blob: 9b087bd8df7d8c6ee4b341c0a99b3d7daaf194ef [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* vsp1_drm.c -- R-Car VSP1 DRM/KMS Interface
*
* Copyright (C) 2015 Renesas Electronics Corporation
*
* Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
*/
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <media/media-entity.h>
#include <media/v4l2-subdev.h>
#include <media/vsp1.h>
#include "vsp1.h"
#include "vsp1_brx.h"
#include "vsp1_dl.h"
#include "vsp1_drm.h"
#include "vsp1_lif.h"
#include "vsp1_pipe.h"
#include "vsp1_rwpf.h"
#include "vsp1_uif.h"
#define BRX_NAME(e) (e)->type == VSP1_ENTITY_BRU ? "BRU" : "BRS"
/* -----------------------------------------------------------------------------
* Interrupt Handling
*/
static void vsp1_du_pipeline_frame_end(struct vsp1_pipeline *pipe,
unsigned int completion)
{
struct vsp1_drm_pipeline *drm_pipe = to_vsp1_drm_pipeline(pipe);
if (drm_pipe->du_complete) {
struct vsp1_entity *uif = drm_pipe->uif;
unsigned int status = completion
& (VSP1_DU_STATUS_COMPLETE |
VSP1_DU_STATUS_WRITEBACK);
u32 crc;
crc = uif ? vsp1_uif_get_crc(to_uif(&uif->subdev)) : 0;
drm_pipe->du_complete(drm_pipe->du_private, status, crc);
}
if (completion & VSP1_DL_FRAME_END_INTERNAL) {
drm_pipe->force_brx_release = false;
wake_up(&drm_pipe->wait_queue);
}
}
/* -----------------------------------------------------------------------------
* Pipeline Configuration
*/
/*
* Insert the UIF in the pipeline between the prev and next entities. If no UIF
* is available connect the two entities directly.
*/
static int vsp1_du_insert_uif(struct vsp1_device *vsp1,
struct vsp1_pipeline *pipe,
struct vsp1_entity *uif,
struct vsp1_entity *prev, unsigned int prev_pad,
struct vsp1_entity *next, unsigned int next_pad)
{
struct v4l2_subdev_format format = {
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
int ret;
if (!uif) {
/*
* If there's no UIF to be inserted, connect the previous and
* next entities directly.
*/
prev->sink = next;
prev->sink_pad = next_pad;
return 0;
}
prev->sink = uif;
prev->sink_pad = UIF_PAD_SINK;
format.pad = prev_pad;
ret = v4l2_subdev_call(&prev->subdev, pad, get_fmt, NULL, &format);
if (ret < 0)
return ret;
format.pad = UIF_PAD_SINK;
ret = v4l2_subdev_call(&uif->subdev, pad, set_fmt, NULL, &format);
if (ret < 0)
return ret;
dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on UIF sink\n",
__func__, format.format.width, format.format.height,
format.format.code);
/*
* The UIF doesn't mangle the format between its sink and source pads,
* so there is no need to retrieve the format on its source pad.
*/
uif->sink = next;
uif->sink_pad = next_pad;
return 0;
}
/* Setup one RPF and the connected BRx sink pad. */
static int vsp1_du_pipeline_setup_rpf(struct vsp1_device *vsp1,
struct vsp1_pipeline *pipe,
struct vsp1_rwpf *rpf,
struct vsp1_entity *uif,
unsigned int brx_input)
{
struct v4l2_subdev_selection sel = {
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
struct v4l2_subdev_format format = {
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
const struct v4l2_rect *crop;
int ret;
/*
* Configure the format on the RPF sink pad and propagate it up to the
* BRx sink pad.
