| /* |
| * arch/sh/mm/cache.c |
| * |
| * Copyright (C) 1999, 2000, 2002 Niibe Yutaka |
| * Copyright (C) 2002 - 2009 Paul Mundt |
| * |
| * Released under the terms of the GNU GPL v2.0. |
| */ |
| #include <linux/mm.h> |
| #include <linux/init.h> |
| #include <linux/mutex.h> |
| #include <linux/fs.h> |
| #include <linux/smp.h> |
| #include <linux/highmem.h> |
| #include <linux/module.h> |
| #include <asm/mmu_context.h> |
| #include <asm/cacheflush.h> |
| |
| void (*local_flush_cache_all)(void *args) = cache_noop; |
| void (*local_flush_cache_mm)(void *args) = cache_noop; |
| void (*local_flush_cache_dup_mm)(void *args) = cache_noop; |
| void (*local_flush_cache_page)(void *args) = cache_noop; |
| void (*local_flush_cache_range)(void *args) = cache_noop; |
| void (*local_flush_dcache_page)(void *args) = cache_noop; |
| void (*local_flush_icache_range)(void *args) = cache_noop; |
| void (*local_flush_icache_page)(void *args) = cache_noop; |
| void (*local_flush_cache_sigtramp)(void *args) = cache_noop; |
| |
| void (*__flush_wback_region)(void *start, int size); |
| EXPORT_SYMBOL(__flush_wback_region); |
| void (*__flush_purge_region)(void *start, int size); |
| EXPORT_SYMBOL(__flush_purge_region); |
| void (*__flush_invalidate_region)(void *start, int size); |
| EXPORT_SYMBOL(__flush_invalidate_region); |
| |
| static inline void noop__flush_region(void *start, int size) |
| { |
| } |
| |
| static inline void cacheop_on_each_cpu(void (*func) (void *info), void *info, |
| int wait) |
| { |
| preempt_disable(); |
| smp_call_function(func, info, wait); |
| func(info); |
| preempt_enable(); |
| } |
| |
| void copy_to_user_page(struct vm_area_struct *vma, struct page *page, |
| unsigned long vaddr, void *dst, const void *src, |
| unsigned long len) |
| { |
| if (boot_cpu_data.dcache.n_aliases && page_mapped(page) && |
| !test_bit(PG_dcache_dirty, &page->flags)) { |
| void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK); |
| memcpy(vto, src, len); |
| kunmap_coherent(vto); |
| } else { |
| memcpy(dst, src, len); |
| if (boot_cpu_data.dcache.n_aliases) |
| set_bit(PG_dcache_dirty, &page->flags); |
| } |
| |
| if (vma->vm_flags & VM_EXEC) |
| flush_cache_page(vma, vaddr, page_to_pfn(page)); |
| } |
| |
| void copy_from_user_page(struct vm_area_struct *vma, struct page *page, |
| unsigned long vaddr, void *dst, const void *src, |
| unsigned long len) |
| { |
| if (boot_cpu_data.dcache.n_aliases && page_mapped(page) && |
| !test_bit(PG_dcache_dirty, &page->flags)) { |
| void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK); |
| memcpy(dst, vfrom, len); |
| kunmap_coherent(vfrom); |
| } else { |
| memcpy(dst, src, len); |
| if (boot_cpu_data.dcache.n_aliases) |
| set_bit(PG_dcache_dirty, &page->flags); |
| } |
| } |
| |
| void copy_user_highpage(struct page *to, struct page *from, |
| unsigned long vaddr, struct vm_area_struct *vma) |
| { |
| void *vfrom, *vto; |
| |
| vto = kmap_atomic(to, KM_USER1); |
| |
| if (boot_cpu_data.dcache.n_aliases && page_mapped(from) && |
| !test_bit(PG_dcache_dirty, &from->flags)) { |
| vfrom = kmap_coherent(from, vaddr); |
| copy_page(vto, vfrom); |
| kunmap_coherent(vfrom); |
| } else { |
| vfrom = kmap_atomic(from, KM_USER0); |
| copy_page(vto, vfrom); |
| kunmap_atomic(vfrom, KM_USER0); |
| } |
| |
