = mode->clock * 1000;
unsigned long long tmds_rate;
if (vc4_hdmi->variant->unsupported_odd_h_timings &&
((mode->hdisplay % 2) || (mode->hsync_start % 2) ||
(mode->hsync_end % 2) || (mode->htotal % 2)))
return -EINVAL;
/*
* The 1440p@60 pixel rate is in the same range than the first
* WiFi channel (between 2.4GHz and 2.422GHz with 22MHz
* bandwidth). Slightly lower the frequency to bring it out of
* the WiFi range.
*/
tmds_rate = pixel_rate * 10;
if (vc4_hdmi->disable_wifi_frequencies &&
(tmds_rate >= WIFI_2_4GHz_CH1_MIN_FREQ &&
tmds_rate <= WIFI_2_4GHz_CH1_MAX_FREQ)) {
mode->clock = 238560;
pixel_rate = mode->clock * 1000;
}
if (conn_state->max_bpc == 12) {
pixel_rate = pixel_rate * 150;
do_div(pixel_rate, 100);
} else if (conn_state->max_bpc == 10) {
pixel_rate = pixel_rate * 125;
do_div(pixel_rate, 100);
}
if (mode->flags & DRM_MODE_FLAG_DBLCLK)
pixel_rate = pixel_rate * 2;
if (pixel_rate > vc4_hdmi->variant->max_pixel_clock)
return -EINVAL;
if (vc4_hdmi->disable_4kp60 && (pixel_rate > HDMI_14_MAX_TMDS_CLK))
return -EINVAL;
vc4_state->pixel_rate = pixel_rate;
return 0;
}
static enum drm_mode_status
vc4_hdmi_encoder_mode_valid(struct drm_encoder *encoder,
const struct drm_display_mode *mode)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
if (vc4_hdmi->variant->unsupported_odd_h_timings &&
((mode->hdisplay % 2) || (mode->hsync_start % 2) ||
(mode->hsync_end % 2) || (mode->htotal % 2)))
return MODE_H_ILLEGAL;
if ((mode->clock * 1000) > vc4_hdmi->variant->max_pixel_clock)
return MODE_CLOCK_HIGH;
if (vc4_hdmi->disable_4kp60 && vc4_hdmi_mode_needs_scrambling(mode))
return MODE_CLOCK_HIGH;
return MODE_OK;
}
static const struct drm_encoder_helper_funcs vc4_hdmi_encoder_helper_funcs = {
.atomic_check = vc4_hdmi_encoder_atomic_check,
.mode_valid = vc4_hdmi_encoder_mode_valid,
.disable = vc4_hdmi_encoder_disable,
.enable = vc4_hdmi_encoder_enable,
};
static u32 vc4_hdmi_channel_map(struct vc4_hdmi *vc4_hdmi, u32 channel_mask)
{
int i;
u32 channel_map = 0;
for (i = 0; i < 8; i++) {
if (channel_mask & BIT(i))
channel_map |= i << (3 * i);
}
return channel_map;
}
static u32 vc5_hdmi_channel_map(struct vc4_hdmi *vc4_hdmi, u32 channel_mask)
{
int i;
u32 channel_map = 0;
for (i = 0; i < 8; i++) {
if (channel_mask & BIT(i))
channel_map |= i << (4 * i);
}
return channel_map;
}
/* HDMI audio codec callbacks */
static void vc4_hdmi_audio_set_mai_clock(struct vc4_hdmi *vc4_hdmi,
unsigned int samplerate)
{
u32 hsm_clock = clk_get_rate(vc4_hdmi->audio_clock);
unsigned long n, m;
rational_best_approximation(hsm_clock, samplerate,
VC4_HD_MAI_SMP_N_MASK >>
VC4_HD_MAI_SMP_N_SHIFT,
(VC4_HD_MAI_SMP_M_MASK >>
VC4_HD_MAI_SMP_M_SHIFT) + 1,
&n, &m);
HDMI_WRITE(HDMI_MAI_SMP,
VC4_SET_FIELD(n, VC4_HD_MAI_SMP_N) |
VC4_SET_FIELD(m - 1, VC4_HD_MAI_SMP_M));
}
static void vc4_hdmi_set_n_cts(struct vc4_hdmi *vc4_hdmi, unsigned int samplerate)
{
struct drm_encoder *encoder = &vc4_hdmi->encoder.base.base;
struct drm_crtc *crtc = encoder->crtc;
const struct drm_display_mode *mode = &crtc->state->adjusted_mode;
u32 n, cts;
u64 tmp;
n = 128 * samplerate / 1000;
tmp = (u64)(mode->clock * 1000) * n;
do_div(tmp, 128 * samplerate);
cts = tmp;
HDMI_WRITE(HDMI_CRP_CFG,
VC4_HDMI_CRP_CFG_EXTERNAL_CTS_EN |
VC4_SET_FIELD(n, VC4_HDMI_CRP_CFG_N));
/*
* We could get slightly more accurate clocks in some cases by
* providing a CTS_1 value. The two CTS values are alternated
* between based on the period fields
*/
HDMI_WRITE(HDMI_CTS_0, cts);
HDMI_WRITE(HDMI_CTS_1, cts);
}
static inline struct vc4_hdmi *dai_to_hdmi(struct snd_soc_dai *dai)
{
struct snd_soc_card *card = snd_soc_dai_get_drvdata(dai);
return snd_soc_card_get_drvdata(card);
}
static int vc4_hdmi_audio_startup(struct device *dev, void *data)
{
struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev);
struct drm_encoder *encoder = &vc4_hdmi->encoder.base.base;
/*
* If the HDMI encoder hasn't probed, or the encoder is
* currently in DVI mode, treat the codec dai as missing.
*/
if (!encoder->crtc || !(HDMI_READ(HDMI_RAM_PACKET_CONFIG) &
VC4_HDMI_RAM_PACKET_ENABLE))
return -ENODEV;
vc4_hdmi->audio.streaming = true;
HDMI_WRITE(HDMI_MAI_CTL,
VC4_HD_MAI_CTL_RESET |
VC4_HD_MAI_CTL_FLUSH |
VC4_HD_MAI_CTL_DLATE |
VC4_HD_MAI_CTL_ERRORE |
VC4_HD_MAI_CTL_ERRORF);
if (vc4_hdmi->variant->phy_rng_enable)
vc4_hdmi->variant->phy_rng_enable(vc4_hdmi);
return 0;
}
static void vc4_hdmi_audio_reset(struct vc4_hdmi *vc4_hdmi)
{
struct drm_encoder *encoder = &vc4_hdmi->encoder.base.base;
struct device *dev = &vc4_hdmi->pdev->dev;
int ret;
vc4_hdmi->audio.streaming = false;
ret = vc4_hdmi_stop_packet(encoder, HDMI_INFOFRAME_TYPE_AUDIO, false);
if (ret)
dev_err(dev, "Failed to stop audio infoframe: %d\n", ret);
HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_RESET);
HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_ERRORF);
HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_FLUSH);
}
static void vc4_hdmi_audio_shutdown(struct device *dev, void *data)
{
struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev);
HDMI_WRITE(HDMI_MAI_CTL,
VC4_HD_MAI_CTL_DLATE |
VC4_HD_MAI_CTL_ERRORE |
VC4_HD_MAI_CTL_ERRORF);
if (vc4_hdmi->variant->phy_rng_disable)
vc4_hdmi->variant->phy_rng_disable(vc4_hdmi);
vc4_hdmi->audio.streaming = false;
vc4_hdmi_audio_reset(vc4_hdmi);
}
static int sample_rate_to_mai_fmt(int samplerate)
{
switch (samplerate) {
case 8000:
return VC4_HDMI_MAI_SAMPLE_RATE_8000;
case 11025:
return VC4_HDMI_MAI_SAMPLE_RATE_11025;
case 12000:
return VC4_HDMI_MAI_SAMPLE_RATE_12000;
case 16000:
return VC4_HDMI_MAI_SAMPLE_RATE_16000;
case 22050:
return VC4_HDMI_MAI_SAMPLE_RATE_22050;
case 24000:
return VC4_HDMI_MAI_SAMPLE_RATE_24000;
case 32000:
return VC4_HDMI_MAI_SAMPLE_RATE_32000;
case 44100:
return VC4_HDMI_MAI_SAMPLE_RATE_44100;
case 48000:
return VC4_HDMI_MAI_SAMPLE_RATE_48000;
case 64000:
return VC4_HDMI_MAI_SAMPLE_RATE_64000;
case 88200:
return VC4_HDMI_MAI_SAMPLE_RATE_88200;
case 96000:
return VC4_HDMI_MAI_SAMPLE_RATE_96000;
case 128000:
return VC4_HDMI_MAI_SAMPLE_RATE_128000;
case 176400:
return VC4_HDMI_MAI_SAMPLE_RATE_176400;
case 192000:
return VC4_HDMI_MAI_SAMPLE_RATE_192000;
default:
return VC4_HDMI_MAI_SAMPLE_RATE_NOT_INDICATED;
}
}
/* HDMI audio codec callbacks */
static int vc4_hdmi_audio_prepare(struct device *dev, void *data,
struct hdmi_codec_daifmt *daifmt,
struct hdmi_codec_params *params)
{
struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev);
struct drm_encoder *encoder = &vc4_hdmi->encoder.base.base;
unsigned int sample_rate = params->sample_rate;
unsigned int channels = params->channels;
u32 audio_packet_config, channel_mask;
u32 channel_map;
u32 mai_audio_format;
u32 mai_sample_rate;
dev_dbg(dev, "%s: %u Hz, %d bit, %d channels\n", __func__,
sample_rate, params->sample_width, channels);
HDMI_WRITE(HDMI_MAI_CTL,
VC4_SET_FIELD(channels, VC4_HD_MAI_CTL_CHNUM) |
VC4_HD_MAI_CTL_WHOLSMP |
VC4_HD_MAI_CTL_CHALIGN |
VC4_HD_MAI_CTL_ENABLE);
vc4_hdmi_audio_set_mai_clock(vc4_hdmi, sample_rate);
mai_sample_rate = sample_rate_to_mai_fmt(sample_rate);
if (params->iec.status[0] & IEC958_AES0_NONAUDIO &&
params->channels == 8)
mai_audio_format = VC4_HDMI_MAI_FORMAT_HBR;
else
mai_audio_format = VC4_HDMI_MAI_FORMAT_PCM;
HDMI_WRITE(HDMI_MAI_FMT,
VC4_SET_FIELD(mai_sample_rate,
VC4_HDMI_MAI_FORMAT_SAMPLE_RATE) |
VC4_SET_FIELD(mai_audio_format,
VC4_HDMI_MAI_FORMAT_AUDIO_FORMAT));
/* The B frame identifier should match the value used by alsa-lib (8) */
audio_packet_config =
VC4_HDMI_AUDIO_PACKET_ZERO_DATA_ON_SAMPLE_FLAT |
VC4_HDMI_AUDIO_PACKET_ZERO_DATA_ON_INACTIVE_CHANNELS |
VC4_SET_FIELD(0x8, VC4_HDMI_AUDIO_PACKET_B_FRAME_IDENTIFIER);
channel_mask = GENMASK(channels - 1, 0);
audio_packet_config |= VC4_SET_FIELD(channel_mask,
VC4_HDMI_AUDIO_PACKET_CEA_MASK);
/* Set the MAI threshold */
HDMI_WRITE(HDMI_MAI_THR,
VC4_SET_FIELD(0x10, VC4_HD_MAI_THR_PANICHIGH) |
VC4_SET_FIELD(0x10, VC4_HD_MAI_THR_PANICLOW) |
VC4_SET_FIELD(0x10, VC4_HD_MAI_THR_DREQHIGH) |
VC4_SET_FIELD(0x10, VC4_HD_MAI_THR_DREQLOW));
HDMI_WRITE(HDMI_MAI_CONFIG,
VC4_HDMI_MAI_CONFIG_BIT_REVERSE |
VC4_HDMI_MAI_CONFIG_FORMAT_REVERSE |
VC4_SET_FIELD(channel_mask, VC4_HDMI_MAI_CHANNEL_MASK));
channel_map = vc4_hdmi->variant->channel_map(vc4_hdmi, channel_mask);
HDMI_WRITE(HDMI_MAI_CHANNEL_MAP, channel_map);
HDMI_WRITE(HDMI_AUDIO_PACKET_CONFIG, audio_packet_config);
vc4_hdmi_set_n_cts(vc4_hdmi, sample_rate);
memcpy(&vc4_hdmi->audio.infoframe, &params->cea, sizeof(params->cea));
vc4_hdmi_set_audio_infoframe(encoder);
return 0;
}
static const struct snd_soc_component_driver vc4_hdmi_audio_cpu_dai_comp = {
.name = "vc4-hdmi-cpu-dai-component",
};
static int vc4_hdmi_audio_cpu_dai_probe(struct snd_soc_dai *dai)
{
struct vc4_hdmi *vc4_hdmi = dai_to_hdmi(dai);
snd_soc_dai_init_dma_data(dai, &vc4_hdmi->audio.dma_data, NULL);
return 0;
}
static struct snd_soc_dai_driver vc4_hdmi_audio_cpu_dai_drv = {
.name = "vc4-hdmi-cpu-dai",
.probe = vc4_hdmi_audio_cpu_dai_probe,
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 8,
.rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 |
SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 |
SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_176400 |
SNDRV_PCM_RATE_192000,
.formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
},
};
static const struct snd_dmaengine_pcm_config pcm_conf = {
.chan_names[SNDRV_PCM_STREAM_PLAYBACK] = "audio-rx",
.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
};
static int vc4_hdmi_audio_get_eld(struct device *dev, void *data,
uint8_t *buf, size_t len)
{
struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev);
struct drm_connector *connector = &vc4_hdmi->connector;
memcpy(buf, connector->eld, min(sizeof(connector->eld), len));
return 0;
}
static const struct hdmi_codec_ops vc4_hdmi_codec_ops = {
.get_eld = vc4_hdmi_audio_get_eld,
.prepare = vc4_hdmi_audio_prepare,
.audio_shutdown = vc4_hdmi_audio_shutdown,
.audio_startup = vc4_hdmi_audio_startup,
};
static struct hdmi_codec_pdata vc4_hdmi_codec_pdata = {
.ops = &vc4_hdmi_codec_ops,
.max_i2s_channels = 8,
.i2s = 1,
};
static int vc4_hdmi_audio_init(struct vc4_hdmi *vc4_hdmi)
{
const struct vc4_hdmi_register *mai_data =
&vc4_hdmi->variant->registers[HDMI_MAI_DATA];
struct snd_soc_dai_link *dai_link = &vc4_hdmi->audio.link;
struct snd_soc_card *card = &vc4_hdmi->audio.card;
struct device *dev = &vc4_hdmi->pdev->dev;
struct platform_device *codec_pdev;
const __be32 *addr;
int index;
int ret;
if (!of_find_property(dev->of_node, "dmas", NULL)) {
dev_warn(dev,
"'dmas' DT property is missing, no HDMI audio\n");
return 0;
}
if (mai_data->reg != VC4_HD) {
WARN_ONCE(true, "MAI isn't in the HD block\n");
return -EINVAL;
}
/*
* Get the physical address of VC4_HD_MAI_DATA. We need to retrieve
* the bus address specified in the DT, because the physical address
* (the one returned by platform_get_resource()) is not appropriate
* for DMA transfers.
* This VC/MMU should probably be exposed to avoid this kind of hacks.
*/
index = of_property_match_string(dev->of_node, "reg-names", "hd");
/* Before BCM2711, we don't have a named register range */
if (index < 0)
index = 1;
addr = of_get_address(dev->of_node, index, NULL, NULL);
vc4_hdmi->audio.dma_data.addr = be32_to_cpup(addr) + mai_data->offset;
vc4_hdmi->audio.dma_data.addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
vc4_hdmi->audio.dma_data.maxburst = 2;
ret = devm_snd_dmaengine_pcm_register(dev, &pcm_conf, 0);
if (ret) {
dev_err(dev, "Could not register PCM component: %d\n", ret);
return ret;
}
ret = devm_snd_soc_register_component(dev, &vc4_hdmi_audio_cpu_dai_comp,
&vc4_hdmi_audio_cpu_dai_drv, 1);
if (ret) {
dev_err(dev, "Could not register CPU DAI: %d\n", ret);
return ret;
}
codec_pdev = platform_device_register_data(dev, HDMI_CODEC_DRV_NAME,
PLATFORM_DEVID_AUTO,
&vc4_hdmi_codec_pdata,
sizeof(vc4_hdmi_codec_pdata));
if (IS_ERR(codec_pdev)) {
dev_err(dev, "Couldn't register the HDMI codec: %ld\n", PTR_ERR(codec_pdev));
return PTR_ERR(codec_pdev);
}
dai_link->cpus = &vc4_hdmi->audio.cpu;
dai_link->codecs = &vc4_hdmi->audio.codec;
dai_link->platforms = &vc4_hdmi->audio.platform;
dai_link->num_cpus = 1;
dai_link->num_codecs = 1;
dai_link->num_platforms = 1;
dai_link->name = "MAI";
dai_link->stream_name = "MAI PCM";
dai_link->codecs->dai_name = "i2s-hifi";
dai_link->cpus->dai_name = dev_name(dev);
dai_link->codecs->name = dev_name(&codec_pdev->dev);
dai_link->platforms->name = dev_name(dev);
card->dai_link = dai_link;
card->num_links = 1;
card->name = vc4_hdmi->variant->card_name;
card->driver_name = "vc4-hdmi";
card->dev = dev;
card->owner = THIS_MODULE;
/*
* Be careful, snd_soc_register_card() calls dev_set_drvdata() and
* stores a pointer to the snd card object in dev->driver_data. This
* means we cannot use it for something else. The hdmi back-pointer is
* now stored in card->drvdata and should be retrieved with
* snd_soc_card_get_drvdata() if needed.
*/
snd_soc_card_set_drvdata(card, vc4_hdmi);
ret = devm_snd_soc_register_card(dev, card);
if (ret)
dev_err_probe(dev, ret, "Could not register sound card\n");
return ret;
}
static irqreturn_t vc4_hdmi_hpd_irq_thread(int irq, void *priv)
{
struct vc4_hdmi *vc4_hdmi = priv;
struct drm_connector *connector = &vc4_hdmi->connector;
struct drm_device *dev = connector->dev;
if (dev && dev->registered)
drm_connector_helper_hpd_irq_event(connector);
return IRQ_HANDLED;
}
static int vc4_hdmi_hotplug_init(struct vc4_hdmi *vc4_hdmi)
{
struct drm_connector *connector = &vc4_hdmi->connector;
struct platform_device *pdev = vc4_hdmi->pdev;
int ret;
if (vc4_hdmi->variant->external_irq_controller) {
unsigned int hpd_con = platform_get_irq_byname(pdev, "hpd-connected");
unsigned int hpd_rm = platform_get_irq_byname(pdev, "hpd-removed");
ret = request_threaded_irq(hpd_con,
NULL,
vc4_hdmi_hpd_irq_thread, IRQF_ONESHOT,
"vc4 hdmi hpd connected", vc4_hdmi);
if (ret)
return ret;
ret = request_threaded_irq(hpd_rm,
NULL,
vc4_hdmi_hpd_irq_thread, IRQF_ONESHOT,
"vc4 hdmi hpd disconnected", vc4_hdmi);
if (ret) {
free_irq(hpd_con, vc4_hdmi);
return ret;
}
connector->polled = DRM_CONNECTOR_POLL_HPD;
}
return 0;
}
static void vc4_hdmi_hotplug_exit(struct vc4_hdmi *vc4_hdmi)
{
struct platform_device *pdev = vc4_hdmi->pdev;
if (vc4_hdmi->variant->external_irq_controller) {
free_irq(platform_get_irq_byname(pdev, "hpd-connected"), vc4_hdmi);
free_irq(platform_get_irq_byname(pdev, "hpd-removed"), vc4_hdmi);
}
}
#ifdef CONFIG_DRM_VC4_HDMI_CEC
static irqreturn_t vc4_cec_irq_handler_rx_thread(int irq, void *priv)
{
struct vc4_hdmi *vc4_hdmi = priv;
if (vc4_hdmi->cec_rx_msg.len)
cec_received_msg(vc4_hdmi->cec_adap,
&vc4_hdmi->cec_rx_msg);
return IRQ_HANDLED;
}
static irqreturn_t vc4_cec_irq_handler_tx_thread(int irq, void *priv)
{
struct vc4_hdmi *vc4_hdmi = priv;
if (vc4_hdmi->cec_tx_ok) {
cec_transmit_done(vc4_hdmi->cec_adap, CEC_TX_STATUS_OK,
0, 0, 0, 0);
} else {
/*
* This CEC implementation makes 1 retry, so if we
* get a NACK, then that means it made 2 attempts.
*/
cec_transmit_done(vc4_hdmi->cec_adap, CEC_TX_STATUS_NACK,
0, 2, 0, 0);
}
return IRQ_HANDLED;
}
static irqreturn_t vc4_cec_irq_handler_thread(int irq, void *priv)
{
struct vc4_hdmi *vc4_hdmi = priv;
irqreturn_t ret;
if (vc4_hdmi->cec_irq_was_rx)
ret = vc4_cec_irq_handler_rx_thread(irq, priv);
else
ret = vc4_cec_irq_handler_tx_thread(irq, priv);
return ret;
}
static void vc4_cec_read_msg(struct vc4_hdmi *vc4_hdmi, u32 cntrl1)
{
struct drm_device *dev = vc4_hdmi->connector.dev;
struct cec_msg *msg = &vc4_hdmi->cec_rx_msg;
unsigned int i;
msg->len = 1 + ((cntrl1 & VC4_HDMI_CEC_REC_WRD_CNT_MASK) >>
VC4_HDMI_CEC_REC_WRD_CNT_SHIFT);
if (msg->len > 16) {
drm_err(dev, "Attempting to read too much data (%d)\n", msg->len);
return;
}
for (i = 0; i < msg->len; i += 4) {
u32 val = HDMI_READ(HDMI_CEC_RX_DATA_1 + (i >> 2));
msg->msg[i] = val & 0xff;
msg->msg[i + 1] = (val >> 8) & 0xff;
msg->msg[i + 2] = (val >> 16) & 0xff;
msg->msg[i + 3] = (val >> 24) & 0xff;
}
}
static irqreturn_t vc4_cec_irq_handler_tx_bare(int irq, void *priv)
{
struct vc4_hdmi *vc4_hdmi = priv;
u32 cntrl1;
cntrl1 = HDMI_READ(HDMI_CEC_CNTRL_1);
vc4_hdmi->cec_tx_ok = cntrl1 & VC4_HDMI_CEC_TX_STATUS_GOOD;
cntrl1 &= ~VC4_HDMI_CEC_START_XMIT_BEGIN;
HDMI_WRITE(HDMI_CEC_CNTRL_1, cntrl1);
return IRQ_WAKE_THREAD;
}
static irqreturn_t vc4_cec_irq_handler_rx_bare(int irq, void *priv)
{
struct vc4_hdmi *vc4_hdmi = priv;
u32 cntrl1;
vc4_hdmi->cec_rx_msg.len = 0;
cntrl1 = HDMI_READ(HDMI_CEC_CNTRL_1);
vc4_cec_read_msg(vc4_hdmi, cntrl1);
cntrl1 |= VC4_HDMI_CEC_CLEAR_RECEIVE_OFF;
HDMI_WRITE(HDMI_CEC_CNTRL_1, cntrl1);
cntrl1 &= ~VC4_HDMI_CEC_CLEAR_RECEIVE_OFF;
HDMI_WRITE(HDMI_CEC_CNTRL_1, cntrl1);
return IRQ_WAKE_THREAD;
}
static irqreturn_t vc4_cec_irq_handler(int irq, void *priv)
{
struct vc4_hdmi *vc4_hdmi = priv;
u32 stat = HDMI_READ(HDMI_CEC_CPU_STATUS);
irqreturn_t ret;
u32 cntrl5;
if (!(stat & VC4_HDMI_CPU_CEC))
return IRQ_NONE;
cntrl5 = HDMI_READ(HDMI_CEC_CNTRL_5);
vc4_hdmi->cec_irq_was_rx = cntrl5 & VC4_HDMI_CEC_RX_CEC_INT;
if (vc4_hdmi->cec_irq_was_rx)
ret = vc4_cec_irq_handler_rx_bare(irq, priv);
else
ret = vc4_cec_irq_handler_tx_bare(irq, priv);
HDMI_WRITE(HDMI_CEC_CPU_CLEAR, VC4_HDMI_CPU_CEC);
return ret;
}
static int vc4_hdmi_cec_adap_enable(struct cec_adapter *adap, bool enable)
{
struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap);
/* clock period in microseconds */
const u32 usecs = 1000000 / CEC_CLOCK_FREQ;
u32 val = HDMI_READ(HDMI_CEC_CNTRL_5);
val &= ~(VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET |
VC4_HDMI_CEC_CNT_TO_4700_US_MASK |
VC4_HDMI_CEC_CNT_TO_4500_US_MASK);
val |= ((4700 / usecs) << VC4_HDMI_CEC_CNT_TO_4700_US_SHIFT) |
((4500 / usecs) << VC4_HDMI_CEC_CNT_TO_4500_US_SHIFT);
if (enable) {
HDMI_WRITE(HDMI_CEC_CNTRL_5, val |
VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET);
HDMI_WRITE(HDMI_CEC_CNTRL_5, val);
HDMI_WRITE(HDMI_CEC_CNTRL_2,
((1500 / usecs) << VC4_HDMI_CEC_CNT_TO_1500_US_SHIFT) |
((1300 / usecs) << VC4_HDMI_CEC_CNT_TO_1300_US_SHIFT) |
((800 / usecs) << VC4_HDMI_CEC_CNT_TO_800_US_SHIFT) |
((600 / usecs) << VC4_HDMI_CEC_CNT_TO_600_US_SHIFT) |
((400 / usecs) << VC4_HDMI_CEC_CNT_TO_400_US_SHIFT));
HDMI_WRITE(HDMI_CEC_CNTRL_3,
((2750 / usecs) << VC4_HDMI_CEC_CNT_TO_2750_US_SHIFT) |
((2400 / usecs) << VC4_HDMI_CEC_CNT_TO_2400_US_SHIFT) |
((2050 / usecs) << VC4_HDMI_CEC_CNT_TO_2050_US_SHIFT) |
((1700 / usecs) << VC4_HDMI_CEC_CNT_TO_1700_US_SHIFT));
HDMI_WRITE(HDMI_CEC_CNTRL_4,
((4300 / usecs) << VC4_HDMI_CEC_CNT_TO_4300_US_SHIFT) |
((3900 / usecs) << VC4_HDMI_CEC_CNT_TO_3900_US_SHIFT) |
((3600 / usecs) << VC4_HDMI_CEC_CNT_TO_3600_US_SHIFT) |
((3500 / usecs) << VC4_HDMI_CEC_CNT_TO_3500_US_SHIFT));
if (!vc4_hdmi->variant->external_irq_controller)
HDMI_WRITE(HDMI_CEC_CPU_MASK_CLEAR, VC4_HDMI_CPU_CEC);
} else {
if (!vc4_hdmi->variant->external_irq_controller)
HDMI_WRITE(HDMI_CEC_CPU_MASK_SET, VC4_HDMI_CPU_CEC);
HDMI_WRITE(HDMI_CEC_CNTRL_5, val |
VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET);
}
return 0;
}
static int vc4_hdmi_cec_adap_log_addr(struct cec_adapter *adap, u8 log_addr)
{
struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap);
HDMI_WRITE(HDMI_CEC_CNTRL_1,
(HDMI_READ(HDMI_CEC_CNTRL_1) & ~VC4_HDMI_CEC_ADDR_MASK) |
(log_addr & 0xf) << VC4_HDMI_CEC_ADDR_SHIFT);
return 0;
}
static int vc4_hdmi_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
u32 signal_free_time, struct cec_msg *msg)
{
struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap);
struct drm_device *dev = vc4_hdmi->connector.dev;
u32 val;
unsigned int i;
if (msg->len > 16) {
drm_err(dev, "Attempting to transmit too much data (%d)\n", msg->len);
return -ENOMEM;
}
for (i = 0; i < msg->len; i += 4)
HDMI_WRITE(HDMI_CEC_TX_DATA_1 + (i >> 2),
(msg->msg[i]) |
(msg->msg[i + 1] << 8) |
(msg->msg[i + 2] << 16) |
(msg->msg[i + 3] << 24));
val = HDMI_READ(HDMI_CEC_CNTRL_1);
val &= ~VC4_HDMI_CEC_START_XMIT_BEGIN;
HDMI_WRITE(HDMI_CEC_CNTRL_1, val);
val &= ~VC4_HDMI_CEC_MESSAGE_LENGTH_MASK;
val |= (msg->len - 1) << VC4_HDMI_CEC_MESSAGE_LENGTH_SHIFT;
val |= VC4_HDMI_CEC_START_XMIT_BEGIN;
HDMI_WRITE(HDMI_CEC_CNTRL_1, val);
return 0;
}
static const struct cec_adap_ops vc4_hdmi_cec_adap_ops = {
.adap_enable = vc4_hdmi_cec_adap_enable,
.adap_log_addr = vc4_hdmi_cec_adap_log_addr,
.adap_transmit = vc4_hdmi_cec_adap_transmit,
};
static int vc4_hdmi_cec_init(struct vc4_hdmi *vc4_hdmi)
{
struct cec_connector_info conn_info;
struct platform_device *pdev = vc4_hdmi->pdev;
struct device *dev = &pdev->dev;
u32 value;
int ret;
if (!of_find_property(dev->of_node, "interrupts", NULL)) {
dev_warn(dev, "'interrupts' DT property is missing, no CEC\n");
return 0;
}
vc4_hdmi->cec_adap = cec_allocate_adapter(&vc4_hdmi_cec_adap_ops,
vc4_hdmi, "vc4",
CEC_CAP_DEFAULTS |
CEC_CAP_CONNECTOR_INFO, 1);
ret = PTR_ERR_OR_ZERO(vc4_hdmi->cec_adap);
if (ret < 0)
return ret;
cec_fill_conn_info_from_drm(&conn_info, &vc4_hdmi->connector);
cec_s_conn_info(vc4_hdmi->cec_adap, &conn_info);
value = HDMI_READ(HDMI_CEC_CNTRL_1);
/* Set the logical address to Unregistered */
value |= VC4_HDMI_CEC_ADDR_MASK;
HDMI_WRITE(HDMI_CEC_CNTRL_1, value);
vc4_hdmi_cec_update_clk_div(vc4_hdmi);
if (vc4_hdmi->variant->external_irq_controller) {
ret = request_threaded_irq(platform_get_irq_byname(pdev, "cec-rx"),
vc4_cec_irq_handler_rx_bare,
vc4_cec_irq_handler_rx_thread, 0,
"vc4 hdmi cec rx", vc4_hdmi);
if (ret)
goto err_delete_cec_adap;
ret = request_threaded_irq(platform_get_irq_byname(pdev, "cec-tx"),
vc4_cec_irq_handler_tx_bare,
vc4_cec_irq_handler_tx_thread, 0,
"vc4 hdmi cec tx", vc4_hdmi);
if (ret)
goto err_remove_cec_rx_handler;
} else {
HDMI_WRITE(HDMI_CEC_CPU_MASK_SET, 0xffffffff);
ret = request_threaded_irq(platform_get_irq(pdev, 0),
vc4_cec_irq_handler,
vc4_cec_irq_handler_thread, 0,
"vc4 hdmi cec", vc4_hdmi);
if (ret)
goto err_delete_cec_adap;
}
ret = cec_register_adapter(vc4_hdmi->cec_adap, &pdev->dev);
if (ret < 0)
goto err_remove_handlers;
return 0;
err_remove_handlers:
if (vc4_hdmi->variant->external_irq_controller)
free_irq(platform_get_irq_byname(pdev, "cec-tx"), vc4_hdmi);
else
free_irq(platform_get_irq(pdev, 0), vc4_hdmi);
err_remove_cec_rx_handler:
if (vc4_hdmi->variant->external_irq_controller)
free_irq(platform_get_irq_byname(pdev, "cec-rx"), vc4_hdmi);
err_delete_cec_adap:
cec_delete_adapter(vc4_hdmi->cec_adap);
return ret;
}
static void vc4_hdmi_cec_exit(struct vc4_hdmi *vc4_hdmi)
{
struct platform_device *pdev = vc4_hdmi->pdev;
if (vc4_hdmi->variant->external_irq_controller) {
free_irq(platform_get_irq_byname(pdev, "cec-rx"), vc4_hdmi);
free_irq(platform_get_irq_byname(pdev, "cec-tx"), vc4_hdmi);
} else {
free_irq(platform_get_irq(pdev, 0), vc4_hdmi);
}
cec_unregister_adapter(vc4_hdmi->cec_adap);
}
#else
static int vc4_hdmi_cec_init(struct vc4_hdmi *vc4_hdmi)
{
return 0;
}
static void vc4_hdmi_cec_exit(struct vc4_hdmi *vc4_hdmi) {};
#endif
static int vc4_hdmi_build_regset(struct vc4_hdmi *vc4_hdmi,
struct debugfs_regset32 *regset,
enum vc4_hdmi_regs reg)
{
const struct vc4_hdmi_variant *variant = vc4_hdmi->variant;
struct debugfs_reg32 *regs, *new_regs;
unsigned int count = 0;
unsigned int i;
regs = kcalloc(variant->num_registers, sizeof(*regs),
GFP_KERNEL);
if (!regs)
return -ENOMEM;
for (i = 0; i < variant->num_registers; i++) {
const struct vc4_hdmi_register *field = &variant->registers[i];
if (field->reg != reg)
continue;
regs[count].name = field->name;
regs[count].offset = field->offset;
count++;
}
new_regs = krealloc(regs, count * sizeof(*regs), GFP_KERNEL);
if (!new_regs)
return -ENOMEM;
regset->base = __vc4_hdmi_get_field_base(vc4_hdmi, reg);
regset->regs = new_regs;
regset->nregs = count;
return 0;
}
static int vc4_hdmi_init_resources(struct vc4_hdmi *vc4_hdmi)
{
struct platform_device *pdev = vc4_hdmi->pdev;
struct device *dev = &pdev->dev;
int ret;
vc4_hdmi->hdmicore_regs = vc4_ioremap_regs(pdev, 0);
if (IS_ERR(vc4_hdmi->hdmicore_regs))
return PTR_ERR(vc4_hdmi->hdmicore_regs);
vc4_hdmi->hd_regs = vc4_ioremap_regs(pdev, 1);
if (IS_ERR(vc4_hdmi->hd_regs))
return PTR_ERR(vc4_hdmi->hd_regs);
ret = vc4_hdmi_build_regset(vc4_hdmi, &vc4_hdmi->hd_regset, VC4_HD);
if (ret)
return ret;
ret = vc4_hdmi_build_regset(vc4_hdmi, &vc4_hdmi->hdmi_regset, VC4_HDMI);
if (ret)
return ret;
vc4_hdmi->pixel_clock = devm_clk_get(dev, "pixel");
if (IS_ERR(vc4_hdmi->pixel_clock)) {
ret = PTR_ERR(vc4_hdmi->pixel_clock);
if (ret != -EPROBE_DEFER)
DRM_ERROR("Failed to get pixel clock\n");
return ret;
}
vc4_hdmi->hsm_clock = devm_clk_get(dev, "hdmi");
if (IS_ERR(vc4_hdmi->hsm_clock)) {
DRM_ERROR("Failed to get HDMI state machine clock\n");
return PTR_ERR(vc4_hdmi->hsm_clock);
}
vc4_hdmi->audio_clock = vc4_hdmi->hsm_clock;
vc4_hdmi->cec_clock = vc4_hdmi->hsm_clock;
return 0;
}
static int vc5_hdmi_init_resources(struct vc4_hdmi *vc4_hdmi)
{
struct platform_device *pdev = vc4_hdmi->pdev;
struct device *dev = &pdev->dev;
struct resource *res;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hdmi");
if (!res)
return -ENODEV;
vc4_hdmi->hdmicore_regs = devm_ioremap(dev, res->start,
resource_size(res));
if (!vc4_hdmi->hdmicore_regs)
return -ENOMEM;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hd");
if (!res)
return -ENODEV;
vc4_hdmi->hd_regs = devm_ioremap(dev, res->start, resource_size(res));
if (!vc4_hdmi->hd_regs)
return -ENOMEM;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cec");
if (!res)
return -ENODEV;
vc4_hdmi->cec_regs = devm_ioremap(dev, res->start, resource_size(res));
if (!vc4_hdmi->cec_regs)
return -ENOMEM;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "csc");
if (!res)
return -ENODEV;
vc4_hdmi->csc_regs = devm_ioremap(dev, res->start, resource_size(res));
if (!vc4_hdmi->csc_regs)
return -ENOMEM;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dvp");
if (!res)
return -ENODEV;
vc4_hdmi->dvp_regs = devm_ioremap(dev, res->start, resource_size(res));
if (!vc4_hdmi->dvp_regs)
return -ENOMEM;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "phy");
if (!res)
return -ENODEV;
vc4_hdmi->phy_regs = devm_ioremap(dev, res->start, resource_size(res));
if (!vc4_hdmi->phy_regs)
return -ENOMEM;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "packet");
if (!res)
return -ENODEV;
vc4_hdmi->ram_regs = devm_ioremap(dev, res->start, resource_size(res));
if (!vc4_hdmi->ram_regs)
return -ENOMEM;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rm");
if (!res)
return -ENODEV;
vc4_hdmi->rm_regs = devm_ioremap(dev, res->start, resource_size(res));
if (!vc4_hdmi->rm_regs)
return -ENOMEM;
vc4_hdmi->hsm_clock = devm_clk_get(dev, "hdmi");
if (IS_ERR(vc4_hdmi->hsm_clock)) {
DRM_ERROR("Failed to get HDMI state machine clock\n");
return PTR_ERR(vc4_hdmi->hsm_clock);
}
vc4_hdmi->pixel_bvb_clock = devm_clk_get(dev, "bvb");
if (IS_ERR(vc4_hdmi->pixel_bvb_clock)) {
DRM_ERROR("Failed to get pixel bvb clock\n");
return PTR_ERR(vc4_hdmi->pixel_bvb_clock);
}
vc4_hdmi->audio_clock = devm_clk_get(dev, "audio");
if (IS_ERR(vc4_hdmi->audio_clock)) {
DRM_ERROR("Failed to get audio clock\n");
return PTR_ERR(vc4_hdmi->audio_clock);
}
vc4_hdmi->cec_clock = devm_clk_get(dev, "cec");
if (IS_ERR(vc4_hdmi->cec_clock)) {
DRM_ERROR("Failed to get CEC clock\n");
return PTR_ERR(vc4_hdmi->cec_clock);
}
vc4_hdmi->reset = devm_reset_control_get(dev, NULL);
if (IS_ERR(vc4_hdmi->reset)) {
DRM_ERROR("Failed to get HDMI reset line\n");
return PTR_ERR(vc4_hdmi->reset);
}
return 0;
}
static int vc4_hdmi_bind(struct device *dev, struct device *master, void *data)
{
const struct vc4_hdmi_variant *variant = of_device_get_match_data(dev);
struct platform_device *pdev = to_platform_device(dev);
struct drm_device *drm = dev_get_drvdata(master);
struct vc4_hdmi *vc4_hdmi;
struct drm_encoder *encoder;
struct device_node *ddc_node;
int ret;
vc4_hdmi = devm_kzalloc(dev, sizeof(*vc4_hdmi), GFP_KERNEL);
if (!vc4_hdmi)
return -ENOMEM;
INIT_DELAYED_WORK(&vc4_hdmi->scrambling_work, vc4_hdmi_scrambling_wq);
dev_set_drvdata(dev, vc4_hdmi);
encoder = &vc4_hdmi->encoder.base.base;
vc4_hdmi->encoder.base.type = variant->encoder_type;
vc4_hdmi->encoder.base.pre_crtc_configure = vc4_hdmi_encoder_pre_crtc_configure;
vc4_hdmi->encoder.base.pre_crtc_enable = vc4_hdmi_encoder_pre_crtc_enable;
vc4_hdmi->encoder.base.post_crtc_enable = vc4_hdmi_encoder_post_crtc_enable;
vc4_hdmi->encoder.base.post_crtc_disable = vc4_hdmi_encoder_post_crtc_disable;
vc4_hdmi->encoder.base.post_crtc_powerdown = vc4_hdmi_encoder_post_crtc_powerdown;
vc4_hdmi->pdev = pdev;
vc4_hdmi->variant = variant;
ret = variant->init_resources(vc4_hdmi);
if (ret)
return ret;
ddc_node = of_parse_phandle(dev->of_node, "ddc", 0);
if (!ddc_node) {
DRM_ERROR("Failed to find ddc node in device tree\n");
return -ENODEV;
}
vc4_hdmi->ddc = of_find_i2c_adapter_by_node(ddc_node);
of_node_put(ddc_node);
if (!vc4_hdmi->ddc) {
DRM_DEBUG("Failed to get ddc i2c adapter by node\n");
return -EPROBE_DEFER;
}
/* Only use the GPIO HPD pin if present in the DT, otherwise
* we'll use the HDMI core's register.
*/
vc4_hdmi->hpd_gpio = devm_gpiod_get_optional(dev, "hpd", GPIOD_IN);
if (IS_ERR(vc4_hdmi->hpd_gpio)) {
ret = PTR_ERR(vc4_hdmi->hpd_gpio);
goto err_put_ddc;
}
vc4_hdmi->disable_wifi_frequencies =
of_property_read_bool(dev->of_node, "wifi-2.4ghz-coexistence");
if (variant->max_pixel_clock == 600000000) {
struct vc4_dev *vc4 = to_vc4_dev(drm);
long max_rate = clk_round_rate(vc4->hvs->core_clk, 550000000);
if (max_rate < 550000000)
vc4_hdmi->disable_4kp60 = true;
}
if (vc4_hdmi->variant->reset)
vc4_hdmi->variant->reset(vc4_hdmi);
if ((of_device_is_compatible(dev->of_node, "brcm,bcm2711-hdmi0") ||
of_device_is_compatible(dev->of_node, "brcm,bcm2711-hdmi1")) &&
HDMI_READ(HDMI_VID_CTL) & VC4_HD_VID_CTL_ENABLE) {
clk_prepare_enable(vc4_hdmi->pixel_clock);
clk_prepare_enable(vc4_hdmi->hsm_clock);
clk_prepare_enable(vc4_hdmi->pixel_bvb_clock);
}
pm_runtime_enable(dev);
drm_simple_encoder_init(drm, encoder, DRM_MODE_ENCODER_TMDS);
drm_encoder_helper_add(encoder, &vc4_hdmi_encoder_helper_funcs);
ret = vc4_hdmi_connector_init(drm, vc4_hdmi);
if (ret)
goto err_destroy_encoder;
ret = vc4_hdmi_hotplug_init(vc4_hdmi);
if (ret)
goto err_destroy_conn;
ret = vc4_hdmi_cec_init(vc4_hdmi);
if (ret)
goto err_free_hotplug;
ret = vc4_hdmi_audio_init(vc4_hdmi);
if (ret)
goto err_free_cec;
vc4_debugfs_add_file(drm, variant->debugfs_name,
vc4_hdmi_debugfs_regs,
vc4_hdmi);
return 0;
err_free_cec:
vc4_hdmi_cec_exit(vc4_hdmi);
err_free_hotplug:
vc4_hdmi_hotplug_exit(vc4_hdmi);
err_destroy_conn:
vc4_hdmi_connector_destroy(&vc4_hdmi->connector);
err_destroy_encoder:
drm_encoder_cleanup(encoder);
pm_runtime_disable(dev);
err_put_ddc:
put_device(&vc4_hdmi->ddc->dev);
return ret;
}
static void vc4_hdmi_unbind(struct device *dev, struct device *master,
void *data)
{
struct vc4_hdmi *vc4_hdmi;
/*
* ASoC makes it a bit hard to retrieve a pointer to the
* vc4_hdmi structure. Registering the card will overwrite our
* device drvdata with a pointer to the snd_soc_card structure,
* which can then be used to retrieve whatever drvdata we want
* to associate.
*
* However, that doesn't fly in the case where we wouldn't
* register an ASoC card (because of an old DT that is missing
* the dmas properties for example), then the card isn't
* registered and the device drvdata wouldn't be set.
*
* We can deal with both cases by making sure a snd_soc_card
* pointer and a vc4_hdmi structure are pointing to the same
* memory address, so we can treat them indistinctly without any
* issue.
*/
BUILD_BUG_ON(offsetof(struct vc4_hdmi_audio, card) != 0);
BUILD_BUG_ON(offsetof(struct vc4_hdmi, audio) != 0);
vc4_hdmi = dev_get_drvdata(dev);
kfree(vc4_hdmi->hdmi_regset.regs);
kfree(vc4_hdmi->hd_regset.regs);
vc4_hdmi_cec_exit(vc4_hdmi);
vc4_hdmi_hotplug_exit(vc4_hdmi);
vc4_hdmi_connector_destroy(&vc4_hdmi->connector);
drm_encoder_cleanup(&vc4_hdmi->encoder.base.base);
pm_runtime_disable(dev);
put_device(&vc4_hdmi->ddc->dev);
}
static const struct component_ops vc4_hdmi_ops = {
.bind = vc4_hdmi_bind,
.unbind = vc4_hdmi_unbind,
};
static int vc4_hdmi_dev_probe(struct platform_device *pdev)
{
return component_add(&pdev->dev, &vc4_hdmi_ops);
}
static int vc4_hdmi_dev_remove(struct platform_device *pdev)
{
component_del(&pdev->dev, &vc4_hdmi_ops);
return 0;
}
static const struct vc4_hdmi_variant bcm2835_variant = {
.encoder_type = VC4_ENCODER_TYPE_HDMI0,
.debugfs_name = "hdmi_regs",
.card_name = "vc4-hdmi",
.max_pixel_clock = 162000000,
.registers = vc4_hdmi_fields,
.num_registers = ARRAY_SIZE(vc4_hdmi_fields),
.init_resources = vc4_hdmi_init_resources,
.csc_setup = vc4_hdmi_csc_setup,
.reset = vc4_hdmi_reset,
.set_timings = vc4_hdmi_set_timings,
.phy_init = vc4_hdmi_phy_init,
.phy_disable = vc4_hdmi_phy_disable,
.phy_rng_enable = vc4_hdmi_phy_rng_enable,
.phy_rng_disable = vc4_hdmi_phy_rng_disable,
.channel_map = vc4_hdmi_channel_map,
.supports_hdr = false,
};
static const struct vc4_hdmi_variant bcm2711_hdmi0_variant = {
.encoder_type = VC4_ENCODER_TYPE_HDMI0,
.debugfs_name = "hdmi0_regs",
.card_name = "vc4-hdmi-0",
.max_pixel_clock = HDMI_14_MAX_TMDS_CLK,
.registers = vc5_hdmi_hdmi0_fields,
.num_registers = ARRAY_SIZE(vc5_hdmi_hdmi0_fields),
.phy_lane_mapping = {
PHY_LANE_0,
PHY_LANE_1,
PHY_LANE_2,
PHY_LANE_CK,
},
.unsupported_odd_h_timings = true,
.external_irq_controller = true,
.init_resources = vc5_hdmi_init_resources,
.csc_setup = vc5_hdmi_csc_setup,
.reset = vc5_hdmi_reset,
.set_timings = vc5_hdmi_set_timings,
.phy_init = vc5_hdmi_phy_init,
.phy_disable = vc5_hdmi_phy_disable,
.phy_rng_enable = vc5_hdmi_phy_rng_enable,
.phy_rng_disable = vc5_hdmi_phy_rng_disable,
.channel_map = vc5_hdmi_channel_map,
.supports_hdr = true,
};
static const struct vc4_hdmi_variant bcm2711_hdmi1_variant = {
.encoder_type = VC4_ENCODER_TYPE_HDMI1,
.debugfs_name = "hdmi1_regs",
.card_name = "vc4-hdmi-1",
.max_pixel_clock = HDMI_14_MAX_TMDS_CLK,
.registers = vc5_hdmi_hdmi1_fields,
.num_registers = ARRAY_SIZE(vc5_hdmi_hdmi1_fields),
.phy_lane_mapping = {
PHY_LANE_1,
PHY_LANE_0,
PHY_LANE_CK,
PHY_LANE_2,
},
.unsupported_odd_h_timings = true,
.external_irq_controller = true,
.init_resources = vc5_hdmi_init_resources,
.csc_setup = vc5_hdmi_csc_setup,
.reset = vc5_hdmi_reset,
.set_timings = vc5_hdmi_set_timings,
.phy_init = vc5_hdmi_phy_init,
.phy_disable = vc5_hdmi_phy_disable,
.phy_rng_enable = vc5_hdmi_phy_rng_enable,
.phy_rng_disable = vc5_hdmi_phy_rng_disable,
.channel_map = vc5_hdmi_channel_map,
.supports_hdr = true,
};
static const struct of_device_id vc4_hdmi_dt_match[] = {
{ .compatible = "brcm,bcm2835-hdmi", .data = &bcm2835_variant },
{ .compatible = "brcm,bcm2711-hdmi0", .data = &bcm2711_hdmi0_variant },
{ .compatible = "brcm,bcm2711-hdmi1", .data = &bcm2711_hdmi1_variant },
{}
};
struct platform_driver vc4_hdmi_driver = {
.probe = vc4_hdmi_dev_probe,
.remove = vc4_hdmi_dev_remove,
.driver = {
.name = "vc4_hdmi",
.of_match_table = vc4_hdmi_dt_match,
},
};