blob: 33cc03e310fd2e8f1b9a4d2b436f8d5817fc0613 [file] [log] [blame]
/*
* Copyright 2008 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
* Copyright 2009 Jerome Glisse.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
* Jerome Glisse
*/
#include <drm/drmP.h>
#include <drm/radeon_drm.h>
#include "radeon.h"
#include "radeon_reg.h"
/*
* GART
* The GART (Graphics Aperture Remapping Table) is an aperture
* in the GPU's address space. System pages can be mapped into
* the aperture and look like contiguous pages from the GPU's
* perspective. A page table maps the pages in the aperture
* to the actual backing pages in system memory.
*
* Radeon GPUs support both an internal GART, as described above,
* and AGP. AGP works similarly, but the GART table is configured
* and maintained by the northbridge rather than the driver.
* Radeon hw has a separate AGP aperture that is programmed to
* point to the AGP aperture provided by the northbridge and the
* requests are passed through to the northbridge aperture.
* Both AGP and internal GART can be used at the same time, however
* that is not currently supported by the driver.
*
* This file handles the common internal GART management.
*/
/*
* Common GART table functions.
*/
/**
* radeon_gart_table_ram_alloc - allocate system ram for gart page table
*
* @rdev: radeon_device pointer
*
* Allocate system memory for GART page table
* (r1xx-r3xx, non-pcie r4xx, rs400). These asics require the
* gart table to be in system memory.
* Returns 0 for success, -ENOMEM for failure.
*/
int radeon_gart_table_ram_alloc(struct radeon_device *rdev)
{
void *ptr;
ptr = pci_alloc_consistent(rdev->pdev, rdev->gart.table_size,
&rdev->gart.table_addr);
if (ptr == NULL) {
return -ENOMEM;
}
#ifdef CONFIG_X86
if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480 ||
rdev->family == CHIP_RS690 || rdev->family == CHIP_RS740) {
set_memory_uc((unsigned long)ptr,
rdev->gart.table_size >> PAGE_SHIFT);
}
#endif
rdev->gart.ptr = ptr;
memset((void *)rdev->gart.ptr, 0, rdev->gart.table_size);
return 0;
}
/**
* radeon_gart_table_ram_free - free system ram for gart page table
*
* @rdev: radeon_device pointer
*
* Free system memory for GART page table
* (r1xx-r3xx, non-pcie r4xx, rs400). These asics require the
* gart table to be in system memory.
*/
void radeon_gart_table_ram_free(struct radeon_device *rdev)
{
if (rdev->gart.ptr == NULL) {
return;
}
#ifdef CONFIG_X86
if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480 ||
rdev->family == CHIP_RS690 || rdev->family == CHIP_RS740) {
set_memory_wb((unsigned long)rdev->gart.ptr,
rdev->gart.table_size >> PAGE_SHIFT);
}
#endif
pci_free_consistent(rdev->pdev, rdev->gart.table_size,
(void *)rdev->gart.ptr,
rdev->gart.table_addr);
rdev->gart.ptr = NULL;
rdev->gart.table_addr = 0;
}
/**
* radeon_gart_table_vram_alloc - allocate vram for gart page table
*
* @rdev: radeon_device pointer
*
* Allocate video memory for GART page table
* (pcie r4xx, r5xx+). These asics require the
* gart table to be in video memory.
* Returns 0 for success, error for failure.
*/
int radeon_gart_table_vram_alloc(struct radeon_device *rdev)
{
int r;
if (rdev->gart.robj == NULL) {
r = radeon_bo_create(rdev, rdev->gart.table_size,
PAGE_SIZE, true, RADEON_GEM_DOMAIN_VRAM,
NULL, &rdev->gart.robj);
if (r) {
return r;
}
}
return 0;
}
/**
* radeon_gart_table_vram_pin - pin gart page table in vram
*
* @rdev: radeon_device pointer
*
* Pin the GART page table in vram so it will not be moved
* by the memory manager (pcie r4xx, r5xx+). These asics require the
* gart table to be in video memory.