*/
crop = &vsp1->drm->inputs[rpf->entity.index].crop;
format.pad = RWPF_PAD_SINK;
format.format.width = crop->width + crop->left;
format.format.height = crop->height + crop->top;
format.format.code = rpf->fmtinfo->mbus;
format.format.field = V4L2_FIELD_NONE;
ret = v4l2_subdev_call(&rpf->entity.subdev, pad, set_fmt, NULL,
&format);
if (ret < 0)
return ret;
dev_dbg(vsp1->dev,
"%s: set format %ux%u (%x) on RPF%u sink\n",
__func__, format.format.width, format.format.height,
format.format.code, rpf->entity.index);
sel.pad = RWPF_PAD_SINK;
sel.target = V4L2_SEL_TGT_CROP;
sel.r = *crop;
ret = v4l2_subdev_call(&rpf->entity.subdev, pad, set_selection, NULL,
&sel);
if (ret < 0)
return ret;
dev_dbg(vsp1->dev,
"%s: set selection (%u,%u)/%ux%u on RPF%u sink\n",
__func__, sel.r.left, sel.r.top, sel.r.width, sel.r.height,
rpf->entity.index);
/*
* RPF source, hardcode the format to ARGB8888 to turn on format
* conversion if needed.
*/
format.pad = RWPF_PAD_SOURCE;
ret = v4l2_subdev_call(&rpf->entity.subdev, pad, get_fmt, NULL,
&format);
if (ret < 0)
return ret;
dev_dbg(vsp1->dev,
"%s: got format %ux%u (%x) on RPF%u source\n",
__func__, format.format.width, format.format.height,
format.format.code, rpf->entity.index);
format.format.code = MEDIA_BUS_FMT_ARGB8888_1X32;
ret = v4l2_subdev_call(&rpf->entity.subdev, pad, set_fmt, NULL,
&format);
if (ret < 0)
return ret;
/* Insert and configure the UIF if available. */
ret = vsp1_du_insert_uif(vsp1, pipe, uif, &rpf->entity, RWPF_PAD_SOURCE,
pipe->brx, brx_input);
if (ret < 0)
return ret;
/* BRx sink, propagate the format from the RPF source. */
format.pad = brx_input;
ret = v4l2_subdev_call(&pipe->brx->subdev, pad, set_fmt, NULL,
&format);
if (ret < 0)
return ret;
dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on %s pad %u\n",
__func__, format.format.width, format.format.height,
format.format.code, BRX_NAME(pipe->brx), format.pad);
sel.pad = brx_input;
sel.target = V4L2_SEL_TGT_COMPOSE;
sel.r = vsp1->drm->inputs[rpf->entity.index].compose;
ret = v4l2_subdev_call(&pipe->brx->subdev, pad, set_selection, NULL,
&sel);
if (ret < 0)
return ret;
dev_dbg(vsp1->dev, "%s: set selection (%u,%u)/%ux%u on %s pad %u\n",
__func__, sel.r.left, sel.r.top, sel.r.width, sel.r.height,
BRX_NAME(pipe->brx), sel.pad);
return 0;
}
/* Setup the BRx source pad. */
static int vsp1_du_pipeline_setup_inputs(struct vsp1_device *vsp1,
struct vsp1_pipeline *pipe);
static void vsp1_du_pipeline_configure(struct vsp1_pipeline *pipe);
static int vsp1_du_pipeline_setup_brx(struct vsp1_device *vsp1,
struct vsp1_pipeline *pipe)
{
struct vsp1_drm_pipeline *drm_pipe = to_vsp1_drm_pipeline(pipe);
struct v4l2_subdev_format format = {
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
struct vsp1_entity *brx;
int ret;
/*
* Pick a BRx:
* - If we need more than two inputs, use the BRU.
* - Otherwise, if we are not forced to release our BRx, keep it.
* - Else, use any free BRx (randomly starting with the BRU).
*/
if (pipe->num_inputs > 2)
brx = &vsp1->bru->entity;
else if (pipe->brx && !drm_pipe->force_brx_release)
brx = pipe->brx;
else if (vsp1_feature(vsp1, VSP1_HAS_BRU) && !vsp1->bru->entity.pipe)
brx = &vsp1->bru->entity;
else
brx = &vsp1->brs->entity;
/* Switch BRx if needed. */
if (brx != pipe->brx) {
struct vsp1_entity *released_brx = NULL;
/* Release our BRx if we have one. */
if (pipe->brx) {
dev_dbg(vsp1->dev, "%s: pipe %u: releasing %s\n",
__func__, pipe->lif->index,
BRX_NAME(pipe->brx));
/*
* The BRx might be acquired by the other pipeline in
* the next step. We must thus remove it from the list
* of entities for this pipeline. The other pipeline's
* hardware configuration will reconfigure the BRx
* routing.
