blob: d3b39d0416fa32328bebe4edd56a77d8d053fb42 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
* Author: Joerg Roedel <jroedel@suse.de>
* Leo Duran <leo.duran@amd.com>
*/
#define pr_fmt(fmt) "AMD-Vi: " fmt
#define dev_fmt(fmt) pr_fmt(fmt)
#include <linux/ratelimit.h>
#include <linux/pci.h>
#include <linux/acpi.h>
#include <linux/pci-ats.h>
#include <linux/bitmap.h>
#include <linux/slab.h>
#include <linux/debugfs.h>
#include <linux/scatterlist.h>
#include <linux/dma-map-ops.h>
#include <linux/dma-direct.h>
#include <linux/iommu-helper.h>
#include <linux/delay.h>
#include <linux/amd-iommu.h>
#include <linux/notifier.h>
#include <linux/export.h>
#include <linux/irq.h>
#include <linux/msi.h>
#include <linux/irqdomain.h>
#include <linux/percpu.h>
#include <linux/io-pgtable.h>
#include <linux/cc_platform.h>
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
#include <asm/proto.h>
#include <asm/iommu.h>
#include <asm/gart.h>
#include <asm/dma.h>
#include "amd_iommu.h"
#include "../dma-iommu.h"
#include "../irq_remapping.h"
#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
#define LOOP_TIMEOUT 100000
/* IO virtual address start page frame number */
#define IOVA_START_PFN (1)
#define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
/* Reserved IOVA ranges */
#define MSI_RANGE_START (0xfee00000)
#define MSI_RANGE_END (0xfeefffff)
#define HT_RANGE_START (0xfd00000000ULL)
#define HT_RANGE_END (0xffffffffffULL)
#define DEFAULT_PGTABLE_LEVEL PAGE_MODE_3_LEVEL
static DEFINE_SPINLOCK(pd_bitmap_lock);
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
LIST_HEAD(acpihid_map);
const struct iommu_ops amd_iommu_ops;
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
int amd_iommu_max_glx_val = -1;
/*
* general struct to manage commands send to an IOMMU
*/
struct iommu_cmd {
u32 data[4];
};
struct kmem_cache *amd_iommu_irq_cache;
static void detach_device(struct device *dev);
static int domain_enable_v2(struct protection_domain *domain, int pasids);
/****************************************************************************
*
* Helper functions
*
****************************************************************************/
static inline int get_acpihid_device_id(struct device *dev,
struct acpihid_map_entry **entry)
{
struct acpi_device *adev = ACPI_COMPANION(dev);
struct acpihid_map_entry *p;
if (!adev)
return -ENODEV;
list_for_each_entry(p, &acpihid_map, list) {
if (acpi_dev_hid_uid_match(adev, p->hid,
p->uid[0] ? p->uid : NULL)) {
if (entry)
*entry = p;
return p->devid;
}
}
return -EINVAL;
}
static inline int get_device_sbdf_id(struct device *dev)
{
int sbdf;
if (dev_is_pci(dev))
sbdf = get_pci_sbdf_id(to_pci_dev(dev));
else
sbdf = get_acpihid_device_id(dev, NULL);
return sbdf;
}
struct dev_table_entry *get_dev_table(struct amd_iommu *iommu)
{
struct dev_table_entry *dev_table;
struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
BUG_ON(pci_seg == NULL);
dev_table = pci_seg->dev_table;
BUG_ON(dev_table == NULL);
return dev_table;
}
static inline u16 get_device_segment(struct device *dev)
{
u16 seg;
if (dev_is_pci(dev)) {
struct pci_dev *pdev = to_pci_dev(dev);
seg = pci_domain_nr(pdev->bus);
} else {
u32 devid = get_acpihid_device_id(dev, NULL);
seg = PCI_SBDF_TO_SEGID(devid);
}
return seg;
}
/* Writes the specific IOMMU for a device into the PCI segment rlookup table */
void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid)
{
struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
pci_seg->rlookup_table[devid] = iommu;
}
static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid)
{
struct amd_iommu_pci_seg *pci_seg;
for_each_pci_segment(pci_seg) {
if (pci_seg->id == seg)
return pci_seg->rlookup_table[devid];
}
return NULL;
}
static struct amd_iommu *rlookup_amd_iommu(struct device *dev)
{
u16 seg = get_device_segment(dev);
int devid = get_device_sbdf_id(dev);
if (devid < 0)
return NULL;
return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid));
}
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
return container_of(dom, struct protection_domain, domain);
}
static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid)
{
struct iommu_dev_data *dev_data;
struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
if (!dev_data)
return NULL;
spin_lock_init(&dev_data->lock);
dev_data->devid = devid;
ratelimit_default_init(&dev_data->rs);
llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list);
return dev_data;
}
static struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid)
{
struct iommu_dev_data *dev_data;
struct llist_node *node;
struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
if (llist_empty(&pci_seg->dev_data_list))
return NULL;
node = pci_seg->dev_data_list.first;
llist_for_each_entry(dev_data, node, dev_data_list) {
if (dev_data->devid == devid)
return dev_data;
}
return NULL;
}
static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
{
struct amd_iommu *iommu;
struct dev_table_entry *dev_table;
u16 devid = pci_dev_id(pdev);
if (devid == alias)
return 0;
iommu = rlookup_amd_iommu(&pdev->dev);
if (!iommu)
return 0;
amd_iommu_set_rlookup_table(iommu, alias);
dev_table = get_dev_table(iommu);
memcpy(dev_table[alias].data,
dev_table[devid].data,
sizeof(dev_table[alias].data));
return 0;
}
static void clone_aliases(struct amd_iommu *iommu, struct device *dev)
{
struct pci_dev *pdev;
if (!dev_is_pci(dev))
return;
pdev = to_pci_dev(dev);
/*
* The IVRS alias stored in the alias table may not be
* part of the PCI DMA aliases if it's bus differs
* from the original device.
*/
clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL);
pci_for_each_dma_alias(pdev, clone_alias, NULL);
}
static void setup_aliases(struct amd_iommu *iommu, struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
u16 ivrs_alias;
/* For ACPI HID devices, there are no aliases */
if (!dev_is_pci(dev))
return;
/*
* Add the IVRS alias to the pci aliases if it is on the same
* bus. The IVRS table may know about a quirk that we don't.
*/
ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)];
if (ivrs_alias != pci_dev_id(pdev) &&
PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
clone_aliases(iommu, dev);
}
static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid)
{
struct iommu_dev_data *dev_data;
dev_data = search_dev_data(iommu, devid);
if (dev_data == NULL) {
dev_data = alloc_dev_data(iommu, devid);
if (!dev_data)
return NULL;
if (translation_pre_enabled(iommu))
dev_data->defer_attach = true;
}
return dev_data;
}
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
{
struct acpihid_map_entry *p, *entry = NULL;
int devid;
devid = get_acpihid_device_id(dev, &entry);
if (devid < 0)
return ERR_PTR(devid);
list_for_each_entry(p, &acpihid_map, list) {
if ((devid == p->devid) && p->group)
entry->group = p->group;
}
if (!entry->group)
entry->group = generic_device_group(dev);
else
iommu_group_ref_get(entry->group);
return entry->group;
}
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
static const int caps[] = {
PCI_EXT_CAP_ID_PRI,
PCI_EXT_CAP_ID_PASID,
};
int i, pos;
if (!pci_ats_supported(pdev))
return false;
for (i = 0; i < 2; ++i) {
pos = pci_find_ext_capability(pdev, caps[i]);
if (pos == 0)
return false;
}
return true;
}
/*
* This function checks if the driver got a valid device from the caller to
* avoid dereferencing invalid pointers.
*/
static bool check_device(struct device *dev)
{
struct amd_iommu_pci_seg *pci_seg;
struct amd_iommu *iommu;
int devid, sbdf;
if (!dev)
return false;
sbdf = get_device_sbdf_id(dev);
if (sbdf < 0)
return false;
devid = PCI_SBDF_TO_DEVID(sbdf);
iommu = rlookup_amd_iommu(dev);
if (!iommu)
return false;
/* Out of our scope? */
pci_seg = iommu->pci_seg;
if (devid > pci_seg->last_bdf)
return false;
return true;
}
static int iommu_init_device(struct amd_iommu *iommu, struct device *dev)
{
struct iommu_dev_data *dev_data;
int devid, sbdf;
if (dev_iommu_priv_get(dev))
return 0;
sbdf = get_device_sbdf_id(dev);
if (sbdf < 0)
return sbdf;
devid = PCI_SBDF_TO_DEVID(sbdf);
dev_data = find_dev_data(iommu, devid);
if (!dev_data)
return -ENOMEM;
dev_data->dev = dev;
setup_aliases(iommu, dev);
/*
* By default we use passthrough mode for IOMMUv2 capable device.
* But if amd_iommu=force_isolation is set (e.g. to debug DMA to
* invalid address), we ignore the capability for the device so
* it'll be forced to go into translation mode.
*/
if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
dev_data->iommu_v2 = iommu->is_iommu_v2;
}
dev_iommu_priv_set(dev, dev_data);
return 0;
}
static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev)
{
struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
struct dev_table_entry *dev_table = get_dev_table(iommu);
int devid, sbdf;
sbdf = get_device_sbdf_id(dev);
if (sbdf < 0)
return;
devid = PCI_SBDF_TO_DEVID(sbdf);
pci_seg->rlookup_table[devid] = NULL;
memset(&dev_table[devid], 0, sizeof(struct dev_table_entry));
setup_aliases(iommu, dev);
}
static void amd_iommu_uninit_device(struct device *dev)
{
struct iommu_dev_data *dev_data;
dev_data = dev_iommu_priv_get(dev);
if (!dev_data)
return;
if (dev_data->domain)
detach_device(dev);
dev_iommu_priv_set(dev, NULL);
/*
* We keep dev_data around for unplugged devices and reuse it when the
* device is re-plugged - not doing so would introduce a ton of races.