* Returns 0 for success, error for failure.
*/
int radeon_gart_table_vram_pin(struct radeon_device *rdev)
{
uint64_t gpu_addr;
int r;
r = radeon_bo_reserve(rdev->gart.robj, false);
if (unlikely(r != 0))
return r;
r = radeon_bo_pin(rdev->gart.robj,
RADEON_GEM_DOMAIN_VRAM, &gpu_addr);
if (r) {
radeon_bo_unreserve(rdev->gart.robj);
return r;
}
r = radeon_bo_kmap(rdev->gart.robj, &rdev->gart.ptr);
if (r)
radeon_bo_unpin(rdev->gart.robj);
radeon_bo_unreserve(rdev->gart.robj);
rdev->gart.table_addr = gpu_addr;
return r;
}
/**
* radeon_gart_table_vram_unpin - unpin gart page table in vram
*
* @rdev: radeon_device pointer
*
* Unpin the GART page table in vram (pcie r4xx, r5xx+).
* These asics require the gart table to be in video memory.
*/
void radeon_gart_table_vram_unpin(struct radeon_device *rdev)
{
int r;
if (rdev->gart.robj == NULL) {
return;
}
r = radeon_bo_reserve(rdev->gart.robj, false);
if (likely(r == 0)) {
radeon_bo_kunmap(rdev->gart.robj);
radeon_bo_unpin(rdev->gart.robj);
radeon_bo_unreserve(rdev->gart.robj);
rdev->gart.ptr = NULL;
}
}
/**
* radeon_gart_table_vram_free - free gart page table vram
*
* @rdev: radeon_device pointer
*
* Free the video memory used for the GART page table
* (pcie r4xx, r5xx+). These asics require the gart table to
* be in video memory.
*/
void radeon_gart_table_vram_free(struct radeon_device *rdev)
{
if (rdev->gart.robj == NULL) {
return;
}
radeon_gart_table_vram_unpin(rdev);
radeon_bo_unref(&rdev->gart.robj);
}
/*
* Common gart functions.
*/
/**
* radeon_gart_unbind - unbind pages from the gart page table
*
* @rdev: radeon_device pointer
* @offset: offset into the GPU's gart aperture
* @pages: number of pages to unbind
*
* Unbinds the requested pages from the gart page table and
* replaces them with the dummy page (all asics).
*/
void radeon_gart_unbind(struct radeon_device *rdev, unsigned offset,
int pages)
{
unsigned t;
unsigned p;
int i, j;
u64 page_base;
if (!rdev->gart.ready) {
WARN(1, "trying to unbind memory from uninitialized GART !\n");
return;
}
t = offset / RADEON_GPU_PAGE_SIZE;
p = t / (PAGE_SIZE / RADEON_GPU_PAGE_SIZE);
for (i = 0; i < pages; i++, p++) {
if (rdev->gart.pages[p]) {
rdev->gart.pages[p] = NULL;
rdev->gart.pages_addr[p] = rdev->dummy_page.addr;
page_base = rdev->gart.pages_addr[p];
for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) {
if (rdev->gart.ptr) {
radeon_gart_set_page(rdev, t, page_base);
}
page_base += RADEON_GPU_PAGE_SIZE;
}
}
}
mb();
radeon_gart_tlb_flush(rdev);
}
/**
* radeon_gart_bind - bind pages into the gart page table
*
* @rdev: radeon_device pointer
* @offset: offset into the GPU's gart aperture
* @pages: number of pages to bind
* @pagelist: pages to bind
* @dma_addr: DMA addresses of pages
*
* Binds the requested pages to the gart page table
* (all asics).
* Returns 0 for success, -EINVAL for failure.