*
* However, if the other pipeline doesn't acquire our
* BRx, we need to keep it in the list, otherwise the
* hardware configuration step won't disconnect it from
* the pipeline. To solve this, store the released BRx
* pointer to add it back to the list of entities later
* if it isn't acquired by the other pipeline.
*/
released_brx = pipe->brx;
list_del(&pipe->brx->list_pipe);
pipe->brx->sink = NULL;
pipe->brx->pipe = NULL;
pipe->brx = NULL;
}
/*
* If the BRx we need is in use, force the owner pipeline to
* switch to the other BRx and wait until the switch completes.
*/
if (brx->pipe) {
struct vsp1_drm_pipeline *owner_pipe;
dev_dbg(vsp1->dev, "%s: pipe %u: waiting for %s\n",
__func__, pipe->lif->index, BRX_NAME(brx));
owner_pipe = to_vsp1_drm_pipeline(brx->pipe);
owner_pipe->force_brx_release = true;
vsp1_du_pipeline_setup_inputs(vsp1, &owner_pipe->pipe);
vsp1_du_pipeline_configure(&owner_pipe->pipe);
ret = wait_event_timeout(owner_pipe->wait_queue,
!owner_pipe->force_brx_release,
msecs_to_jiffies(500));
if (ret == 0)
dev_warn(vsp1->dev,
"DRM pipeline %u reconfiguration timeout\n",
owner_pipe->pipe.lif->index);
}
/*
* If the BRx we have released previously hasn't been acquired
* by the other pipeline, add it back to the entities list (with
* the pipe pointer NULL) to let vsp1_du_pipeline_configure()
* disconnect it from the hardware pipeline.
*/
if (released_brx && !released_brx->pipe)
list_add_tail(&released_brx->list_pipe,
&pipe->entities);
/* Add the BRx to the pipeline. */
dev_dbg(vsp1->dev, "%s: pipe %u: acquired %s\n",
__func__, pipe->lif->index, BRX_NAME(brx));
pipe->brx = brx;
pipe->brx->pipe = pipe;
pipe->brx->sink = &pipe->output->entity;
pipe->brx->sink_pad = 0;
list_add_tail(&pipe->brx->list_pipe, &pipe->entities);
}
/*
* Configure the format on the BRx source and verify that it matches the
* requested format. We don't set the media bus code as it is configured
* on the BRx sink pad 0 and propagated inside the entity, not on the
* source pad.
*/
format.pad = brx->source_pad;
format.format.width = drm_pipe->width;
format.format.height = drm_pipe->height;
format.format.field = V4L2_FIELD_NONE;
ret = v4l2_subdev_call(&brx->subdev, pad, set_fmt, NULL,
&format);
if (ret < 0)
return ret;
dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on %s pad %u\n",
__func__, format.format.width, format.format.height,
format.format.code, BRX_NAME(brx), brx->source_pad);
if (format.format.width != drm_pipe->width ||
format.format.height != drm_pipe->height) {
dev_dbg(vsp1->dev, "%s: format mismatch\n", __func__);
return -EPIPE;
}
return 0;
}
static unsigned int rpf_zpos(struct vsp1_device *vsp1, struct vsp1_rwpf *rpf)
{
return vsp1->drm->inputs[rpf->entity.index].zpos;
}
/* Setup the input side of the pipeline (RPFs and BRx). */
static int vsp1_du_pipeline_setup_inputs(struct vsp1_device *vsp1,
struct vsp1_pipeline *pipe)
{
struct vsp1_drm_pipeline *drm_pipe = to_vsp1_drm_pipeline(pipe);
struct vsp1_rwpf *inputs[VSP1_MAX_RPF] = { NULL, };
struct vsp1_entity *uif;
bool use_uif = false;
struct vsp1_brx *brx;
unsigned int i;
int ret;
/* Count the number of enabled inputs and sort them by Z-order. */
pipe->num_inputs = 0;
for (i = 0; i < vsp1->info->rpf_count; ++i) {
struct vsp1_rwpf *rpf = vsp1->rpf[i];
unsigned int j;
if (!pipe->inputs[i])
continue;
/* Insert the RPF in the sorted RPFs array. */
for (j = pipe->num_inputs++; j > 0; --j) {
if (rpf_zpos(vsp1, inputs[j-1]) <= rpf_zpos(vsp1, rpf))
break;
inputs[j] = inputs[j-1];
}
inputs[j] = rpf;
}
/*
* Setup the BRx. This must be done before setting up the RPF input
* pipelines as the BRx sink compose rectangles depend on the BRx source
* format.