*/
}
/****************************************************************************
*
* Interrupt handling functions
*
****************************************************************************/
static void dump_dte_entry(struct amd_iommu *iommu, u16 devid)
{
int i;
struct dev_table_entry *dev_table = get_dev_table(iommu);
for (i = 0; i < 4; ++i)
pr_err("DTE[%d]: %016llx\n", i, dev_table[devid].data[i]);
}
static void dump_command(unsigned long phys_addr)
{
struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
int i;
for (i = 0; i < 4; ++i)
pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
}
static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event)
{
struct iommu_dev_data *dev_data = NULL;
int devid, vmg_tag, flags;
struct pci_dev *pdev;
u64 spa;
devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
vmg_tag = (event[1]) & 0xFFFF;
flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
spa = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
devid & 0xff);
if (pdev)
dev_data = dev_iommu_priv_get(&pdev->dev);
if (dev_data) {
if (__ratelimit(&dev_data->rs)) {
pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
vmg_tag, spa, flags);
}
} else {
pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
vmg_tag, spa, flags);
}
if (pdev)
pci_dev_put(pdev);
}
static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event)
{
struct iommu_dev_data *dev_data = NULL;
int devid, flags_rmp, vmg_tag, flags;
struct pci_dev *pdev;
u64 gpa;
devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
vmg_tag = (event[1]) & 0xFFFF;
flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
gpa = ((u64)event[3] << 32) | event[2];
pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
devid & 0xff);
if (pdev)
dev_data = dev_iommu_priv_get(&pdev->dev);
if (dev_data) {
if (__ratelimit(&dev_data->rs)) {
pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
vmg_tag, gpa, flags_rmp, flags);
}
} else {
pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
vmg_tag, gpa, flags_rmp, flags);
}
if (pdev)
pci_dev_put(pdev);
}
#define IS_IOMMU_MEM_TRANSACTION(flags) \
(((flags) & EVENT_FLAG_I) == 0)
#define IS_WRITE_REQUEST(flags) \
((flags) & EVENT_FLAG_RW)
static void amd_iommu_report_page_fault(struct amd_iommu *iommu,
u16 devid, u16 domain_id,
u64 address, int flags)
{
struct iommu_dev_data *dev_data = NULL;
struct pci_dev *pdev;
pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
devid & 0xff);
if (pdev)
dev_data = dev_iommu_priv_get(&pdev->dev);
if (dev_data) {
/*
* If this is a DMA fault (for which the I(nterrupt)
* bit will be unset), allow report_iommu_fault() to
* prevent logging it.
*/
if (IS_IOMMU_MEM_TRANSACTION(flags)) {
if (!report_iommu_fault(&dev_data->domain->domain,
&pdev->dev, address,
IS_WRITE_REQUEST(flags) ?
IOMMU_FAULT_WRITE :
IOMMU_FAULT_READ))
goto out;
}
if (__ratelimit(&dev_data->rs)) {
pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
domain_id, address, flags);
}
} else {
pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
domain_id, address, flags);
}
out:
if (pdev)
pci_dev_put(pdev);
}
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
{
struct device *dev = iommu->iommu.dev;
int type, devid, flags, tag;
volatile u32 *event = __evt;
int count = 0;
u64 address;
u32 pasid;
retry:
type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
pasid = (event[0] & EVENT_DOMID_MASK_HI) |
(event[1] & EVENT_DOMID_MASK_LO);
flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
address = (u64)(((u64)event[3]) << 32) | event[2];
if (type == 0) {
/* Did we hit the erratum? */
if (++count == LOOP_TIMEOUT) {
pr_err("No event written to event log\n");
return;
}
udelay(1);
goto retry;
}
if (type == EVENT_TYPE_IO_FAULT) {
amd_iommu_report_page_fault(iommu, devid, pasid, address, flags);
return;
}
switch (type) {
case EVENT_TYPE_ILL_DEV:
dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
pasid, address, flags);
dump_dte_entry(iommu, devid);
break;
case EVENT_TYPE_DEV_TAB_ERR:
dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x "
"address=0x%llx flags=0x%04x]\n",
iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
address, flags);
break;
case EVENT_TYPE_PAGE_TAB_ERR:
dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
pasid, address, flags);
break;
case EVENT_TYPE_ILL_CMD:
dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
dump_command(address);
break;
case EVENT_TYPE_CMD_HARD_ERR:
dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
address, flags);
break;
case EVENT_TYPE_IOTLB_INV_TO:
dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n",
iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
address);
break;
case EVENT_TYPE_INV_DEV_REQ:
dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
pasid, address, flags);
break;
case EVENT_TYPE_RMP_FAULT:
amd_iommu_report_rmp_fault(iommu, event);
break;
case EVENT_TYPE_RMP_HW_ERR:
amd_iommu_report_rmp_hw_error(iommu, event);
break;
case EVENT_TYPE_INV_PPR_REQ:
pasid = PPR_PASID(*((u64 *)__evt));
tag = event[1] & 0x03FF;
dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
pasid, address, flags, tag);
break;
default:
dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
event[0], event[1], event[2], event[3]);
}
memset(__evt, 0, 4 * sizeof(u32));
}
static void iommu_poll_events(struct amd_iommu *iommu)
{
u32 head, tail;
head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
while (head != tail) {
iommu_print_event(iommu, iommu->evt_buf + head);
head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
}
writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
{
struct amd_iommu_fault fault;
if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
pr_err_ratelimited("Unknown PPR request received\n");
return;
}
fault.address = raw[1];
fault.pasid = PPR_PASID(raw[0]);
fault.sbdf = PCI_SEG_DEVID_TO_SBDF(iommu->pci_seg->id, PPR_DEVID(raw[0]));
fault.tag = PPR_TAG(raw[0]);
fault.flags = PPR_FLAGS(raw[0]);
atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}
static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
u32 head, tail;
if (iommu->ppr_log == NULL)
return;
head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
while (head != tail) {
volatile u64 *raw;
u64 entry[2];
int i;
raw = (u64 *)(iommu->ppr_log + head);
/*
* Hardware bug: Interrupt may arrive before the entry is
* written to memory. If this happens we need to wait for the
* entry to arrive.
*/
for (i = 0; i < LOOP_TIMEOUT; ++i) {
if (PPR_REQ_TYPE(raw[0]) != 0)
break;
udelay(1);
}
/* Avoid memcpy function-call overhead */
entry[0] = raw[0];
entry[1] = raw[1];
/*
* To detect the hardware bug we need to clear the entry
* back to zero.
*/
raw[0] = raw[1] = 0UL;
/* Update head pointer of hardware ring-buffer */
head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
/* Handle PPR entry */
iommu_handle_ppr_entry(iommu, entry);
/* Refresh ring-buffer information */
head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
}
}
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);
int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
iommu_ga_log_notifier = notifier;
return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
u32 head, tail, cnt = 0;
if (iommu->ga_log == NULL)
return;
head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
while (head != tail) {
volatile u64 *raw;
u64 log_entry;
raw = (u64 *)(iommu->ga_log + head);
cnt++;
/* Avoid memcpy function-call overhead */
log_entry = *raw;
/* Update head pointer of hardware ring-buffer */
head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
/* Handle GA entry */
switch (GA_REQ_TYPE(log_entry)) {
case GA_GUEST_NR:
if (!iommu_ga_log_notifier)
break;
pr_debug("%s: devid=%#x, ga_tag=%#x\n",
__func__, GA_DEVID(log_entry),
GA_TAG(log_entry));
if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
pr_err("GA log notifier failed.\n");
break;
default:
break;
}
}
}
static void
amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
{
if (!irq_remapping_enabled || !dev_is_pci(dev) ||
pci_dev_has_special_msi_domain(to_pci_dev(dev)))
return;
dev_set_msi_domain(dev, iommu->msi_domain);
}
#else /* CONFIG_IRQ_REMAP */
static inline void
amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
#endif /* !CONFIG_IRQ_REMAP */
#define AMD_IOMMU_INT_MASK \
(MMIO_STATUS_EVT_OVERFLOW_INT_MASK | \
MMIO_STATUS_EVT_INT_MASK | \
MMIO_STATUS_PPR_INT_MASK | \
MMIO_STATUS_GALOG_INT_MASK)
irqreturn_t amd_iommu_int_thread(int irq, void *data)
{
struct amd_iommu *iommu = (struct amd_iommu *) data;
u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
while (status & AMD_IOMMU_INT_MASK) {
/* Enable interrupt sources again */
writel(AMD_IOMMU_INT_MASK,
iommu->mmio_base + MMIO_STATUS_OFFSET);
if (status & MMIO_STATUS_EVT_INT_MASK) {
pr_devel("Processing IOMMU Event Log\n");
iommu_poll_events(iommu);
}
if (status & MMIO_STATUS_PPR_INT_MASK) {
pr_devel("Processing IOMMU PPR Log\n");
iommu_poll_ppr_log(iommu);
}
#ifdef CONFIG_IRQ_REMAP
if (status & MMIO_STATUS_GALOG_INT_MASK) {
pr_devel("Processing IOMMU GA Log\n");
iommu_poll_ga_log(iommu);
}
#endif
if (status & MMIO_STATUS_EVT_OVERFLOW_INT_MASK) {
pr_info_ratelimited("IOMMU event log overflow\n");
amd_iommu_restart_event_logging(iommu);
}
/*
* Hardware bug: ERBT1312
* When re-enabling interrupt (by writing 1
* to clear the bit), the hardware might also try to set
* the interrupt bit in the event status register.
* In this scenario, the bit will be set, and disable
* subsequent interrupts.
*
* Workaround: The IOMMU driver should read back the
* status register and check if the interrupt bits are cleared.
* If not, driver will need to go through the interrupt handler
* again and re-clear the bits
*/
status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
}
return IRQ_HANDLED;
}
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
return IRQ_WAKE_THREAD;
}
/****************************************************************************
*
* IOMMU command queuing functions
*
****************************************************************************/
static int wait_on_sem(struct amd_iommu *iommu, u64 data)
{
int i = 0;
while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
udelay(1);
i += 1;
}
if (i == LOOP_TIMEOUT) {
pr_alert("Completion-Wait loop timed out\n");
return -EIO;
}
return 0;
}
static void copy_cmd_to_buffer(struct amd_iommu *iommu,
struct iommu_cmd *cmd)
{
u8 *target;
u32 tail;
/* Copy command to buffer */
tail = iommu->cmd_buf_tail;
target = iommu->cmd_buf + tail;
memcpy(target, cmd, sizeof(*cmd));
tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
iommu->cmd_buf_tail = tail;
/* Tell the IOMMU about it */
writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
}
static void build_completion_wait(struct iommu_cmd *cmd,
struct amd_iommu *iommu,
u64 data)
{
u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem);
memset(cmd, 0, sizeof(*cmd));
cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
cmd->data[1] = upper_32_bits(paddr);
cmd->data[2] = lower_32_bits(data);
cmd->data[3] = upper_32_bits(data);
CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
memset(cmd, 0, sizeof(*cmd));
cmd->data[0] = devid;
CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}
/*
* Builds an invalidation address which is suitable for one page or multiple
* pages. Sets the size bit (S) as needed is more than one page is flushed.
*/
static inline u64 build_inv_address(u64 address, size_t size)
{
u64 pages, end, msb_diff;
pages = iommu_num_pages(address, size, PAGE_SIZE);
if (pages == 1)
return address & PAGE_MASK;
end = address + size - 1;
/*
* msb_diff would hold the index of the most significant bit that
* flipped between the start and end.
*/
msb_diff = fls64(end ^ address) - 1;
/*
* Bits 63:52 are sign extended. If for some reason bit 51 is different
* between the start and the end, invalidate everything.
*/
if (unlikely(msb_diff > 51)) {
address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
} else {
/*
* The msb-bit must be clear on the address. Just set all the
* lower bits.