*/
int radeon_gart_bind(struct radeon_device *rdev, unsigned offset,
int pages, struct page **pagelist, dma_addr_t *dma_addr)
{
unsigned t;
unsigned p;
uint64_t page_base;
int i, j;
if (!rdev->gart.ready) {
WARN(1, "trying to bind memory to uninitialized GART !\n");
return -EINVAL;
}
t = offset / RADEON_GPU_PAGE_SIZE;
p = t / (PAGE_SIZE / RADEON_GPU_PAGE_SIZE);
for (i = 0; i < pages; i++, p++) {
rdev->gart.pages_addr[p] = dma_addr[i];
rdev->gart.pages[p] = pagelist[i];
if (rdev->gart.ptr) {
page_base = rdev->gart.pages_addr[p];
for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) {
radeon_gart_set_page(rdev, t, page_base);
page_base += RADEON_GPU_PAGE_SIZE;
}
}
}
mb();
radeon_gart_tlb_flush(rdev);
return 0;
}
/**
* radeon_gart_restore - bind all pages in the gart page table
*
* @rdev: radeon_device pointer
*
* Binds all pages in the gart page table (all asics).
* Used to rebuild the gart table on device startup or resume.
*/
void radeon_gart_restore(struct radeon_device *rdev)
{
int i, j, t;
u64 page_base;
if (!rdev->gart.ptr) {
return;
}
for (i = 0, t = 0; i < rdev->gart.num_cpu_pages; i++) {
page_base = rdev->gart.pages_addr[i];
for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) {
radeon_gart_set_page(rdev, t, page_base);
page_base += RADEON_GPU_PAGE_SIZE;
}
}
mb();
radeon_gart_tlb_flush(rdev);
}
/**
* radeon_gart_init - init the driver info for managing the gart
*
* @rdev: radeon_device pointer
*
* Allocate the dummy page and init the gart driver info (all asics).
* Returns 0 for success, error for failure.
*/
int radeon_gart_init(struct radeon_device *rdev)
{
int r, i;
if (rdev->gart.pages) {
return 0;
}
/* We need PAGE_SIZE >= RADEON_GPU_PAGE_SIZE */
if (PAGE_SIZE < RADEON_GPU_PAGE_SIZE) {
DRM_ERROR("Page size is smaller than GPU page size!\n");
return -EINVAL;
}
r = radeon_dummy_page_init(rdev);
if (r)
return r;
/* Compute table size */
rdev->gart.num_cpu_pages = rdev->mc.gtt_size / PAGE_SIZE;
rdev->gart.num_gpu_pages = rdev->mc.gtt_size / RADEON_GPU_PAGE_SIZE;
DRM_INFO("GART: num cpu pages %u, num gpu pages %u\n",
rdev->gart.num_cpu_pages, rdev->gart.num_gpu_pages);
/* Allocate pages table */
rdev->gart.pages = kzalloc(sizeof(void *) * rdev->gart.num_cpu_pages,
GFP_KERNEL);
if (rdev->gart.pages == NULL) {
radeon_gart_fini(rdev);
return -ENOMEM;
}
rdev->gart.pages_addr = kzalloc(sizeof(dma_addr_t) *
rdev->gart.num_cpu_pages, GFP_KERNEL);
if (rdev->gart.pages_addr == NULL) {
radeon_gart_fini(rdev);
return -ENOMEM;
}
/* set GART entry to point to the dummy page by default */
for (i = 0; i < rdev->gart.num_cpu_pages; i++) {
rdev->gart.pages_addr[i] = rdev->dummy_page.addr;
}
return 0;
}
/**
* radeon_gart_fini - tear down the driver info for managing the gart
*
* @rdev: radeon_device pointer
*
* Tear down the gart driver info and free the dummy page (all asics).
*/
void radeon_gart_fini(struct radeon_device *rdev)
{
if (rdev->gart.pages && rdev->gart.pages_addr && rdev->gart.ready) {
/* unbind pages */
radeon_gart_unbind(rdev, 0, rdev->gart.num_cpu_pages);
}
rdev->gart.ready = false;
kfree(rdev->gart.pages);
kfree(rdev->gart.pages_addr);
rdev->gart.pages = NULL;
rdev->gart.pages_addr = NULL;
radeon_dummy_page_fini(rdev);
}
/*
* GPUVM
* GPUVM is similar to the legacy gart on older asics, however
* rather than there being a single global gart table
* for the entire GPU, there are multiple VM page tables active
* at any given time. The VM page tables can contain a mix
* vram pages and system memory pages and system memory pages
* can be mapped as snooped (cached system pages) or unsnooped
* (uncached system pages).