| if (pages_do_alias((unsigned long)vto, vaddr & PAGE_MASK)) |
| __flush_purge_region(vto, PAGE_SIZE); |
| |
| kunmap_atomic(vto, KM_USER1); |
| /* Make sure this page is cleared on other CPU's too before using it */ |
| smp_wmb(); |
| } |
| EXPORT_SYMBOL(copy_user_highpage); |
| |
| void clear_user_highpage(struct page *page, unsigned long vaddr) |
| { |
| void *kaddr = kmap_atomic(page, KM_USER0); |
| |
| clear_page(kaddr); |
| |
| if (pages_do_alias((unsigned long)kaddr, vaddr & PAGE_MASK)) |
| __flush_purge_region(kaddr, PAGE_SIZE); |
| |
| kunmap_atomic(kaddr, KM_USER0); |
| } |
| EXPORT_SYMBOL(clear_user_highpage); |
| |
| void __update_cache(struct vm_area_struct *vma, |
| unsigned long address, pte_t pte) |
| { |
| struct page *page; |
| unsigned long pfn = pte_pfn(pte); |
| |
| if (!boot_cpu_data.dcache.n_aliases) |
| return; |
| |
| page = pfn_to_page(pfn); |
| if (pfn_valid(pfn)) { |
| int dirty = test_and_clear_bit(PG_dcache_dirty, &page->flags); |
| if (dirty) |
| __flush_purge_region(page_address(page), PAGE_SIZE); |
| } |
| } |
| |
| void __flush_anon_page(struct page *page, unsigned long vmaddr) |
| { |
| unsigned long addr = (unsigned long) page_address(page); |
| |
| if (pages_do_alias(addr, vmaddr)) { |
| if (boot_cpu_data.dcache.n_aliases && page_mapped(page) && |
| !test_bit(PG_dcache_dirty, &page->flags)) { |
| void *kaddr; |
| |
| kaddr = kmap_coherent(page, vmaddr); |
| /* XXX.. For now kunmap_coherent() does a purge */ |
| /* __flush_purge_region((void *)kaddr, PAGE_SIZE); */ |
| kunmap_coherent(kaddr); |
| } else |
| __flush_purge_region((void *)addr, PAGE_SIZE); |
| } |
| } |
| |
| void flush_cache_all(void) |
| { |
| cacheop_on_each_cpu(local_flush_cache_all, NULL, 1); |
| } |
| EXPORT_SYMBOL(flush_cache_all); |
| |
| void flush_cache_mm(struct mm_struct *mm) |
| { |
| if (boot_cpu_data.dcache.n_aliases == 0) |
| return; |
| |
| cacheop_on_each_cpu(local_flush_cache_mm, mm, 1); |
| } |
| |
| void flush_cache_dup_mm(struct mm_struct *mm) |
| { |
| if (boot_cpu_data.dcache.n_aliases == 0) |
| return; |
| |
| cacheop_on_each_cpu(local_flush_cache_dup_mm, mm, 1); |
| } |
| |
| void flush_cache_page(struct vm_area_struct *vma, unsigned long addr, |
| unsigned long pfn) |
| { |
| struct flusher_data data; |
| |
| data.vma = vma; |
| data.addr1 = addr; |
| data.addr2 = pfn; |
| |
| cacheop_on_each_cpu(local_flush_cache_page, (void *)&data, 1); |
| } |
| |
| void flush_cache_range(struct vm_area_struct *vma, unsigned long start, |
| unsigned long end) |
| { |
| struct flusher_data data; |
| |
| data.vma = vma; |
| data.addr1 = start; |
| data.addr2 = end; |
| |
| cacheop_on_each_cpu(local_flush_cache_range, (void *)&data, 1); |
| } |
| EXPORT_SYMBOL(flush_cache_range); |
| |
| void flush_dcache_page(struct page *page) |
| { |
| cacheop_on_each_cpu(local_flush_dcache_page, page, 1); |
| } |
| EXPORT_SYMBOL(flush_dcache_page); |
| |
| void flush_icache_range(unsigned long start, unsigned long end) |
| { |
| struct flusher_data data; |
| |
| data.vma = NULL; |
| data.addr1 = start; |
| data.addr2 = end; |
| |
| cacheop_on_each_cpu(local_flush_icache_range, (void *)&data, 1); |
| } |
| |
| void flush_icache_page(struct vm_area_struct *vma, struct page *page) |
| { |
| /* Nothing uses the VMA, so just pass the struct page along */ |
| cacheop_on_each_cpu(local_flush_icache_page, page, 1); |