*/
address |= (1ull << msb_diff) - 1;
}
/* Clear bits 11:0 */
address &= PAGE_MASK;
/* Set the size bit - we flush more than one 4kb page */
return address | CMD_INV_IOMMU_PAGES_SIZE_MASK;
}
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
size_t size, u16 domid, int pde)
{
u64 inv_address = build_inv_address(address, size);
memset(cmd, 0, sizeof(*cmd));
cmd->data[1] |= domid;
cmd->data[2] = lower_32_bits(inv_address);
cmd->data[3] = upper_32_bits(inv_address);
CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
u64 address, size_t size)
{
u64 inv_address = build_inv_address(address, size);
memset(cmd, 0, sizeof(*cmd));
cmd->data[0] = devid;
cmd->data[0] |= (qdep & 0xff) << 24;
cmd->data[1] = devid;
cmd->data[2] = lower_32_bits(inv_address);
cmd->data[3] = upper_32_bits(inv_address);
CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, u32 pasid,
u64 address, bool size)
{
memset(cmd, 0, sizeof(*cmd));
address &= ~(0xfffULL);
cmd->data[0] = pasid;
cmd->data[1] = domid;
cmd->data[2] = lower_32_bits(address);
cmd->data[3] = upper_32_bits(address);
cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
if (size)
cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}
static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, u32 pasid,
int qdep, u64 address, bool size)
{
memset(cmd, 0, sizeof(*cmd));
address &= ~(0xfffULL);
cmd->data[0] = devid;
cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
cmd->data[0] |= (qdep & 0xff) << 24;
cmd->data[1] = devid;
cmd->data[1] |= (pasid & 0xff) << 16;
cmd->data[2] = lower_32_bits(address);
cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
cmd->data[3] = upper_32_bits(address);
if (size)
cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
int status, int tag, bool gn)
{
memset(cmd, 0, sizeof(*cmd));
cmd->data[0] = devid;
if (gn) {
cmd->data[1] = pasid;
cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
}
cmd->data[3] = tag & 0x1ff;
cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}
static void build_inv_all(struct iommu_cmd *cmd)
{
memset(cmd, 0, sizeof(*cmd));
CMD_SET_TYPE(cmd, CMD_INV_ALL);
}
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
memset(cmd, 0, sizeof(*cmd));
cmd->data[0] = devid;
CMD_SET_TYPE(cmd, CMD_INV_IRT);
}
/*
* Writes the command to the IOMMUs command buffer and informs the
* hardware about the new command.
*/
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
struct iommu_cmd *cmd,
bool sync)
{
unsigned int count = 0;
u32 left, next_tail;
next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
again:
left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
if (left <= 0x20) {
/* Skip udelay() the first time around */
if (count++) {
if (count == LOOP_TIMEOUT) {
pr_err("Command buffer timeout\n");
return -EIO;
}
udelay(1);
}
/* Update head and recheck remaining space */
iommu->cmd_buf_head = readl(iommu->mmio_base +
MMIO_CMD_HEAD_OFFSET);
goto again;
}
copy_cmd_to_buffer(iommu, cmd);
/* Do we need to make sure all commands are processed? */
iommu->need_sync = sync;
return 0;
}
static int iommu_queue_command_sync(struct amd_iommu *iommu,
struct iommu_cmd *cmd,
bool sync)
{
unsigned long flags;
int ret;
raw_spin_lock_irqsave(&iommu->lock, flags);
ret = __iommu_queue_command_sync(iommu, cmd, sync);
raw_spin_unlock_irqrestore(&iommu->lock, flags);
return ret;
}
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
return iommu_queue_command_sync(iommu, cmd, true);
}
/*
* This function queues a completion wait command into the command
* buffer of an IOMMU
*/
static int iommu_completion_wait(struct amd_iommu *iommu)
{
struct iommu_cmd cmd;
unsigned long flags;
int ret;
u64 data;
if (!iommu->need_sync)
return 0;
raw_spin_lock_irqsave(&iommu->lock, flags);
data = ++iommu->cmd_sem_val;
build_completion_wait(&cmd, iommu, data);
ret = __iommu_queue_command_sync(iommu, &cmd, false);
if (ret)
goto out_unlock;
ret = wait_on_sem(iommu, data);
out_unlock:
raw_spin_unlock_irqrestore(&iommu->lock, flags);
return ret;
}
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
{
struct iommu_cmd cmd;
build_inv_dte(&cmd, devid);
return iommu_queue_command(iommu, &cmd);
}
static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
{
u32 devid;
u16 last_bdf = iommu->pci_seg->last_bdf;
for (devid = 0; devid <= last_bdf; ++devid)
iommu_flush_dte(iommu, devid);
iommu_completion_wait(iommu);
}
/*
* This function uses heavy locking and may disable irqs for some time. But
* this is no issue because it is only called during resume.
*/
static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
{
u32 dom_id;
u16 last_bdf = iommu->pci_seg->last_bdf;
for (dom_id = 0; dom_id <= last_bdf; ++dom_id) {
struct iommu_cmd cmd;
build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
dom_id, 1);
iommu_queue_command(iommu, &cmd);
}
iommu_completion_wait(iommu);
}
static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
{
struct iommu_cmd cmd;
build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
dom_id, 1);
iommu_queue_command(iommu, &cmd);
iommu_completion_wait(iommu);
}
static void amd_iommu_flush_all(struct amd_iommu *iommu)
{
struct iommu_cmd cmd;
build_inv_all(&cmd);
iommu_queue_command(iommu, &cmd);
iommu_completion_wait(iommu);
}
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
struct iommu_cmd cmd;
build_inv_irt(&cmd, devid);
iommu_queue_command(iommu, &cmd);
}
static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
{
u32 devid;
u16 last_bdf = iommu->pci_seg->last_bdf;
for (devid = 0; devid <= last_bdf; devid++)
iommu_flush_irt(iommu, devid);
iommu_completion_wait(iommu);
}
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
if (iommu_feature(iommu, FEATURE_IA)) {
amd_iommu_flush_all(iommu);
} else {
amd_iommu_flush_dte_all(iommu);
amd_iommu_flush_irt_all(iommu);
amd_iommu_flush_tlb_all(iommu);
}
}
/*
* Command send function for flushing on-device TLB
*/
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
u64 address, size_t size)
{
struct amd_iommu *iommu;
struct iommu_cmd cmd;
int qdep;
qdep = dev_data->ats.qdep;
iommu = rlookup_amd_iommu(dev_data->dev);
if (!iommu)
return -EINVAL;
build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
return iommu_queue_command(iommu, &cmd);
}
static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
{
struct amd_iommu *iommu = data;
return iommu_flush_dte(iommu, alias);
}
/*
* Command send function for invalidating a device table entry
*/
static int device_flush_dte(struct iommu_dev_data *dev_data)
{
struct amd_iommu *iommu;
struct pci_dev *pdev = NULL;
struct amd_iommu_pci_seg *pci_seg;
u16 alias;
int ret;
iommu = rlookup_amd_iommu(dev_data->dev);
if (!iommu)
return -EINVAL;
if (dev_is_pci(dev_data->dev))
pdev = to_pci_dev(dev_data->dev);
if (pdev)
ret = pci_for_each_dma_alias(pdev,
device_flush_dte_alias, iommu);
else
ret = iommu_flush_dte(iommu, dev_data->devid);
if (ret)
return ret;
pci_seg = iommu->pci_seg;
alias = pci_seg->alias_table[dev_data->devid];
if (alias != dev_data->devid) {
ret = iommu_flush_dte(iommu, alias);
if (ret)
return ret;
}
if (dev_data->ats.enabled)
ret = device_flush_iotlb(dev_data, 0, ~0UL);
return ret;
}
/*
* TLB invalidation function which is called from the mapping functions.
* It invalidates a single PTE if the range to flush is within a single
* page. Otherwise it flushes the whole TLB of the IOMMU.
*/
static void __domain_flush_pages(struct protection_domain *domain,
u64 address, size_t size, int pde)
{
struct iommu_dev_data *dev_data;
struct iommu_cmd cmd;
int ret = 0, i;
build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
if (!domain->dev_iommu[i])
continue;
/*
* Devices of this domain are behind this IOMMU
* We need a TLB flush
*/
ret |= iommu_queue_command(amd_iommus[i], &cmd);
}
list_for_each_entry(dev_data, &domain->dev_list, list) {
if (!dev_data->ats.enabled)
continue;
ret |= device_flush_iotlb(dev_data, address, size);
}
WARN_ON(ret);
}
static void domain_flush_pages(struct protection_domain *domain,
u64 address, size_t size, int pde)
{
if (likely(!amd_iommu_np_cache)) {
__domain_flush_pages(domain, address, size, pde);
return;
}
/*
* When NpCache is on, we infer that we run in a VM and use a vIOMMU.
* In such setups it is best to avoid flushes of ranges which are not
* naturally aligned, since it would lead to flushes of unmodified
* PTEs. Such flushes would require the hypervisor to do more work than
* necessary. Therefore, perform repeated flushes of aligned ranges
* until you cover the range. Each iteration flushes the smaller
* between the natural alignment of the address that we flush and the
* greatest naturally aligned region that fits in the range.
*/
while (size != 0) {
int addr_alignment = __ffs(address);
int size_alignment = __fls(size);
int min_alignment;
size_t flush_size;
/*
* size is always non-zero, but address might be zero, causing
* addr_alignment to be negative. As the casting of the
* argument in __ffs(address) to long might trim the high bits
* of the address on x86-32, cast to long when doing the check.
*/
if (likely((unsigned long)address != 0))
min_alignment = min(addr_alignment, size_alignment);
else
min_alignment = size_alignment;
flush_size = 1ul << min_alignment;
__domain_flush_pages(domain, address, flush_size, pde);
address += flush_size;
size -= flush_size;
}
}
/* Flush the whole IO/TLB for a given protection domain - including PDE */
void amd_iommu_domain_flush_tlb_pde(struct protection_domain *domain)
{
domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
}
void amd_iommu_domain_flush_complete(struct protection_domain *domain)
{
int i;
for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
if (domain && !domain->dev_iommu[i])
continue;
/*
* Devices of this domain are behind this IOMMU
* We need to wait for completion of all commands.
*/
iommu_completion_wait(amd_iommus[i]);
}
}
/* Flush the not present cache if it exists */
static void domain_flush_np_cache(struct protection_domain *domain,
dma_addr_t iova, size_t size)
{
if (unlikely(amd_iommu_np_cache)) {
unsigned long flags;
spin_lock_irqsave(&domain->lock, flags);
domain_flush_pages(domain, iova, size, 1);
amd_iommu_domain_flush_complete(domain);
spin_unlock_irqrestore(&domain->lock, flags);
}
}
/*
* This function flushes the DTEs for all devices in domain
*/
static void domain_flush_devices(struct protection_domain *domain)
{
struct iommu_dev_data *dev_data;
list_for_each_entry(dev_data, &domain->dev_list, list)
device_flush_dte(dev_data);
}
/****************************************************************************
*
* The next functions belong to the domain allocation. A domain is
* allocated for every IOMMU as the default domain. If device isolation
* is enabled, every device get its own domain. The most important thing
* about domains is the page table mapping the DMA address space they
* contain.