*/
ret = vsp1_du_pipeline_setup_brx(vsp1, pipe);
if (ret < 0) {
dev_err(vsp1->dev, "%s: failed to setup %s source\n", __func__,
BRX_NAME(pipe->brx));
return ret;
}
brx = to_brx(&pipe->brx->subdev);
/* Setup the RPF input pipeline for every enabled input. */
for (i = 0; i < pipe->brx->source_pad; ++i) {
struct vsp1_rwpf *rpf = inputs[i];
if (!rpf) {
brx->inputs[i].rpf = NULL;
continue;
}
if (!rpf->entity.pipe) {
rpf->entity.pipe = pipe;
list_add_tail(&rpf->entity.list_pipe, &pipe->entities);
}
brx->inputs[i].rpf = rpf;
rpf->brx_input = i;
rpf->entity.sink = pipe->brx;
rpf->entity.sink_pad = i;
dev_dbg(vsp1->dev, "%s: connecting RPF.%u to %s:%u\n",
__func__, rpf->entity.index, BRX_NAME(pipe->brx), i);
uif = drm_pipe->crc.source == VSP1_DU_CRC_PLANE &&
drm_pipe->crc.index == i ? drm_pipe->uif : NULL;
if (uif)
use_uif = true;
ret = vsp1_du_pipeline_setup_rpf(vsp1, pipe, rpf, uif, i);
if (ret < 0) {
dev_err(vsp1->dev,
"%s: failed to setup RPF.%u\n",
__func__, rpf->entity.index);
return ret;
}
}
/* Insert and configure the UIF at the BRx output if available. */
uif = drm_pipe->crc.source == VSP1_DU_CRC_OUTPUT ? drm_pipe->uif : NULL;
if (uif)
use_uif = true;
ret = vsp1_du_insert_uif(vsp1, pipe, uif,
pipe->brx, pipe->brx->source_pad,
&pipe->output->entity, 0);
if (ret < 0)
dev_err(vsp1->dev, "%s: failed to setup UIF after %s\n",
__func__, BRX_NAME(pipe->brx));
/* If the DRM pipe does not have a UIF there is nothing we can update. */
if (!drm_pipe->uif)
return 0;
/*
* If the UIF is not in use schedule it for removal by setting its pipe
* pointer to NULL, vsp1_du_pipeline_configure() will remove it from the
* hardware pipeline and from the pipeline's list of entities. Otherwise
* make sure it is present in the pipeline's list of entities if it
* wasn't already.
*/
if (!use_uif) {
drm_pipe->uif->pipe = NULL;
} else if (!drm_pipe->uif->pipe) {
drm_pipe->uif->pipe = pipe;
list_add_tail(&drm_pipe->uif->list_pipe, &pipe->entities);
}
return 0;
}
/* Setup the output side of the pipeline (WPF and LIF). */
static int vsp1_du_pipeline_setup_output(struct vsp1_device *vsp1,
struct vsp1_pipeline *pipe)
{
struct vsp1_drm_pipeline *drm_pipe = to_vsp1_drm_pipeline(pipe);
struct v4l2_subdev_format format = {
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
int ret;
format.pad = RWPF_PAD_SINK;
format.format.width = drm_pipe->width;
format.format.height = drm_pipe->height;
format.format.code = MEDIA_BUS_FMT_ARGB8888_1X32;
format.format.field = V4L2_FIELD_NONE;
ret = v4l2_subdev_call(&pipe->output->entity.subdev, pad, set_fmt, NULL,
&format);
if (ret < 0)
return ret;
dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on WPF%u sink\n",
__func__, format.format.width, format.format.height,
format.format.code, pipe->output->entity.index);
format.pad = RWPF_PAD_SOURCE;
ret = v4l2_subdev_call(&pipe->output->entity.subdev, pad, get_fmt, NULL,
&format);
if (ret < 0)
return ret;
dev_dbg(vsp1->dev, "%s: got format %ux%u (%x) on WPF%u source\n",
__func__, format.format.width, format.format.height,
format.format.code, pipe->output->entity.index);
format.pad = LIF_PAD_SINK;
ret = v4l2_subdev_call(&pipe->lif->subdev, pad, set_fmt, NULL,
&format);
if (ret < 0)
return ret;
dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on LIF%u sink\n",
__func__, format.format.width, format.format.height,
format.format.code, pipe->lif->index);
/*
* Verify that the format at the output of the pipeline matches the
* requested frame size and media bus code.