| } |
| |
| void flush_cache_sigtramp(unsigned long address) |
| { |
| cacheop_on_each_cpu(local_flush_cache_sigtramp, (void *)address, 1); |
| } |
| |
| static void compute_alias(struct cache_info *c) |
| { |
| c->alias_mask = ((c->sets - 1) << c->entry_shift) & ~(PAGE_SIZE - 1); |
| c->n_aliases = c->alias_mask ? (c->alias_mask >> PAGE_SHIFT) + 1 : 0; |
| } |
| |
| static void __init emit_cache_params(void) |
| { |
| printk(KERN_NOTICE "I-cache : n_ways=%d n_sets=%d way_incr=%d\n", |
| boot_cpu_data.icache.ways, |
| boot_cpu_data.icache.sets, |
| boot_cpu_data.icache.way_incr); |
| printk(KERN_NOTICE "I-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n", |
| boot_cpu_data.icache.entry_mask, |
| boot_cpu_data.icache.alias_mask, |
| boot_cpu_data.icache.n_aliases); |
| printk(KERN_NOTICE "D-cache : n_ways=%d n_sets=%d way_incr=%d\n", |
| boot_cpu_data.dcache.ways, |
| boot_cpu_data.dcache.sets, |
| boot_cpu_data.dcache.way_incr); |
| printk(KERN_NOTICE "D-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n", |
| boot_cpu_data.dcache.entry_mask, |
| boot_cpu_data.dcache.alias_mask, |
| boot_cpu_data.dcache.n_aliases); |
| |
| /* |
| * Emit Secondary Cache parameters if the CPU has a probed L2. |
| */ |
| if (boot_cpu_data.flags & CPU_HAS_L2_CACHE) { |
| printk(KERN_NOTICE "S-cache : n_ways=%d n_sets=%d way_incr=%d\n", |
| boot_cpu_data.scache.ways, |
| boot_cpu_data.scache.sets, |
| boot_cpu_data.scache.way_incr); |
| printk(KERN_NOTICE "S-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n", |
| boot_cpu_data.scache.entry_mask, |
| boot_cpu_data.scache.alias_mask, |
| boot_cpu_data.scache.n_aliases); |
| } |
| } |
| |
| void __init cpu_cache_init(void) |
| { |
| unsigned int cache_disabled = 0; |
| |
| #ifdef CCR |
| cache_disabled = !(__raw_readl(CCR) & CCR_CACHE_ENABLE); |
| #endif |
| |
| compute_alias(&boot_cpu_data.icache); |
| compute_alias(&boot_cpu_data.dcache); |
| compute_alias(&boot_cpu_data.scache); |
| |
| __flush_wback_region = noop__flush_region; |
| __flush_purge_region = noop__flush_region; |
| __flush_invalidate_region = noop__flush_region; |
| |
| /* |
| * No flushing is necessary in the disabled cache case so we can |
| * just keep the noop functions in local_flush_..() and __flush_..() |
| */ |
| if (unlikely(cache_disabled)) |
| goto skip; |
| |
| if (boot_cpu_data.family == CPU_FAMILY_SH2) { |
| extern void __weak sh2_cache_init(void); |
| |
| sh2_cache_init(); |
| } |
| |
| if (boot_cpu_data.family == CPU_FAMILY_SH2A) { |
| extern void __weak sh2a_cache_init(void); |
| |
| sh2a_cache_init(); |
| } |
| |
| if (boot_cpu_data.family == CPU_FAMILY_SH3) { |
| extern void __weak sh3_cache_init(void); |
| |
| sh3_cache_init(); |
| |
| if ((boot_cpu_data.type == CPU_SH7705) && |
| (boot_cpu_data.dcache.sets == 512)) { |
| extern void __weak sh7705_cache_init(void); |
| |
| sh7705_cache_init(); |
| } |
| } |
| |
| if ((boot_cpu_data.family == CPU_FAMILY_SH4) || |
| (boot_cpu_data.family == CPU_FAMILY_SH4A) || |
| (boot_cpu_data.family == CPU_FAMILY_SH4AL_DSP)) { |
| extern void __weak sh4_cache_init(void); |
| |
| sh4_cache_init(); |
| } |
| |
| if (boot_cpu_data.family == CPU_FAMILY_SH5) { |
| extern void __weak sh5_cache_init(void); |
| |
| sh5_cache_init(); |
| } |
| |
| skip: |
| emit_cache_params(); |
| } |