*
****************************************************************************/
static u16 domain_id_alloc(void)
{
int id;
spin_lock(&pd_bitmap_lock);
id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
BUG_ON(id == 0);
if (id > 0 && id < MAX_DOMAIN_ID)
__set_bit(id, amd_iommu_pd_alloc_bitmap);
else
id = 0;
spin_unlock(&pd_bitmap_lock);
return id;
}
static void domain_id_free(int id)
{
spin_lock(&pd_bitmap_lock);
if (id > 0 && id < MAX_DOMAIN_ID)
__clear_bit(id, amd_iommu_pd_alloc_bitmap);
spin_unlock(&pd_bitmap_lock);
}
static void free_gcr3_tbl_level1(u64 *tbl)
{
u64 *ptr;
int i;
for (i = 0; i < 512; ++i) {
if (!(tbl[i] & GCR3_VALID))
continue;
ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
free_page((unsigned long)ptr);
}
}
static void free_gcr3_tbl_level2(u64 *tbl)
{
u64 *ptr;
int i;
for (i = 0; i < 512; ++i) {
if (!(tbl[i] & GCR3_VALID))
continue;
ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
free_gcr3_tbl_level1(ptr);
}
}
static void free_gcr3_table(struct protection_domain *domain)
{
if (domain->glx == 2)
free_gcr3_tbl_level2(domain->gcr3_tbl);
else if (domain->glx == 1)
free_gcr3_tbl_level1(domain->gcr3_tbl);
else
BUG_ON(domain->glx != 0);
free_page((unsigned long)domain->gcr3_tbl);
}
static void set_dte_entry(struct amd_iommu *iommu, u16 devid,
struct protection_domain *domain, bool ats, bool ppr)
{
u64 pte_root = 0;
u64 flags = 0;
u32 old_domid;
struct dev_table_entry *dev_table = get_dev_table(iommu);
if (domain->iop.mode != PAGE_MODE_NONE)
pte_root = iommu_virt_to_phys(domain->iop.root);
pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK)
<< DEV_ENTRY_MODE_SHIFT;
pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V;
/*
* When SNP is enabled, Only set TV bit when IOMMU
* page translation is in use.
*/
if (!amd_iommu_snp_en || (domain->id != 0))
pte_root |= DTE_FLAG_TV;
flags = dev_table[devid].data[1];
if (ats)
flags |= DTE_FLAG_IOTLB;
if (ppr) {
if (iommu_feature(iommu, FEATURE_EPHSUP))
pte_root |= 1ULL << DEV_ENTRY_PPR;
}
if (domain->flags & PD_IOMMUV2_MASK) {
u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
u64 glx = domain->glx;
u64 tmp;
pte_root |= DTE_FLAG_GV;
pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
/* First mask out possible old values for GCR3 table */
tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
flags &= ~tmp;
tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
flags &= ~tmp;
/* Encode GCR3 table into DTE */
tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
pte_root |= tmp;
tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
flags |= tmp;
tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
flags |= tmp;
if (domain->flags & PD_GIOV_MASK)
pte_root |= DTE_FLAG_GIOV;
}
flags &= ~DEV_DOMID_MASK;
flags |= domain->id;
old_domid = dev_table[devid].data[1] & DEV_DOMID_MASK;
dev_table[devid].data[1] = flags;
dev_table[devid].data[0] = pte_root;
/*
* A kdump kernel might be replacing a domain ID that was copied from
* the previous kernel--if so, it needs to flush the translation cache
* entries for the old domain ID that is being overwritten
*/
if (old_domid) {
amd_iommu_flush_tlb_domid(iommu, old_domid);
}
}
static void clear_dte_entry(struct amd_iommu *iommu, u16 devid)
{
struct dev_table_entry *dev_table = get_dev_table(iommu);
/* remove entry from the device table seen by the hardware */
dev_table[devid].data[0] = DTE_FLAG_V;
if (!amd_iommu_snp_en)
dev_table[devid].data[0] |= DTE_FLAG_TV;
dev_table[devid].data[1] &= DTE_FLAG_MASK;
amd_iommu_apply_erratum_63(iommu, devid);
}
static void do_attach(struct iommu_dev_data *dev_data,
struct protection_domain *domain)
{
struct amd_iommu *iommu;
bool ats;
iommu = rlookup_amd_iommu(dev_data->dev);
if (!iommu)
return;
ats = dev_data->ats.enabled;
/* Update data structures */
dev_data->domain = domain;
list_add(&dev_data->list, &domain->dev_list);
/* Do reference counting */
domain->dev_iommu[iommu->index] += 1;
domain->dev_cnt += 1;
/* Override supported page sizes */
if (domain->flags & PD_GIOV_MASK)
domain->domain.pgsize_bitmap = AMD_IOMMU_PGSIZES_V2;
/* Update device table */
set_dte_entry(iommu, dev_data->devid, domain,
ats, dev_data->iommu_v2);
clone_aliases(iommu, dev_data->dev);
device_flush_dte(dev_data);
}
static void do_detach(struct iommu_dev_data *dev_data)
{
struct protection_domain *domain = dev_data->domain;
struct amd_iommu *iommu;
iommu = rlookup_amd_iommu(dev_data->dev);
if (!iommu)
return;
/* Update data structures */
dev_data->domain = NULL;
list_del(&dev_data->list);
clear_dte_entry(iommu, dev_data->devid);
clone_aliases(iommu, dev_data->dev);
/* Flush the DTE entry */
device_flush_dte(dev_data);
/* Flush IOTLB */
amd_iommu_domain_flush_tlb_pde(domain);
/* Wait for the flushes to finish */
amd_iommu_domain_flush_complete(domain);
/* decrease reference counters - needs to happen after the flushes */
domain->dev_iommu[iommu->index] -= 1;
domain->dev_cnt -= 1;
}
static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
pci_disable_ats(pdev);
pci_disable_pri(pdev);
pci_disable_pasid(pdev);
}
static int pdev_pri_ats_enable(struct pci_dev *pdev)
{
int ret;
/* Only allow access to user-accessible pages */
ret = pci_enable_pasid(pdev, 0);
if (ret)
goto out_err;
/* First reset the PRI state of the device */
ret = pci_reset_pri(pdev);
if (ret)
goto out_err;
/* Enable PRI */
/* FIXME: Hardcode number of outstanding requests for now */
ret = pci_enable_pri(pdev, 32);
if (ret)
goto out_err;
ret = pci_enable_ats(pdev, PAGE_SHIFT);
if (ret)
goto out_err;
return 0;
out_err:
pci_disable_pri(pdev);
pci_disable_pasid(pdev);
return ret;
}
/*
* If a device is not yet associated with a domain, this function makes the
* device visible in the domain
*/
static int attach_device(struct device *dev,
struct protection_domain *domain)
{
struct iommu_dev_data *dev_data;
struct pci_dev *pdev;
unsigned long flags;
int ret;
spin_lock_irqsave(&domain->lock, flags);
dev_data = dev_iommu_priv_get(dev);
spin_lock(&dev_data->lock);
ret = -EBUSY;
if (dev_data->domain != NULL)
goto out;
if (!dev_is_pci(dev))
goto skip_ats_check;
pdev = to_pci_dev(dev);
if (domain->flags & PD_IOMMUV2_MASK) {
struct iommu_domain *def_domain = iommu_get_dma_domain(dev);
ret = -EINVAL;
/*
* In case of using AMD_IOMMU_V1 page table mode and the device
* is enabling for PPR/ATS support (using v2 table),
* we need to make sure that the domain type is identity map.
*/
if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
def_domain->type != IOMMU_DOMAIN_IDENTITY) {
goto out;
}
if (dev_data->iommu_v2) {
if (pdev_pri_ats_enable(pdev) != 0)
goto out;
dev_data->ats.enabled = true;
dev_data->ats.qdep = pci_ats_queue_depth(pdev);
dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev);
}
} else if (amd_iommu_iotlb_sup &&
pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
dev_data->ats.enabled = true;
dev_data->ats.qdep = pci_ats_queue_depth(pdev);
}
skip_ats_check:
ret = 0;
do_attach(dev_data, domain);
/*
* We might boot into a crash-kernel here. The crashed kernel
* left the caches in the IOMMU dirty. So we have to flush
* here to evict all dirty stuff.
*/
amd_iommu_domain_flush_tlb_pde(domain);
amd_iommu_domain_flush_complete(domain);
out:
spin_unlock(&dev_data->lock);
spin_unlock_irqrestore(&domain->lock, flags);
return ret;
}
/*
* Removes a device from a protection domain (with devtable_lock held)
*/
static void detach_device(struct device *dev)
{
struct protection_domain *domain;
struct iommu_dev_data *dev_data;
unsigned long flags;
dev_data = dev_iommu_priv_get(dev);
domain = dev_data->domain;
spin_lock_irqsave(&domain->lock, flags);
spin_lock(&dev_data->lock);
/*
* First check if the device is still attached. It might already
* be detached from its domain because the generic
* iommu_detach_group code detached it and we try again here in
* our alias handling.
*/
if (WARN_ON(!dev_data->domain))
goto out;
do_detach(dev_data);
if (!dev_is_pci(dev))
goto out;
if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
pdev_iommuv2_disable(to_pci_dev(dev));
else if (dev_data->ats.enabled)
pci_disable_ats(to_pci_dev(dev));
dev_data->ats.enabled = false;
out:
spin_unlock(&dev_data->lock);
spin_unlock_irqrestore(&domain->lock, flags);
}
static struct iommu_device *amd_iommu_probe_device(struct device *dev)
{
struct iommu_device *iommu_dev;
struct amd_iommu *iommu;
int ret;
if (!check_device(dev))
return ERR_PTR(-ENODEV);
iommu = rlookup_amd_iommu(dev);
if (!iommu)
return ERR_PTR(-ENODEV);
/* Not registered yet? */
if (!iommu->iommu.ops)
return ERR_PTR(-ENODEV);
if (dev_iommu_priv_get(dev))
return &iommu->iommu;
ret = iommu_init_device(iommu, dev);
if (ret) {
if (ret != -ENOTSUPP)
dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
iommu_dev = ERR_PTR(ret);
iommu_ignore_device(iommu, dev);
} else {
amd_iommu_set_pci_msi_domain(dev, iommu);
iommu_dev = &iommu->iommu;
}
iommu_completion_wait(iommu);
return iommu_dev;
}
static void amd_iommu_probe_finalize(struct device *dev)
{
/* Domains are initialized for this device - have a look what we ended up with */
set_dma_ops(dev, NULL);
iommu_setup_dma_ops(dev, 0, U64_MAX);
}
static void amd_iommu_release_device(struct device *dev)
{
struct amd_iommu *iommu;
if (!check_device(dev))
return;
iommu = rlookup_amd_iommu(dev);
if (!iommu)
return;
amd_iommu_uninit_device(dev);
iommu_completion_wait(iommu);
}
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
if (dev_is_pci(dev))
return pci_device_group(dev);
return acpihid_device_group(dev);
}
/*****************************************************************************
*
* The next functions belong to the dma_ops mapping/unmapping code.