*/
if (format.format.width != drm_pipe->width ||
format.format.height != drm_pipe->height ||
format.format.code != MEDIA_BUS_FMT_ARGB8888_1X32) {
dev_dbg(vsp1->dev, "%s: format mismatch on LIF%u\n", __func__,
pipe->lif->index);
return -EPIPE;
}
return 0;
}
/* Configure all entities in the pipeline. */
static void vsp1_du_pipeline_configure(struct vsp1_pipeline *pipe)
{
struct vsp1_drm_pipeline *drm_pipe = to_vsp1_drm_pipeline(pipe);
struct vsp1_entity *entity;
struct vsp1_entity *next;
struct vsp1_dl_list *dl;
struct vsp1_dl_body *dlb;
unsigned int dl_flags = 0;
if (drm_pipe->force_brx_release)
dl_flags |= VSP1_DL_FRAME_END_INTERNAL;
if (pipe->output->writeback)
dl_flags |= VSP1_DL_FRAME_END_WRITEBACK;
dl = vsp1_dl_list_get(pipe->output->dlm);
dlb = vsp1_dl_list_get_body0(dl);
list_for_each_entry_safe(entity, next, &pipe->entities, list_pipe) {
/* Disconnect unused entities from the pipeline. */
if (!entity->pipe) {
vsp1_dl_body_write(dlb, entity->route->reg,
VI6_DPR_NODE_UNUSED);
entity->sink = NULL;
list_del(&entity->list_pipe);
continue;
}
vsp1_entity_route_setup(entity, pipe, dlb);
vsp1_entity_configure_stream(entity, pipe, dl, dlb);
vsp1_entity_configure_frame(entity, pipe, dl, dlb);
vsp1_entity_configure_partition(entity, pipe, dl, dlb);
}
vsp1_dl_list_commit(dl, dl_flags);
}
static int vsp1_du_pipeline_set_rwpf_format(struct vsp1_device *vsp1,
struct vsp1_rwpf *rwpf,
u32 pixelformat, unsigned int pitch)
{
const struct vsp1_format_info *fmtinfo;
unsigned int chroma_hsub;
fmtinfo = vsp1_get_format_info(vsp1, pixelformat);
if (!fmtinfo) {
dev_dbg(vsp1->dev, "Unsupported pixel format %08x\n",
pixelformat);
return -EINVAL;
}
/*
* Only formats with three planes can affect the chroma planes pitch.
* All formats with two planes have a horizontal subsampling value of 2,
* but combine U and V in a single chroma plane, which thus results in
* the luma plane and chroma plane having the same pitch.
*/
chroma_hsub = (fmtinfo->planes == 3) ? fmtinfo->hsub : 1;
rwpf->fmtinfo = fmtinfo;
rwpf->format.num_planes = fmtinfo->planes;
rwpf->format.plane_fmt[0].bytesperline = pitch;
rwpf->format.plane_fmt[1].bytesperline = pitch / chroma_hsub;
return 0;
}
/* -----------------------------------------------------------------------------
* DU Driver API
*/
int vsp1_du_init(struct device *dev)
{
struct vsp1_device *vsp1 = dev_get_drvdata(dev);
if (!vsp1)
return -EPROBE_DEFER;
return 0;
}
EXPORT_SYMBOL_GPL(vsp1_du_init);
/**
* vsp1_du_setup_lif - Setup the output part of the VSP pipeline
* @dev: the VSP device
* @pipe_index: the DRM pipeline index
* @cfg: the LIF configuration
*
* