blob: 80450e1d5385aac538817425dbd5132b45172f66 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_X86_TLBFLUSH_H
#define _ASM_X86_TLBFLUSH_H
#include <linux/mm_types.h>
#include <linux/sched.h>
#include <asm/processor.h>
#include <asm/cpufeature.h>
#include <asm/special_insns.h>
#include <asm/smp.h>
#include <asm/invpcid.h>
#include <asm/pti.h>
#include <asm/processor-flags.h>
#include <asm/pgtable.h>
DECLARE_PER_CPU(u64, tlbstate_untag_mask);
void __flush_tlb_all(void);
#define TLB_FLUSH_ALL -1UL
#define TLB_GENERATION_INVALID 0
void cr4_update_irqsoff(unsigned long set, unsigned long clear);
unsigned long cr4_read_shadow(void);
/* Set in this cpu's CR4. */
static inline void cr4_set_bits_irqsoff(unsigned long mask)
{
cr4_update_irqsoff(mask, 0);
}
/* Clear in this cpu's CR4. */
static inline void cr4_clear_bits_irqsoff(unsigned long mask)
{
cr4_update_irqsoff(0, mask);
}
/* Set in this cpu's CR4. */
static inline void cr4_set_bits(unsigned long mask)
{
unsigned long flags;
local_irq_save(flags);
cr4_set_bits_irqsoff(mask);
local_irq_restore(flags);
}
/* Clear in this cpu's CR4. */
static inline void cr4_clear_bits(unsigned long mask)
{
unsigned long flags;
local_irq_save(flags);
cr4_clear_bits_irqsoff(mask);
local_irq_restore(flags);
}
#ifndef MODULE
/*
* 6 because 6 should be plenty and struct tlb_state will fit in two cache
* lines.
*/
#define TLB_NR_DYN_ASIDS 6
struct tlb_context {
u64 ctx_id;
u64 tlb_gen;
};
struct tlb_state {
/*
* cpu_tlbstate.loaded_mm should match CR3 whenever interrupts
* are on. This means that it may not match current->active_mm,
* which will contain the previous user mm when we're in lazy TLB
* mode even if we've already switched back to swapper_pg_dir.
*
* During switch_mm_irqs_off(), loaded_mm will be set to
* LOADED_MM_SWITCHING during the brief interrupts-off window
* when CR3 and loaded_mm would otherwise be inconsistent. This
* is for nmi_uaccess_okay()'s benefit.
*/
struct mm_struct *loaded_mm;
#define LOADED_MM_SWITCHING ((struct mm_struct *)1UL)
/* Last user mm for optimizing IBPB */
union {
struct mm_struct *last_user_mm;
unsigned long last_user_mm_spec;
};
u16 loaded_mm_asid;
u16 next_asid;
/*
* If set we changed the page tables in such a way that we
* needed an invalidation of all contexts (aka. PCIDs / ASIDs).
* This tells us to go invalidate all the non-loaded ctxs[]
* on the next context switch.
*
* The current ctx was kept up-to-date as it ran and does not
* need to be invalidated.
*/
bool invalidate_other;
#ifdef CONFIG_ADDRESS_MASKING
/*
* Active LAM mode.
*
* X86_CR3_LAM_U57/U48 shifted right by X86_CR3_LAM_U57_BIT or 0 if LAM
* disabled.
*/
u8 lam;
#endif
/*
* Mask that contains TLB_NR_DYN_ASIDS+1 bits to indicate
* the corresponding user PCID needs a flush next time we
* switch to it; see SWITCH_TO_USER_CR3.
*/
unsigned short user_pcid_flush_mask;
/*
* Access to this CR4 shadow and to H/W CR4 is protected by
* disabling interrupts when modifying either one.
*/
unsigned long cr4;
/*
* This is a list of all contexts that might exist in the TLB.
* There is one per ASID that we use, and the ASID (what the
* CPU calls PCID) is the index into ctxts.
*
* For each context, ctx_id indicates which mm the TLB's user
* entries came from. As an invariant, the TLB will never
* contain entries that are out-of-date as when that mm reached
* the tlb_gen in the list.
*
* To be clear, this means that it's legal for the TLB code to
* flush the TLB without updating tlb_gen. This can happen
* (for now, at least) due to paravirt remote flushes.
*
* NB: context 0 is a bit special, since it's also used by
* various bits of init code. This is fine -- code that
* isn't aware of PCID will end up harmlessly flushing
* context 0.
*/
struct tlb_context ctxs[TLB_NR_DYN_ASIDS];
};
DECLARE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate);
struct tlb_state_shared {
/*
* We can be in one of several states:
*
* - Actively using an mm. Our CPU's bit will be set in
* mm_cpumask(loaded_mm) and is_lazy == false;
*
* - Not using a real mm. loaded_mm == &init_mm. Our CPU's bit
* will not be set in mm_cpumask(&init_mm) and is_lazy == false.
*
* - Lazily using a real mm. loaded_mm != &init_mm, our bit
* is set in mm_cpumask(loaded_mm), but is_lazy == true.
* We're heuristically guessing that the CR3 load we
* skipped more than makes up for the overhead added by
* lazy mode.
*/
bool is_lazy;
};
DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
bool nmi_uaccess_okay(void);
#define nmi_uaccess_okay nmi_uaccess_okay
/* Initialize cr4 shadow for this CPU. */
static inline void cr4_init_shadow(void)
{
this_cpu_write(cpu_tlbstate.cr4, __read_cr4());
}
extern unsigned long mmu_cr4_features;
extern u32 *trampoline_cr4_features;
extern void initialize_tlbstate_and_flush(void);
/*
* TLB flushing:
*
* - flush_tlb_all() flushes all processes TLBs
* - flush_tlb_mm(mm) flushes the specified mm context TLB's
* - flush_tlb_page(vma, vmaddr) flushes one page
* - flush_tlb_range(vma, start, end) flushes a range of pages
* - flush_tlb_kernel_range(start, end) flushes a range of kernel pages
* - flush_tlb_multi(cpumask, info) flushes TLBs on multiple cpus
*
* ..but the i386 has somewhat limited tlb flushing capabilities,
* and page-granular flushes are available only on i486 and up.
*/
struct flush_tlb_info {
/*
* We support several kinds of flushes.
*
* - Fully flush a single mm. .mm will be set, .end will be
* TLB_FLUSH_ALL, and .new_tlb_gen will be the tlb_gen to
* which the IPI sender is trying to catch us up.
*
* - Partially flush a single mm. .mm will be set, .start and
* .end will indicate the range, and .new_tlb_gen will be set
* such that the changes between generation .new_tlb_gen-1 and
* .new_tlb_gen are entirely contained in the indicated range.
*
* - Fully flush all mms whose tlb_gens have been updated. .mm
* will be NULL, .end will be TLB_FLUSH_ALL, and .new_tlb_gen
* will be zero.
*/
struct mm_struct *mm;
unsigned long start;
unsigned long end;
u64 new_tlb_gen;
unsigned int initiating_cpu;
u8 stride_shift;
u8 freed_tables;
};
void flush_tlb_local(void);
void flush_tlb_one_user(unsigned long addr);
void flush_tlb_one_kernel(unsigned long addr);
void flush_tlb_multi(const struct cpumask *cpumask,
const struct flush_tlb_info *info);
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
#define flush_tlb_mm(mm) \
flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL, true)
#define flush_tlb_range(vma, start, end) \
flush_tlb_mm_range((vma)->vm_mm, start, end, \
((vma)->vm_flags & VM_HUGETLB) \
? huge_page_shift(hstate_vma(vma)) \
: PAGE_SHIFT, false)
extern void flush_tlb_all(void);
extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
unsigned long end, unsigned int stride_shift,
bool freed_tables);
extern void flush_tlb_kernel_range(unsigned long start, unsigned long end);
static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long a)
{
flush_tlb_mm_range(vma->vm_mm, a, a + PAGE_SIZE, PAGE_SHIFT, false);
}
static inline u64 inc_mm_tlb_gen(struct mm_struct *mm)
{
/*
* Bump the generation count. This also serves as a full barrier
* that synchronizes with switch_mm(): callers are required to order
* their read of mm_cpumask after their writes to the paging
* structures.
*/
return atomic64_inc_return(&mm->context.tlb_gen);
}
static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch,
struct mm_struct *mm)
{
inc_mm_tlb_gen(mm);
cpumask_or(&batch->cpumask, &batch->cpumask, mm_cpumask(mm));
}
extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch);
static inline bool pte_flags_need_flush(unsigned long oldflags,
unsigned long newflags,
bool ignore_access)
{
/*
* Flags that require a flush when cleared but not when they are set.
* Only include flags that would not trigger spurious page-faults.
* Non-present entries are not cached. Hardware would set the
* dirty/access bit if needed without a fault.
*/
const pteval_t flush_on_clear = _PAGE_DIRTY | _PAGE_PRESENT |
_PAGE_ACCESSED;
const pteval_t software_flags = _PAGE_SOFTW1 | _PAGE_SOFTW2 |
_PAGE_SOFTW3 | _PAGE_SOFTW4;
const pteval_t flush_on_change = _PAGE_RW | _PAGE_USER | _PAGE_PWT |
_PAGE_PCD | _PAGE_PSE | _PAGE_GLOBAL | _PAGE_PAT |
_PAGE_PAT_LARGE | _PAGE_PKEY_BIT0 | _PAGE_PKEY_BIT1 |
_PAGE_PKEY_BIT2 | _PAGE_PKEY_BIT3 | _PAGE_NX;
unsigned long diff = oldflags ^ newflags;
BUILD_BUG_ON(flush_on_clear & software_flags);
BUILD_BUG_ON(flush_on_clear & flush_on_change);
BUILD_BUG_ON(flush_on_change & software_flags);
/* Ignore software flags */
diff &= ~software_flags;
if (ignore_access)
diff &= ~_PAGE_ACCESSED;
/*
* Did any of the 'flush_on_clear' flags was clleared set from between
* 'oldflags' and 'newflags'?
*/
if (diff & oldflags & flush_on_clear)
return true;
/* Flush on modified flags. */
if (diff & flush_on_change)
return true;
/* Ensure there are no flags that were left behind */
if (IS_ENABLED(CONFIG_DEBUG_VM) &&
(diff & ~(flush_on_clear | software_flags | flush_on_change))) {
VM_WARN_ON_ONCE(1);
return true;
}
return false;
}
/*
* pte_needs_flush() checks whether permissions were demoted and require a
* flush. It should only be used for userspace PTEs.
*/
static inline bool pte_needs_flush(pte_t oldpte, pte_t newpte)
{
/* !PRESENT -> * ; no need for flush */
if (!(pte_flags(oldpte) & _PAGE_PRESENT))
return false;
/* PFN changed ; needs flush */
if (pte_pfn(oldpte) != pte_pfn(newpte))
return true;
/*
* check PTE flags; ignore access-bit; see comment in
* ptep_clear_flush_young().
*/
return pte_flags_need_flush(pte_flags(oldpte), pte_flags(newpte),
true);
}
#define pte_needs_flush pte_needs_flush
/*
* huge_pmd_needs_flush() checks whether permissions were demoted and require a
* flush. It should only be used for userspace huge PMDs.
*/
static inline bool huge_pmd_needs_flush(pmd_t oldpmd, pmd_t newpmd)
{
/* !PRESENT -> * ; no need for flush */
if (!(pmd_flags(oldpmd) & _PAGE_PRESENT))
return false;
/* PFN changed ; needs flush */
if (pmd_pfn(oldpmd) != pmd_pfn(newpmd))
return true;
/*
* check PMD flags; do not ignore access-bit; see
* pmdp_clear_flush_young().
*/
return pte_flags_need_flush(pmd_flags(oldpmd), pmd_flags(newpmd),
false);
}
#define huge_pmd_needs_flush huge_pmd_needs_flush
#ifdef CONFIG_ADDRESS_MASKING
static inline u64 tlbstate_lam_cr3_mask(void)
{
u64 lam = this_cpu_read(cpu_tlbstate.lam);
return lam << X86_CR3_LAM_U57_BIT;
}
static inline void set_tlbstate_lam_mode(struct mm_struct *mm)
{
this_cpu_write(cpu_tlbstate.lam,
mm->context.lam_cr3_mask >> X86_CR3_LAM_U57_BIT);
this_cpu_write(tlbstate_untag_mask, mm->context.untag_mask);
}
#else
static inline u64 tlbstate_lam_cr3_mask(void)
{
return 0;
}
static inline void set_tlbstate_lam_mode(struct mm_struct *mm)
{
}
#endif
#endif /* !MODULE */
static inline void __native_tlb_flush_global(unsigned long cr4)
{
native_write_cr4(cr4 ^ X86_CR4_PGE);
native_write_cr4(cr4);
}
#endif /* _ASM_X86_TLBFLUSH_H */