*
*****************************************************************************/
static void update_device_table(struct protection_domain *domain)
{
struct iommu_dev_data *dev_data;
list_for_each_entry(dev_data, &domain->dev_list, list) {
struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev);
if (!iommu)
continue;
set_dte_entry(iommu, dev_data->devid, domain,
dev_data->ats.enabled, dev_data->iommu_v2);
clone_aliases(iommu, dev_data->dev);
}
}
void amd_iommu_update_and_flush_device_table(struct protection_domain *domain)
{
update_device_table(domain);
domain_flush_devices(domain);
}
void amd_iommu_domain_update(struct protection_domain *domain)
{
/* Update device table */
amd_iommu_update_and_flush_device_table(domain);
/* Flush domain TLB(s) and wait for completion */
amd_iommu_domain_flush_tlb_pde(domain);
amd_iommu_domain_flush_complete(domain);
}
/*****************************************************************************
*
* The following functions belong to the exported interface of AMD IOMMU
*
* This interface allows access to lower level functions of the IOMMU
* like protection domain handling and assignement of devices to domains
* which is not possible with the dma_ops interface.
*
*****************************************************************************/
static void cleanup_domain(struct protection_domain *domain)
{
struct iommu_dev_data *entry;
unsigned long flags;
spin_lock_irqsave(&domain->lock, flags);
while (!list_empty(&domain->dev_list)) {
entry = list_first_entry(&domain->dev_list,
struct iommu_dev_data, list);
BUG_ON(!entry->domain);
do_detach(entry);
}
spin_unlock_irqrestore(&domain->lock, flags);
}
static void protection_domain_free(struct protection_domain *domain)
{
if (!domain)
return;
if (domain->iop.pgtbl_cfg.tlb)
free_io_pgtable_ops(&domain->iop.iop.ops);
if (domain->id)
domain_id_free(domain->id);
kfree(domain);
}
static int protection_domain_init_v1(struct protection_domain *domain, int mode)
{
u64 *pt_root = NULL;
BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL);
spin_lock_init(&domain->lock);
domain->id = domain_id_alloc();
if (!domain->id)
return -ENOMEM;
INIT_LIST_HEAD(&domain->dev_list);
if (mode != PAGE_MODE_NONE) {
pt_root = (void *)get_zeroed_page(GFP_KERNEL);
if (!pt_root) {
domain_id_free(domain->id);
return -ENOMEM;
}
}
amd_iommu_domain_set_pgtable(domain, pt_root, mode);
return 0;
}
static int protection_domain_init_v2(struct protection_domain *domain)
{
spin_lock_init(&domain->lock);
domain->id = domain_id_alloc();
if (!domain->id)
return -ENOMEM;
INIT_LIST_HEAD(&domain->dev_list);
domain->flags |= PD_GIOV_MASK;
if (domain_enable_v2(domain, 1)) {
domain_id_free(domain->id);
return -ENOMEM;
}
return 0;
}
static struct protection_domain *protection_domain_alloc(unsigned int type)
{
struct io_pgtable_ops *pgtbl_ops;
struct protection_domain *domain;
int pgtable = amd_iommu_pgtable;
int mode = DEFAULT_PGTABLE_LEVEL;
int ret;
domain = kzalloc(sizeof(*domain), GFP_KERNEL);
if (!domain)
return NULL;
/*
* Force IOMMU v1 page table when iommu=pt and
* when allocating domain for pass-through devices.
*/
if (type == IOMMU_DOMAIN_IDENTITY) {
pgtable = AMD_IOMMU_V1;
mode = PAGE_MODE_NONE;
} else if (type == IOMMU_DOMAIN_UNMANAGED) {
pgtable = AMD_IOMMU_V1;
}
switch (pgtable) {
case AMD_IOMMU_V1:
ret = protection_domain_init_v1(domain, mode);
break;
case AMD_IOMMU_V2:
ret = protection_domain_init_v2(domain);
break;
default:
ret = -EINVAL;
}
if (ret)
goto out_err;
pgtbl_ops = alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl_cfg, domain);
if (!pgtbl_ops) {
domain_id_free(domain->id);
goto out_err;
}
return domain;
out_err:
kfree(domain);
return NULL;
}
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
{
struct protection_domain *domain;
/*
* Since DTE[Mode]=0 is prohibited on SNP-enabled system,
* default to use IOMMU_DOMAIN_DMA[_FQ].
*/
if (amd_iommu_snp_en && (type == IOMMU_DOMAIN_IDENTITY))
return NULL;
domain = protection_domain_alloc(type);
if (!domain)
return NULL;
domain->domain.geometry.aperture_start = 0;
domain->domain.geometry.aperture_end = ~0ULL;
domain->domain.geometry.force_aperture = true;
return &domain->domain;
}
static void amd_iommu_domain_free(struct iommu_domain *dom)
{
struct protection_domain *domain;
domain = to_pdomain(dom);
if (domain->dev_cnt > 0)
cleanup_domain(domain);
BUG_ON(domain->dev_cnt != 0);
if (!dom)
return;
if (domain->flags & PD_IOMMUV2_MASK)
free_gcr3_table(domain);
protection_domain_free(domain);
}
static void amd_iommu_detach_device(struct iommu_domain *dom,
struct device *dev)
{
struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
struct amd_iommu *iommu;
if (!check_device(dev))
return;
if (dev_data->domain != NULL)
detach_device(dev);
iommu = rlookup_amd_iommu(dev);
if (!iommu)
return;
#ifdef CONFIG_IRQ_REMAP
if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
(dom->type == IOMMU_DOMAIN_UNMANAGED))
dev_data->use_vapic = 0;
#endif
iommu_completion_wait(iommu);
}
static int amd_iommu_attach_device(struct iommu_domain *dom,
struct device *dev)
{
struct protection_domain *domain = to_pdomain(dom);
struct iommu_dev_data *dev_data;
struct amd_iommu *iommu;
int ret;
if (!check_device(dev))
return -EINVAL;
dev_data = dev_iommu_priv_get(dev);
dev_data->defer_attach = false;
iommu = rlookup_amd_iommu(dev);
if (!iommu)
return -EINVAL;
if (dev_data->domain)
detach_device(dev);
ret = attach_device(dev, domain);
#ifdef CONFIG_IRQ_REMAP
if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
if (dom->type == IOMMU_DOMAIN_UNMANAGED)
dev_data->use_vapic = 1;
else
dev_data->use_vapic = 0;
}
#endif
iommu_completion_wait(iommu);
return ret;
}
static void amd_iommu_iotlb_sync_map(struct iommu_domain *dom,
unsigned long iova, size_t size)
{
struct protection_domain *domain = to_pdomain(dom);
struct io_pgtable_ops *ops = &domain->iop.iop.ops;
if (ops->map_pages)
domain_flush_np_cache(domain, iova, size);
}
static int amd_iommu_map_pages(struct iommu_domain *dom, unsigned long iova,
phys_addr_t paddr, size_t pgsize, size_t pgcount,
int iommu_prot, gfp_t gfp, size_t *mapped)
{
struct protection_domain *domain = to_pdomain(dom);
struct io_pgtable_ops *ops = &domain->iop.iop.ops;
int prot = 0;
int ret = -EINVAL;
if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
(domain->iop.mode == PAGE_MODE_NONE))
return -EINVAL;
if (iommu_prot & IOMMU_READ)
prot |= IOMMU_PROT_IR;
if (iommu_prot & IOMMU_WRITE)
prot |= IOMMU_PROT_IW;
if (ops->map_pages) {
ret = ops->map_pages(ops, iova, paddr, pgsize,
pgcount, prot, gfp, mapped);
}
return ret;
}
static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain,
struct iommu_iotlb_gather *gather,
unsigned long iova, size_t size)
{
/*
* AMD's IOMMU can flush as many pages as necessary in a single flush.
* Unless we run in a virtual machine, which can be inferred according
* to whether "non-present cache" is on, it is probably best to prefer
* (potentially) too extensive TLB flushing (i.e., more misses) over
* mutliple TLB flushes (i.e., more flushes). For virtual machines the
* hypervisor needs to synchronize the host IOMMU PTEs with those of
* the guest, and the trade-off is different: unnecessary TLB flushes
* should be avoided.
*/
if (amd_iommu_np_cache &&
iommu_iotlb_gather_is_disjoint(gather, iova, size))
iommu_iotlb_sync(domain, gather);
iommu_iotlb_gather_add_range(gather, iova, size);
}
static size_t amd_iommu_unmap_pages(struct iommu_domain *dom, unsigned long iova,
size_t pgsize, size_t pgcount,
struct iommu_iotlb_gather *gather)
{
struct protection_domain *domain = to_pdomain(dom);
struct io_pgtable_ops *ops = &domain->iop.iop.ops;
size_t r;
if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
(domain->iop.mode == PAGE_MODE_NONE))
return 0;
r = (ops->unmap_pages) ? ops->unmap_pages(ops, iova, pgsize, pgcount, NULL) : 0;
if (r)
amd_iommu_iotlb_gather_add_page(dom, gather, iova, r);
return r;
}
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
dma_addr_t iova)
{
struct protection_domain *domain = to_pdomain(dom);
struct io_pgtable_ops *ops = &domain->iop.iop.ops;
return ops->iova_to_phys(ops, iova);
}
static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap)
{
switch (cap) {
case IOMMU_CAP_CACHE_COHERENCY:
return true;
case IOMMU_CAP_INTR_REMAP:
return (irq_remapping_enabled == 1);
case IOMMU_CAP_NOEXEC:
return false;
case IOMMU_CAP_PRE_BOOT_PROTECTION:
return amdr_ivrs_remap_support;
default:
break;
}
return false;
}
static void amd_iommu_get_resv_regions(struct device *dev,
struct list_head *head)
{
struct iommu_resv_region *region;
struct unity_map_entry *entry;
struct amd_iommu *iommu;
struct amd_iommu_pci_seg *pci_seg;
int devid, sbdf;
sbdf = get_device_sbdf_id(dev);
if (sbdf < 0)
return;
devid = PCI_SBDF_TO_DEVID(sbdf);
iommu = rlookup_amd_iommu(dev);
if (!iommu)
return;
pci_seg = iommu->pci_seg;
list_for_each_entry(entry, &pci_seg->unity_map, list) {
int type, prot = 0;
size_t length;
if (devid < entry->devid_start || devid > entry->devid_end)
continue;
type = IOMMU_RESV_DIRECT;
length = entry->address_end - entry->address_start;
if (entry->prot & IOMMU_PROT_IR)
prot |= IOMMU_READ;
if (entry->prot & IOMMU_PROT_IW)
prot |= IOMMU_WRITE;
if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
/* Exclusion range */
type = IOMMU_RESV_RESERVED;
region = iommu_alloc_resv_region(entry->address_start,
length, prot, type,
GFP_KERNEL);
if (!region) {
dev_err(dev, "Out of memory allocating dm-regions\n");
return;
}
list_add_tail(&region->list, head);
}
region = iommu_alloc_resv_region(MSI_RANGE_START,
MSI_RANGE_END - MSI_RANGE_START + 1,
0, IOMMU_RESV_MSI, GFP_KERNEL);
if (!region)
return;
list_add_tail(&region->list, head);
region = iommu_alloc_resv_region(HT_RANGE_START,
HT_RANGE_END - HT_RANGE_START + 1,
0, IOMMU_RESV_RESERVED, GFP_KERNEL);
if (!region)
return;
list_add_tail(&region->list, head);
}
bool amd_iommu_is_attach_deferred(struct device *dev)
{
struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
return dev_data->defer_attach;
}
EXPORT_SYMBOL_GPL(amd_iommu_is_attach_deferred);
static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
{
struct protection_domain *dom = to_pdomain(domain);
unsigned long flags;
spin_lock_irqsave(&dom->lock, flags);
amd_iommu_domain_flush_tlb_pde(dom);
amd_iommu_domain_flush_complete(dom);
spin_unlock_irqrestore(&dom->lock, flags);
}
static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
struct iommu_iotlb_gather *gather)
{
struct protection_domain *dom = to_pdomain(domain);
unsigned long flags;
spin_lock_irqsave(&dom->lock, flags);
domain_flush_pages(dom, gather->start, gather->end - gather->start, 1);
amd_iommu_domain_flush_complete(dom);
spin_unlock_irqrestore(&dom->lock, flags);
}
static int amd_iommu_def_domain_type(struct device *dev)
{
struct iommu_dev_data *dev_data;
dev_data = dev_iommu_priv_get(dev);
if (!dev_data)
return 0;
/*
* Do not identity map IOMMUv2 capable devices when memory encryption is
* active, because some of those devices (AMD GPUs) don't have the
* encryption bit in their DMA-mask and require remapping.