* Each VM has an ID associated with it and there is a page table
* associated with each VMID. When execting a command buffer,
* the kernel tells the the ring what VMID to use for that command
* buffer. VMIDs are allocated dynamically as commands are submitted.
* The userspace drivers maintain their own address space and the kernel
* sets up their pages tables accordingly when they submit their
* command buffers and a VMID is assigned.
* Cayman/Trinity support up to 8 active VMs at any given time;
* SI supports 16.
*/
/*
* vm helpers
*
* TODO bind a default page at vm initialization for default address
*/
/**
* radeon_vm_manager_init - init the vm manager
*
* @rdev: radeon_device pointer
*
* Init the vm manager (cayman+).
* Returns 0 for success, error for failure.
*/
int radeon_vm_manager_init(struct radeon_device *rdev)
{
struct radeon_vm *vm;
struct radeon_bo_va *bo_va;
int r;
if (!rdev->vm_manager.enabled) {
/* mark first vm as always in use, it's the system one */
/* allocate enough for 2 full VM pts */
r = radeon_sa_bo_manager_init(rdev, &rdev->vm_manager.sa_manager,
rdev->vm_manager.max_pfn * 8 * 2,
RADEON_GEM_DOMAIN_VRAM);
if (r) {
dev_err(rdev->dev, "failed to allocate vm bo (%dKB)\n",
(rdev->vm_manager.max_pfn * 8) >> 10);
return r;
}
r = rdev->vm_manager.funcs->init(rdev);
if (r)
return r;
rdev->vm_manager.enabled = true;
r = radeon_sa_bo_manager_start(rdev, &rdev->vm_manager.sa_manager);
if (r)
return r;
}
/* restore page table */
list_for_each_entry(vm, &rdev->vm_manager.lru_vm, list) {
if (vm->id == -1)
continue;
list_for_each_entry(bo_va, &vm->va, vm_list) {
struct ttm_mem_reg *mem = NULL;
if (bo_va->valid)
mem = &bo_va->bo->tbo.mem;
bo_va->valid = false;
r = radeon_vm_bo_update_pte(rdev, vm, bo_va->bo, mem);
if (r) {
DRM_ERROR("Failed to update pte for vm %d!\n", vm->id);
}
}
r = rdev->vm_manager.funcs->bind(rdev, vm, vm->id);
if (r) {
DRM_ERROR("Failed to bind vm %d!\n", vm->id);
}
}
return 0;
}
/* global mutex must be lock */
/**
* radeon_vm_unbind_locked - unbind a specific vm
*
* @rdev: radeon_device pointer
* @vm: vm to unbind
*
* Unbind the requested vm (cayman+).
* Wait for use of the VM to finish, then unbind the page table,
* and free the page table memory.
*/
static void radeon_vm_unbind_locked(struct radeon_device *rdev,
struct radeon_vm *vm)
{
struct radeon_bo_va *bo_va;
if (vm->id == -1) {
return;
}
/* wait for vm use to end */
while (vm->fence) {
int r;
r = radeon_fence_wait(vm->fence, false);
if (r)
DRM_ERROR("error while waiting for fence: %d\n", r);
if (r == -EDEADLK) {
mutex_unlock(&rdev->vm_manager.lock);
r = radeon_gpu_reset(rdev);
mutex_lock(&rdev->vm_manager.lock);
if (!r)
continue;
}
break;
}
radeon_fence_unref(&vm->fence);
/* hw unbind */
rdev->vm_manager.funcs->unbind(rdev, vm);
rdev->vm_manager.use_bitmap &= ~(1 << vm->id);
list_del_init(&vm->list);
vm->id = -1;
radeon_sa_bo_free(rdev, &vm->sa_bo, NULL);
vm->pt = NULL;
list_for_each_entry(bo_va, &vm->va, vm_list) {
bo_va->valid = false;
}
}
/**
* radeon_vm_manager_fini - tear down the vm manager
*
* @rdev: radeon_device pointer
*
* Tear down the VM manager (cayman+).
*/
void radeon_vm_manager_fini(struct radeon_device *rdev)
{
struct radeon_vm *vm, *tmp;
if (!rdev->vm_manager.enabled)
return;
mutex_lock(&rdev->vm_manager.lock);
/* unbind all active vm */
list_for_each_entry_safe(vm, tmp, &rdev->vm_manager.lru_vm, list) {
radeon_vm_unbind_locked(rdev, vm);
}
rdev->vm_manager.funcs->fini(rdev);
mutex_unlock(&rdev->vm_manager.lock);
radeon_sa_bo_manager_suspend(rdev, &rdev->vm_manager.sa_manager);
radeon_sa_bo_manager_fini(rdev, &rdev->vm_manager.sa_manager);
rdev->vm_manager.enabled = false;
}
/* global mutex must be locked */
/**
* radeon_vm_unbind - locked version of unbind
*
* @rdev: radeon_device pointer
* @vm: vm to unbind
*
* Locked version that wraps radeon_vm_unbind_locked (cayman+).
*/
void radeon_vm_unbind(struct radeon_device *rdev, struct radeon_vm *vm)
{
mutex_lock(&vm->mutex);
radeon_vm_unbind_locked(rdev, vm);
mutex_unlock(&vm->mutex);
}
/* global and local mutex must be locked */
/**
* radeon_vm_bind - bind a page table to a VMID
*
* @rdev: radeon_device pointer
* @vm: vm to bind
*
* Bind the requested vm (cayman+).
* Suballocate memory for the page table, allocate a VMID
* and bind the page table to it, and finally start to populate
* the page table.
* Returns 0 for success, error for failure.
*/
int radeon_vm_bind(struct radeon_device *rdev, struct radeon_vm *vm)
{
struct radeon_vm *vm_evict;
unsigned i;
int id = -1, r;
if (vm == NULL) {
return -EINVAL;
}
if (vm->id != -1) {
/* update lru */
list_del_init(&vm->list);
list_add_tail(&vm->list, &rdev->vm_manager.lru_vm);
return 0;
}
retry:
r = radeon_sa_bo_new(rdev, &rdev->vm_manager.sa_manager, &vm->sa_bo,
RADEON_GPU_PAGE_ALIGN(vm->last_pfn * 8),
RADEON_GPU_PAGE_SIZE, false);
if (r) {
if (list_empty(&rdev->vm_manager.lru_vm)) {
return r;
}
vm_evict = list_first_entry(&rdev->vm_manager.lru_vm, struct radeon_vm, list);
radeon_vm_unbind(rdev, vm_evict);
goto retry;
}
vm->pt = radeon_sa_bo_cpu_addr(vm->sa_bo);
vm->pt_gpu_addr = radeon_sa_bo_gpu_addr(vm->sa_bo);
memset(vm->pt, 0, RADEON_GPU_PAGE_ALIGN(vm->last_pfn * 8));
retry_id:
/* search for free vm */
for (i = 0; i < rdev->vm_manager.nvm; i++) {
if (!(rdev->vm_manager.use_bitmap & (1 << i))) {
id = i;
break;
}
}
/* evict vm if necessary */
if (id == -1) {
vm_evict = list_first_entry(&rdev->vm_manager.lru_vm, struct radeon_vm, list);
radeon_vm_unbind(rdev, vm_evict);
goto retry_id;
}
/* do hw bind */
r = rdev->vm_manager.funcs->bind(rdev, vm, id);
if (r) {
radeon_sa_bo_free(rdev, &vm->sa_bo, NULL);
return r;
}
rdev->vm_manager.use_bitmap |= 1 << id;
vm->id = id;
list_add_tail(&vm->list, &rdev->vm_manager.lru_vm);
return radeon_vm_bo_update_pte(rdev, vm, rdev->ring_tmp_bo.bo,
&rdev->ring_tmp_bo.bo->tbo.mem);
}
/* object have to be reserved */
/**
* radeon_vm_bo_add - add a bo to a specific vm
*
* @rdev: radeon_device pointer
* @vm: requested vm
* @bo: radeon buffer object
* @offset: requested offset of the buffer in the VM address space
* @flags: attributes of pages (read/write/valid/etc.)
*
* Add @bo into the requested vm (cayman+).
* Add @bo to the list of bos associated with the vm and validate
* the offset requested within the vm address space.
* Returns 0 for success, error for failure.
*/
int radeon_vm_bo_add(struct radeon_device *rdev,
struct radeon_vm *vm,
struct radeon_bo *bo,
uint64_t offset,
uint32_t flags)
{
struct radeon_bo_va *bo_va, *tmp;
struct list_head *head;
uint64_t size = radeon_bo_size(bo), last_offset = 0;
unsigned last_pfn;
bo_va = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL);
if (bo_va == NULL) {
return -ENOMEM;
}
bo_va->vm = vm;
bo_va->bo = bo;
bo_va->soffset = offset;
bo_va->eoffset = offset + size;
bo_va->flags = flags;
bo_va->valid = false;
INIT_LIST_HEAD(&bo_va->bo_list);
INIT_LIST_HEAD(&bo_va->vm_list);
/* make sure object fit at this offset */
if (bo_va->soffset >= bo_va->eoffset) {
kfree(bo_va);
return -EINVAL;
}
last_pfn = bo_va->eoffset / RADEON_GPU_PAGE_SIZE;
if (last_pfn > rdev->vm_manager.max_pfn) {
kfree(bo_va);
dev_err(rdev->dev, "va above limit (0x%08X > 0x%08X)\n",
last_pfn, rdev->vm_manager.max_pfn);
return -EINVAL;
}
mutex_lock(&vm->mutex);
if (last_pfn > vm->last_pfn) {
/* release mutex and lock in right order */
mutex_unlock(&vm->mutex);
mutex_lock(&rdev->vm_manager.lock);
mutex_lock(&vm->mutex);
/* and check again */
if (last_pfn > vm->last_pfn) {
/* grow va space 32M by 32M */
unsigned align = ((32 << 20) >> 12) - 1;
radeon_vm_unbind_locked(rdev, vm);
vm->last_pfn = (last_pfn + align) & ~align;
}
mutex_unlock(&rdev->vm_manager.lock);
}
head = &vm->va;
last_offset = 0;
list_for_each_entry(tmp, &vm->va, vm_list) {
if (bo_va->soffset >= last_offset && bo_va->eoffset < tmp->soffset) {
/* bo can be added before this one */
break;
}
if (bo_va->soffset >= tmp->soffset && bo_va->soffset < tmp->eoffset) {
/* bo and tmp overlap, invalid offset */
dev_err(rdev->dev, "bo %p va 0x%08X conflict with (bo %p 0x%08X 0x%08X)\n",
bo, (unsigned)bo_va->soffset, tmp->bo,
(unsigned)tmp->soffset, (unsigned)tmp->eoffset);
kfree(bo_va);
mutex_unlock(&vm->mutex);
return -EINVAL;
}
last_offset = tmp->eoffset;
head = &tmp->vm_list;
}
list_add(&bo_va->vm_list, head);
list_add_tail(&bo_va->bo_list, &bo->va);
mutex_unlock(&vm->mutex);
return 0;
}
/**
* radeon_vm_get_addr - get the physical address of the page
*
* @rdev: radeon_device pointer
* @mem: ttm mem
* @pfn: pfn
*
* Look up the physical address of the page that the pte resolves
* to (cayman+).
* Returns the physical address of the page.
*/
static u64 radeon_vm_get_addr(struct radeon_device *rdev,
struct ttm_mem_reg *mem,
unsigned pfn)
{
u64 addr = 0;
switch (mem->mem_type) {
case TTM_PL_VRAM:
addr = (mem->start << PAGE_SHIFT);
addr += pfn * RADEON_GPU_PAGE_SIZE;
addr += rdev->vm_manager.vram_base_offset;
break;
case TTM_PL_TT:
/* offset inside page table */
addr = mem->start << PAGE_SHIFT;
addr += pfn * RADEON_GPU_PAGE_SIZE;
addr = addr >> PAGE_SHIFT;
/* page table offset */
addr = rdev->gart.pages_addr[addr];
/* in case cpu page size != gpu page size*/
addr += (pfn * RADEON_GPU_PAGE_SIZE) & (~PAGE_MASK);
break;
default:
break;
}
return addr;
}
/* object have to be reserved & global and local mutex must be locked */
/**
* radeon_vm_bo_update_pte - map a bo into the vm page table
*
* @rdev: radeon_device pointer
* @vm: requested vm
* @bo: radeon buffer object
* @mem: ttm mem
*
* Fill in the page table entries for @bo (cayman+).
* Returns 0 for success, -EINVAL for failure.
*/
int radeon_vm_bo_update_pte(struct radeon_device *rdev,
struct radeon_vm *vm,
struct radeon_bo *bo,
struct ttm_mem_reg *mem)
{
struct radeon_bo_va *bo_va;
unsigned ngpu_pages, i;
uint64_t addr = 0, pfn;
uint32_t flags;
/* nothing to do if vm isn't bound */
if (vm->id == -1)
return 0;
bo_va = radeon_bo_va(bo, vm);
if (bo_va == NULL) {
dev_err(rdev->dev, "bo %p not in vm %p\n", bo, vm);
return -EINVAL;
}
if (bo_va->valid && mem)
return 0;
ngpu_pages = radeon_bo_ngpu_pages(bo);
bo_va->flags &= ~RADEON_VM_PAGE_VALID;
bo_va->flags &= ~RADEON_VM_PAGE_SYSTEM;
if (mem) {
if (mem->mem_type != TTM_PL_SYSTEM) {
bo_va->flags |= RADEON_VM_PAGE_VALID;
bo_va->valid = true;
}
if (mem->mem_type == TTM_PL_TT) {
bo_va->flags |= RADEON_VM_PAGE_SYSTEM;
}
}
pfn = bo_va->soffset / RADEON_GPU_PAGE_SIZE;
flags = rdev->vm_manager.funcs->page_flags(rdev, bo_va->vm, bo_va->flags);
for (i = 0, addr = 0; i < ngpu_pages; i++) {
if (mem && bo_va->valid) {
addr = radeon_vm_get_addr(rdev, mem, i);
}
rdev->vm_manager.funcs->set_page(rdev, bo_va->vm, i + pfn, addr, flags);
}
rdev->vm_manager.funcs->tlb_flush(rdev, bo_va->vm);
return 0;
}
/* object have to be reserved */
/**
* radeon_vm_bo_rmv - remove a bo to a specific vm
*
* @rdev: radeon_device pointer
* @vm: requested vm
* @bo: radeon buffer object
*
* Remove @bo from the requested vm (cayman+).
* Remove @bo from the list of bos associated with the vm and
* remove the ptes for @bo in the page table.
* Returns 0 for success.