*/
if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT) && dev_data->iommu_v2)
return IOMMU_DOMAIN_IDENTITY;
return 0;
}
static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain)
{
/* IOMMU_PTE_FC is always set */
return true;
}
const struct iommu_ops amd_iommu_ops = {
.capable = amd_iommu_capable,
.domain_alloc = amd_iommu_domain_alloc,
.probe_device = amd_iommu_probe_device,
.release_device = amd_iommu_release_device,
.probe_finalize = amd_iommu_probe_finalize,
.device_group = amd_iommu_device_group,
.get_resv_regions = amd_iommu_get_resv_regions,
.is_attach_deferred = amd_iommu_is_attach_deferred,
.pgsize_bitmap = AMD_IOMMU_PGSIZES,
.def_domain_type = amd_iommu_def_domain_type,
.default_domain_ops = &(const struct iommu_domain_ops) {
.attach_dev = amd_iommu_attach_device,
.detach_dev = amd_iommu_detach_device,
.map_pages = amd_iommu_map_pages,
.unmap_pages = amd_iommu_unmap_pages,
.iotlb_sync_map = amd_iommu_iotlb_sync_map,
.iova_to_phys = amd_iommu_iova_to_phys,
.flush_iotlb_all = amd_iommu_flush_iotlb_all,
.iotlb_sync = amd_iommu_iotlb_sync,
.free = amd_iommu_domain_free,
.enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
}
};
/*****************************************************************************
*
* The next functions do a basic initialization of IOMMU for pass through
* mode
*
* In passthrough mode the IOMMU is initialized and enabled but not used for
* DMA-API translation.
*
*****************************************************************************/
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
struct protection_domain *domain = to_pdomain(dom);
unsigned long flags;
spin_lock_irqsave(&domain->lock, flags);
if (domain->iop.pgtbl_cfg.tlb)
free_io_pgtable_ops(&domain->iop.iop.ops);
spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
/* Note: This function expects iommu_domain->lock to be held prior calling the function. */
static int domain_enable_v2(struct protection_domain *domain, int pasids)
{
int levels;
/* Number of GCR3 table levels required */
for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
levels += 1;
if (levels > amd_iommu_max_glx_val)
return -EINVAL;
domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
if (domain->gcr3_tbl == NULL)
return -ENOMEM;
domain->glx = levels;
domain->flags |= PD_IOMMUV2_MASK;
amd_iommu_domain_update(domain);
return 0;
}
int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
struct protection_domain *pdom = to_pdomain(dom);
unsigned long flags;
int ret;
spin_lock_irqsave(&pdom->lock, flags);
/*
* Save us all sanity checks whether devices already in the
* domain support IOMMUv2. Just force that the domain has no
* devices attached when it is switched into IOMMUv2 mode.
*/
ret = -EBUSY;
if (pdom->dev_cnt > 0 || pdom->flags & PD_IOMMUV2_MASK)
goto out;
if (!pdom->gcr3_tbl)
ret = domain_enable_v2(pdom, pasids);
out:
spin_unlock_irqrestore(&pdom->lock, flags);
return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
static int __flush_pasid(struct protection_domain *domain, u32 pasid,
u64 address, bool size)
{
struct iommu_dev_data *dev_data;
struct iommu_cmd cmd;
int i, ret;
if (!(domain->flags & PD_IOMMUV2_MASK))
return -EINVAL;
build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
/*
* IOMMU TLB needs to be flushed before Device TLB to
* prevent device TLB refill from IOMMU TLB
*/
for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
if (domain->dev_iommu[i] == 0)
continue;
ret = iommu_queue_command(amd_iommus[i], &cmd);
if (ret != 0)
goto out;
}
/* Wait until IOMMU TLB flushes are complete */
amd_iommu_domain_flush_complete(domain);
/* Now flush device TLBs */
list_for_each_entry(dev_data, &domain->dev_list, list) {
struct amd_iommu *iommu;
int qdep;
/*
There might be non-IOMMUv2 capable devices in an IOMMUv2
* domain.
*/
if (!dev_data->ats.enabled)
continue;
qdep = dev_data->ats.qdep;
iommu = rlookup_amd_iommu(dev_data->dev);
if (!iommu)
continue;
build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
qdep, address, size);
ret = iommu_queue_command(iommu, &cmd);
if (ret != 0)
goto out;
}
/* Wait until all device TLBs are flushed */
amd_iommu_domain_flush_complete(domain);
ret = 0;
out:
return ret;
}
static int __amd_iommu_flush_page(struct protection_domain *domain, u32 pasid,
u64 address)
{
return __flush_pasid(domain, pasid, address, false);
}
int amd_iommu_flush_page(struct iommu_domain *dom, u32 pasid,
u64 address)
{
struct protection_domain *domain = to_pdomain(dom);
unsigned long flags;
int ret;
spin_lock_irqsave(&domain->lock, flags);
ret = __amd_iommu_flush_page(domain, pasid, address);
spin_unlock_irqrestore(&domain->lock, flags);
return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);
static int __amd_iommu_flush_tlb(struct protection_domain *domain, u32 pasid)
{
return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
true);
}
int amd_iommu_flush_tlb(struct iommu_domain *dom, u32 pasid)
{
struct protection_domain *domain = to_pdomain(dom);
unsigned long flags;
int ret;
spin_lock_irqsave(&domain->lock, flags);
ret = __amd_iommu_flush_tlb(domain, pasid);
spin_unlock_irqrestore(&domain->lock, flags);
return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);
static u64 *__get_gcr3_pte(u64 *root, int level, u32 pasid, bool alloc)
{
int index;
u64 *pte;
while (true) {
index = (pasid >> (9 * level)) & 0x1ff;
pte = &root[index];
if (level == 0)
break;
if (!(*pte & GCR3_VALID)) {
if (!alloc)
return NULL;
root = (void *)get_zeroed_page(GFP_ATOMIC);
if (root == NULL)
return NULL;
*pte = iommu_virt_to_phys(root) | GCR3_VALID;
}
root = iommu_phys_to_virt(*pte & PAGE_MASK);
level -= 1;
}
return pte;
}
static int __set_gcr3(struct protection_domain *domain, u32 pasid,
unsigned long cr3)
{
u64 *pte;
if (domain->iop.mode != PAGE_MODE_NONE)
return -EINVAL;
pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
if (pte == NULL)
return -ENOMEM;
*pte = (cr3 & PAGE_MASK) | GCR3_VALID;
return __amd_iommu_flush_tlb(domain, pasid);
}
static int __clear_gcr3(struct protection_domain *domain, u32 pasid)
{
u64 *pte;
if (domain->iop.mode != PAGE_MODE_NONE)
return -EINVAL;
pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
if (pte == NULL)
return 0;
*pte = 0;
return __amd_iommu_flush_tlb(domain, pasid);
}
int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, u32 pasid,
unsigned long cr3)
{
struct protection_domain *domain = to_pdomain(dom);
unsigned long flags;
int ret;
spin_lock_irqsave(&domain->lock, flags);
ret = __set_gcr3(domain, pasid, cr3);
spin_unlock_irqrestore(&domain->lock, flags);
return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, u32 pasid)
{
struct protection_domain *domain = to_pdomain(dom);
unsigned long flags;
int ret;
spin_lock_irqsave(&domain->lock, flags);
ret = __clear_gcr3(domain, pasid);
spin_unlock_irqrestore(&domain->lock, flags);
return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid,
int status, int tag)
{
struct iommu_dev_data *dev_data;
struct amd_iommu *iommu;
struct iommu_cmd cmd;
dev_data = dev_iommu_priv_get(&pdev->dev);
iommu = rlookup_amd_iommu(&pdev->dev);
if (!iommu)
return -ENODEV;
build_complete_ppr(&cmd, dev_data->devid, pasid, status,
tag, dev_data->pri_tlp);
return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
int amd_iommu_device_info(struct pci_dev *pdev,
struct amd_iommu_device_info *info)
{
int max_pasids;
int pos;
if (pdev == NULL || info == NULL)
return -EINVAL;
if (!amd_iommu_v2_supported())
return -EINVAL;
memset(info, 0, sizeof(*info));
if (pci_ats_supported(pdev))
info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
if (pos)
info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
if (pos) {
int features;
max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
max_pasids = min(max_pasids, (1 << 20));
info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
features = pci_pasid_features(pdev);
if (features & PCI_PASID_CAP_EXEC)
info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
if (features & PCI_PASID_CAP_PRIV)
info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
}
return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
#ifdef CONFIG_IRQ_REMAP
/*****************************************************************************
*
* Interrupt Remapping Implementation
*
*****************************************************************************/
static struct irq_chip amd_ir_chip;
static DEFINE_SPINLOCK(iommu_table_lock);
static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid,
struct irq_remap_table *table)
{
u64 dte;
struct dev_table_entry *dev_table = get_dev_table(iommu);
dte = dev_table[devid].data[2];
dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
dte |= iommu_virt_to_phys(table->table);
dte |= DTE_IRQ_REMAP_INTCTL;
dte |= DTE_INTTABLEN;
dte |= DTE_IRQ_REMAP_ENABLE;
dev_table[devid].data[2] = dte;
}
static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid)
{
struct irq_remap_table *table;
struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
if (WARN_ONCE(!pci_seg->rlookup_table[devid],
"%s: no iommu for devid %x:%x\n",
__func__, pci_seg->id, devid))
return NULL;
table = pci_seg->irq_lookup_table[devid];
if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n",
__func__, pci_seg->id, devid))
return NULL;
return table;
}
static struct irq_remap_table *__alloc_irq_table(void)
{
struct irq_remap_table *table;
table = kzalloc(sizeof(*table), GFP_KERNEL);
if (!table)
return NULL;
table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
if (!table->table) {
kfree(table);
return NULL;
}
raw_spin_lock_init(&table->lock);
if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
memset(table->table, 0,
MAX_IRQS_PER_TABLE * sizeof(u32));
else
memset(table->table, 0,
(MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
return table;
}
static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
struct irq_remap_table *table)
{
struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
pci_seg->irq_lookup_table[devid] = table;
set_dte_irq_entry(iommu, devid, table);
iommu_flush_dte(iommu, devid);
}
static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
void *data)
{
struct irq_remap_table *table = data;
struct amd_iommu_pci_seg *pci_seg;
struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev);
if (!iommu)
return -EINVAL;
pci_seg = iommu->pci_seg;
pci_seg->irq_lookup_table[alias] = table;
set_dte_irq_entry(iommu, alias, table);
iommu_flush_dte(pci_seg->rlookup_table[alias], alias);
return 0;
}
static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu,
u16 devid, struct pci_dev *pdev)
{
struct irq_remap_table *table = NULL;
struct irq_remap_table *new_table = NULL;
struct amd_iommu_pci_seg *pci_seg;
unsigned long flags;
u16 alias;
spin_lock_irqsave(&iommu_table_lock, flags);
pci_seg = iommu->pci_seg;
table = pci_seg->irq_lookup_table[devid];
if (table)
goto out_unlock;
alias = pci_seg->alias_table[devid];
table = pci_seg->irq_lookup_table[alias];
if (table) {
set_remap_table_entry(iommu, devid, table);
goto out_wait;
}
spin_unlock_irqrestore(&iommu_table_lock, flags);
/* Nothing there yet, allocate new irq remapping table */
new_table = __alloc_irq_table();
if (!new_table)
return NULL;
spin_lock_irqsave(&iommu_table_lock, flags);
table = pci_seg->irq_lookup_table[devid];
if (table)
goto out_unlock;
table = pci_seg->irq_lookup_table[alias];
if (table) {
set_remap_table_entry(iommu, devid, table);
goto out_wait;
}
table = new_table;
new_table = NULL;
if (pdev)
pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
table);
else
set_remap_table_entry(iommu, devid, table);
if (devid != alias)
set_remap_table_entry(iommu, alias, table);
out_wait:
iommu_completion_wait(iommu);
out_unlock:
spin_unlock_irqrestore(&iommu_table_lock, flags);
if (new_table) {
kmem_cache_free(amd_iommu_irq_cache, new_table->table);
kfree(new_table);
}
return table;
}
static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count,
bool align, struct pci_dev *pdev)
{
struct irq_remap_table *table;
int index, c, alignment = 1;
unsigned long flags;
table = alloc_irq_table(iommu, devid, pdev);
if (!table)
return -ENODEV;
if (align)
alignment = roundup_pow_of_two(count);
raw_spin_lock_irqsave(&table->lock, flags);
/* Scan table for free entries */
for (index = ALIGN(table->min_index, alignment), c = 0;
index < MAX_IRQS_PER_TABLE;) {
if (!iommu->irte_ops->is_allocated(table, index)) {
c += 1;
} else {
c = 0;
index = ALIGN(index + 1, alignment);
continue;
}
if (c == count) {
for (; c != 0; --c)
iommu->irte_ops->set_allocated(table, index - c + 1);
index -= count - 1;
goto out;
}
index++;
}
index = -ENOSPC;
out:
raw_spin_unlock_irqrestore(&table->lock, flags);
return index;
}
static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
struct irte_ga *irte, struct amd_ir_data *data)
{
bool ret;
struct irq_remap_table *table;
unsigned long flags;
struct irte_ga *entry;
table = get_irq_table(iommu, devid);
if (!table)
return -ENOMEM;
raw_spin_lock_irqsave(&table->lock, flags);
entry = (struct irte_ga *)table->table;
entry = &entry[index];
ret = cmpxchg_double(&entry->lo.val, &entry->hi.val,
entry->lo.val, entry->hi.val,
irte->lo.val, irte->hi.val);
/*
* We use cmpxchg16 to atomically update the 128-bit IRTE,
* and it cannot be updated by the hardware or other processors
* behind us, so the return value of cmpxchg16 should be the
* same as the old value.
*/
WARN_ON(!ret);
if (data)
data->ref = entry;
raw_spin_unlock_irqrestore(&table->lock, flags);
iommu_flush_irt(iommu, devid);
iommu_completion_wait(iommu);
return 0;
}
static int modify_irte(struct amd_iommu *iommu,
u16 devid, int index, union irte *irte)
{
struct irq_remap_table *table;
unsigned long flags;
table = get_irq_table(iommu, devid);
if (!table)
return -ENOMEM;
raw_spin_lock_irqsave(&table->lock, flags);
table->table[index] = irte->val;
raw_spin_unlock_irqrestore(&table->lock, flags);
iommu_flush_irt(iommu, devid);
iommu_completion_wait(iommu);
return 0;
}
static void free_irte(struct amd_iommu *iommu, u16 devid, int index)
{
struct irq_remap_table *table;
unsigned long flags;
table = get_irq_table(iommu, devid);
if (!table)
return;
raw_spin_lock_irqsave(&table->lock, flags);
iommu->irte_ops->clear_allocated(table, index);
raw_spin_unlock_irqrestore(&table->lock, flags);
iommu_flush_irt(iommu, devid);
iommu_completion_wait(iommu);
}
static void irte_prepare(void *entry,
u32 delivery_mode, bool dest_mode,
u8 vector, u32 dest_apicid, int devid)
{
union irte *irte = (union irte *) entry;
irte->val = 0;
irte->fields.vector = vector;
irte->fields.int_type = delivery_mode;
irte->fields.destination = dest_apicid;
irte->fields.dm = dest_mode;
irte->fields.valid = 1;
}
static void irte_ga_prepare(void *entry,
u32 delivery_mode, bool dest_mode,
u8 vector, u32 dest_apicid, int devid)
{
struct irte_ga *irte = (struct irte_ga *) entry;
irte->lo.val = 0;
irte->hi.val = 0;
irte->lo.fields_remap.int_type = delivery_mode;
irte->lo.fields_remap.dm = dest_mode;
irte->hi.fields.vector = vector;
irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid);
irte->lo.fields_remap.valid = 1;
}
static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
{
union irte *irte = (union irte *) entry;
irte->fields.valid = 1;
modify_irte(iommu, devid, index, irte);
}
static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
{
struct irte_ga *irte = (struct irte_ga *) entry;
irte->lo.fields_remap.valid = 1;
modify_irte_ga(iommu, devid, index, irte, NULL);
}
static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
{
union irte *irte = (union irte *) entry;
irte->fields.valid = 0;
modify_irte(iommu, devid, index, irte);
}
static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
{
struct irte_ga *irte = (struct irte_ga *) entry;
irte->lo.fields_remap.valid = 0;
modify_irte_ga(iommu, devid, index, irte, NULL);
}
static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
u8 vector, u32 dest_apicid)
{
union irte *irte = (union irte *) entry;
irte->fields.vector = vector;
irte->fields.destination = dest_apicid;
modify_irte(iommu, devid, index, irte);
}
static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
u8 vector, u32 dest_apicid)
{
struct irte_ga *irte = (struct irte_ga *) entry;
if (!irte->lo.fields_remap.guest_mode) {
irte->hi.fields.vector = vector;
irte->lo.fields_remap.destination =
APICID_TO_IRTE_DEST_LO(dest_apicid);
irte->hi.fields.destination =
APICID_TO_IRTE_DEST_HI(dest_apicid);
modify_irte_ga(iommu, devid, index, irte, NULL);
}
}
#define IRTE_ALLOCATED (~1U)
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
table->table[index] = IRTE_ALLOCATED;
}
static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
struct irte_ga *ptr = (struct irte_ga *)table->table;
struct irte_ga *irte = &ptr[index];
memset(&irte->lo.val, 0, sizeof(u64));
memset(&irte->hi.val, 0, sizeof(u64));
irte->hi.fields.vector = 0xff;
}
static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
union irte *ptr = (union irte *)table->table;
union irte *irte = &ptr[index];
return irte->val != 0;
}
static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
struct irte_ga *ptr = (struct irte_ga *)table->table;
struct irte_ga *irte = &ptr[index];
return irte->hi.fields.vector != 0;
}
static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
table->table[index] = 0;
}
static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
struct irte_ga *ptr = (struct irte_ga *)table->table;
struct irte_ga *irte = &ptr[index];
memset(&irte->lo.val, 0, sizeof(u64));
memset(&irte->hi.val, 0, sizeof(u64));
}
static int get_devid(struct irq_alloc_info *info)
{
switch (info->type) {
case X86_IRQ_ALLOC_TYPE_IOAPIC:
return get_ioapic_devid(info->devid);
case X86_IRQ_ALLOC_TYPE_HPET:
return get_hpet_devid(info->devid);
case X86_IRQ_ALLOC_TYPE_PCI_MSI:
case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
return get_device_sbdf_id(msi_desc_to_dev(info->desc));
default:
WARN_ON_ONCE(1);
return -1;
}
}
struct irq_remap_ops amd_iommu_irq_ops = {
.prepare = amd_iommu_prepare,
.enable = amd_iommu_enable,
.disable = amd_iommu_disable,
.reenable = amd_iommu_reenable,
.enable_faulting = amd_iommu_enable_faulting,
};
static void fill_msi_msg(struct msi_msg *msg, u32 index)
{
msg->data = index;
msg->address_lo = 0;
msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
}
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
struct irq_cfg *irq_cfg,
struct irq_alloc_info *info,
int devid, int index, int sub_handle)
{
struct irq_2_irte *irte_info = &data->irq_2_irte;
struct amd_iommu *iommu = data->iommu;
if (!iommu)
return;
data->irq_2_irte.devid = devid;
data->irq_2_irte.index = index + sub_handle;
iommu->irte_ops->prepare(data->entry, apic->delivery_mode,
apic->dest_mode_logical, irq_cfg->vector,
irq_cfg->dest_apicid, devid);
switch (info->type) {
case X86_IRQ_ALLOC_TYPE_IOAPIC:
case X86_IRQ_ALLOC_TYPE_HPET:
case X86_IRQ_ALLOC_TYPE_PCI_MSI:
case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
fill_msi_msg(&data->msi_entry, irte_info->index);
break;
default:
BUG_ON(1);
break;
}
}
struct amd_irte_ops irte_32_ops = {
.prepare = irte_prepare,
.activate = irte_activate,
.deactivate = irte_deactivate,
.set_affinity = irte_set_affinity,
.set_allocated = irte_set_allocated,
.is_allocated = irte_is_allocated,
.clear_allocated = irte_clear_allocated,
};
struct amd_irte_ops irte_128_ops = {
.prepare = irte_ga_prepare,
.activate = irte_ga_activate,
.deactivate = irte_ga_deactivate,
.set_affinity = irte_ga_set_affinity,
.set_allocated = irte_ga_set_allocated,
.is_allocated = irte_ga_is_allocated,
.clear_allocated = irte_ga_clear_allocated,
};
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *arg)
{
struct irq_alloc_info *info = arg;
struct irq_data *irq_data;
struct amd_ir_data *data = NULL;
struct amd_iommu *iommu;
struct irq_cfg *cfg;
int i, ret, devid, seg, sbdf;
int index;
if (!info)
return -EINVAL;
if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI &&
info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX)
return -EINVAL;
/*
* With IRQ remapping enabled, don't need contiguous CPU vectors
* to support multiple MSI interrupts.
*/
if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI)
info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
sbdf = get_devid(info);
if (sbdf < 0)
return -EINVAL;
seg = PCI_SBDF_TO_SEGID(sbdf);
devid = PCI_SBDF_TO_DEVID(sbdf);
iommu = __rlookup_amd_iommu(seg, devid);
if (!iommu)
return -EINVAL;
ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
if (ret < 0)
return ret;
if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
struct irq_remap_table *table;
table = alloc_irq_table(iommu, devid, NULL);
if (table) {
if (!table->min_index) {
/*
* Keep the first 32 indexes free for IOAPIC
* interrupts.
*/
table->min_index = 32;
for (i = 0; i < 32; ++i)
iommu->irte_ops->set_allocated(table, i);
}
WARN_ON(table->min_index != 32);
index = info->ioapic.pin;
} else {
index = -ENOMEM;
}
} else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
index = alloc_irq_index(iommu, devid, nr_irqs, align,
msi_desc_to_pci_dev(info->desc));
} else {
index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL);
}
if (index < 0) {
pr_warn("Failed to allocate IRTE\n");
ret = index;
goto out_free_parent;
}
for (i = 0; i < nr_irqs; i++) {
irq_data = irq_domain_get_irq_data(domain, virq + i);
cfg = irq_data ? irqd_cfg(irq_data) : NULL;
if (!cfg) {
ret = -EINVAL;
goto out_free_data;
}
ret = -ENOMEM;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data)
goto out_free_data;
if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
else
data->entry = kzalloc(sizeof(struct irte_ga),
GFP_KERNEL);
if (!data->entry) {
kfree(data);
goto out_free_data;
}
data->iommu = iommu;
irq_data->hwirq = (devid << 16) + i;
irq_data->chip_data = data;
irq_data->chip = &amd_ir_chip;
irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
}
return 0;
out_free_data:
for (i--; i >= 0; i--) {
irq_data = irq_domain_get_irq_data(domain, virq + i);
if (irq_data)
kfree(irq_data->chip_data);
}
for (i = 0; i < nr_irqs; i++)
free_irte(iommu, devid, index + i);
out_free_parent:
irq_domain_free_irqs_common(domain, virq, nr_irqs);
return ret;
}
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs)
{
struct irq_2_irte *irte_info;
struct irq_data *irq_data;
struct amd_ir_data *data;
int i;
for (i = 0; i < nr_irqs; i++) {
irq_data = irq_domain_get_irq_data(domain, virq + i);
if (irq_data && irq_data->chip_data) {
data = irq_data->chip_data;
irte_info = &data->irq_2_irte;
free_irte(data->iommu, irte_info->devid, irte_info->index);
kfree(data->entry);
kfree(data);
}
}
irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
struct amd_ir_data *ir_data,
struct irq_2_irte *irte_info,
struct irq_cfg *cfg);
static int irq_remapping_activate(struct irq_domain *domain,
struct irq_data *irq_data, bool reserve)
{
struct amd_ir_data *data = irq_data->chip_data;
struct irq_2_irte *irte_info = &data->irq_2_irte;
struct amd_iommu *iommu = data->iommu;
struct irq_cfg *cfg = irqd_cfg(irq_data);
if (!iommu)
return 0;
iommu->irte_ops->activate(iommu, data->entry, irte_info->devid,
irte_info->index);
amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
return 0;
}
static void irq_remapping_deactivate(struct irq_domain *domain,
struct irq_data *irq_data)
{
struct amd_ir_data *data = irq_data->chip_data;
struct irq_2_irte *irte_info = &data->irq_2_irte;
struct amd_iommu *iommu = data->iommu;
if (iommu)
iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid,
irte_info->index);
}
static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
enum irq_domain_bus_token bus_token)
{
struct amd_iommu *iommu;
int devid = -1;
if (!amd_iommu_irq_remap)
return 0;
if (x86_fwspec_is_ioapic(fwspec))
devid = get_ioapic_devid(fwspec->param[0]);
else if (x86_fwspec_is_hpet(fwspec))
devid = get_hpet_devid(fwspec->param[0]);
if (devid < 0)
return 0;
iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff));
return iommu && iommu->ir_domain == d;
}
static const struct irq_domain_ops amd_ir_domain_ops = {
.select = irq_remapping_select,
.alloc = irq_remapping_alloc,
.free = irq_remapping_free,
.activate = irq_remapping_activate,
.deactivate = irq_remapping_deactivate,
};
int amd_iommu_activate_guest_mode(void *data)
{
struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
u64 valid;
if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
!entry || entry->lo.fields_vapic.guest_mode)
return 0;
valid = entry->lo.fields_vapic.valid;
entry->lo.val = 0;
entry->hi.val = 0;
entry->lo.fields_vapic.valid = valid;
entry->lo.fields_vapic.guest_mode = 1;
entry->lo.fields_vapic.ga_log_intr = 1;
entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr;
entry->hi.fields.vector = ir_data->ga_vector;
entry->lo.fields_vapic.ga_tag = ir_data->ga_tag;
return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
ir_data->irq_2_irte.index, entry, ir_data);
}
EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
int amd_iommu_deactivate_guest_mode(void *data)
{
struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
struct irq_cfg *cfg = ir_data->cfg;
u64 valid;
if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
!entry || !entry->lo.fields_vapic.guest_mode)
return 0;
valid = entry->lo.fields_remap.valid;
entry->lo.val = 0;
entry->hi.val = 0;
entry->lo.fields_remap.valid = valid;
entry->lo.fields_remap.dm = apic->dest_mode_logical;
entry->lo.fields_remap.int_type = apic->delivery_mode;
entry->hi.fields.vector = cfg->vector;
entry->lo.fields_remap.destination =
APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
entry->hi.fields.destination =
APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
ir_data->irq_2_irte.index, entry, ir_data);
}
EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
int ret;
struct amd_iommu_pi_data *pi_data = vcpu_info;
struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
struct amd_ir_data *ir_data = data->chip_data;
struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
struct iommu_dev_data *dev_data;
if (ir_data->iommu == NULL)
return -EINVAL;
dev_data = search_dev_data(ir_data->iommu, irte_info->devid);
/* Note:
* This device has never been set up for guest mode.
* we should not modify the IRTE
*/
if (!dev_data || !dev_data->use_vapic)
return 0;
ir_data->cfg = irqd_cfg(data);
pi_data->ir_data = ir_data;
/* Note:
* SVM tries to set up for VAPIC mode, but we are in
* legacy mode. So, we force legacy mode instead.
*/
if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
pr_debug("%s: Fall back to using intr legacy remap\n",
__func__);
pi_data->is_guest_mode = false;
}
pi_data->prev_ga_tag = ir_data->cached_ga_tag;
if (pi_data->is_guest_mode) {
ir_data->ga_root_ptr = (pi_data->base >> 12);
ir_data->ga_vector = vcpu_pi_info->vector;
ir_data->ga_tag = pi_data->ga_tag;
ret = amd_iommu_activate_guest_mode(ir_data);
if (!ret)
ir_data->cached_ga_tag = pi_data->ga_tag;
} else {
ret = amd_iommu_deactivate_guest_mode(ir_data);
/*
* This communicates the ga_tag back to the caller
* so that it can do all the necessary clean up.
*/
if (!ret)
ir_data->cached_ga_tag = 0;
}
return ret;
}
static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
struct amd_ir_data *ir_data,
struct irq_2_irte *irte_info,
struct irq_cfg *cfg)
{
/*
* Atomically updates the IRTE with the new destination, vector
* and flushes the interrupt entry cache.
*/
iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid,
irte_info->index, cfg->vector,
cfg->dest_apicid);
}
static int amd_ir_set_affinity(struct irq_data *data,
const struct cpumask *mask, bool force)
{
struct amd_ir_data *ir_data = data->chip_data;
struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
struct irq_cfg *cfg = irqd_cfg(data);
struct irq_data *parent = data->parent_data;
struct amd_iommu *iommu = ir_data->iommu;
int ret;
if (!iommu)
return -ENODEV;
ret = parent->chip->irq_set_affinity(parent, mask, force);
if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
return ret;
amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
/*
* After this point, all the interrupts will start arriving
* at the new destination. So, time to cleanup the previous
* vector allocation.
*/
send_cleanup_vector(cfg);
return IRQ_SET_MASK_OK_DONE;
}
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
{
struct amd_ir_data *ir_data = irq_data->chip_data;
*msg = ir_data->msi_entry;
}
static struct irq_chip amd_ir_chip = {
.name = "AMD-IR",
.irq_ack = apic_ack_irq,
.irq_set_affinity = amd_ir_set_affinity,
.irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
.irq_compose_msi_msg = ir_compose_msi_msg,
};
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
struct fwnode_handle *fn;
fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
if (!fn)
return -ENOMEM;
iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
if (!iommu->ir_domain) {
irq_domain_free_fwnode(fn);
return -ENOMEM;
}
iommu->ir_domain->parent = arch_get_ir_parent_domain();
iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
"AMD-IR-MSI",
iommu->index);
return 0;
}
int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
unsigned long flags;
struct amd_iommu *iommu;
struct irq_remap_table *table;
struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
int devid = ir_data->irq_2_irte.devid;
struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
!ref || !entry || !entry->lo.fields_vapic.guest_mode)
return 0;
iommu = ir_data->iommu;
if (!iommu)
return -ENODEV;
table = get_irq_table(iommu, devid);
if (!table)
return -ENODEV;
raw_spin_lock_irqsave(&table->lock, flags);
if (ref->lo.fields_vapic.guest_mode) {
if (cpu >= 0) {
ref->lo.fields_vapic.destination =
APICID_TO_IRTE_DEST_LO(cpu);
ref->hi.fields.destination =
APICID_TO_IRTE_DEST_HI(cpu);
}
ref->lo.fields_vapic.is_run = is_run;
barrier();
}
raw_spin_unlock_irqrestore(&table->lock, flags);
iommu_flush_irt(iommu, devid);
iommu_completion_wait(iommu);
return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
#endif