*/
int radeon_vm_bo_rmv(struct radeon_device *rdev,
struct radeon_vm *vm,
struct radeon_bo *bo)
{
struct radeon_bo_va *bo_va;
int r;
bo_va = radeon_bo_va(bo, vm);
if (bo_va == NULL)
return 0;
/* wait for va use to end */
while (bo_va->fence) {
r = radeon_fence_wait(bo_va->fence, false);
if (r) {
DRM_ERROR("error while waiting for fence: %d\n", r);
}
if (r == -EDEADLK) {
r = radeon_gpu_reset(rdev);
if (!r)
continue;
}
break;
}
radeon_fence_unref(&bo_va->fence);
mutex_lock(&rdev->vm_manager.lock);
mutex_lock(&vm->mutex);
radeon_vm_bo_update_pte(rdev, vm, bo, NULL);
mutex_unlock(&rdev->vm_manager.lock);
list_del(&bo_va->vm_list);
mutex_unlock(&vm->mutex);
list_del(&bo_va->bo_list);
kfree(bo_va);
return 0;
}
/**
* radeon_vm_bo_invalidate - mark the bo as invalid
*
* @rdev: radeon_device pointer
* @vm: requested vm
* @bo: radeon buffer object
*
* Mark @bo as invalid (cayman+).
*/
void radeon_vm_bo_invalidate(struct radeon_device *rdev,
struct radeon_bo *bo)
{
struct radeon_bo_va *bo_va;
BUG_ON(!atomic_read(&bo->tbo.reserved));
list_for_each_entry(bo_va, &bo->va, bo_list) {
bo_va->valid = false;
}
}
/**
* radeon_vm_init - initialize a vm instance
*
* @rdev: radeon_device pointer
* @vm: requested vm
*
* Init @vm (cayman+).
* Map the IB pool and any other shared objects into the VM
* by default as it's used by all VMs.
* Returns 0 for success, error for failure.
*/
int radeon_vm_init(struct radeon_device *rdev, struct radeon_vm *vm)
{
int r;
vm->id = -1;
vm->fence = NULL;
mutex_init(&vm->mutex);
INIT_LIST_HEAD(&vm->list);
INIT_LIST_HEAD(&vm->va);
/* SI requires equal sized PTs for all VMs, so always set
* last_pfn to max_pfn. cayman allows variable sized
* pts so we can grow then as needed. Once we switch
* to two level pts we can unify this again.
*/
if (rdev->family >= CHIP_TAHITI)
vm->last_pfn = rdev->vm_manager.max_pfn;
else
vm->last_pfn = 0;
/* map the ib pool buffer at 0 in virtual address space, set
* read only
*/
r = radeon_vm_bo_add(rdev, vm, rdev->ring_tmp_bo.bo, 0,
RADEON_VM_PAGE_READABLE | RADEON_VM_PAGE_SNOOPED);
return r;
}
/**
* radeon_vm_fini - tear down a vm instance
*
* @rdev: radeon_device pointer
* @vm: requested vm
*
* Tear down @vm (cayman+).
* Unbind the VM and remove all bos from the vm bo list
*/
void radeon_vm_fini(struct radeon_device *rdev, struct radeon_vm *vm)
{
struct radeon_bo_va *bo_va, *tmp;
int r;
mutex_lock(&rdev->vm_manager.lock);
mutex_lock(&vm->mutex);
radeon_vm_unbind_locked(rdev, vm);
mutex_unlock(&rdev->vm_manager.lock);
/* remove all bo at this point non are busy any more because unbind
* waited for the last vm fence to signal
*/
r = radeon_bo_reserve(rdev->ring_tmp_bo.bo, false);
if (!r) {
bo_va = radeon_bo_va(rdev->ring_tmp_bo.bo, vm);
list_del_init(&bo_va->bo_list);
list_del_init(&bo_va->vm_list);
radeon_fence_unref(&bo_va->fence);
radeon_bo_unreserve(rdev->ring_tmp_bo.bo);
kfree(bo_va);
}
if (!list_empty(&vm->va)) {
dev_err(rdev->dev, "still active bo inside vm\n");
}
list_for_each_entry_safe(bo_va, tmp, &vm->va, vm_list) {
list_del_init(&bo_va->vm_list);
r = radeon_bo_reserve(bo_va->bo, false);
if (!r) {
list_del_init(&bo_va->bo_list);
radeon_fence_unref(&bo_va->fence);
radeon_bo_unreserve(bo_va->bo);
kfree(bo_va);
}
}
mutex_unlock(&vm->mutex);
}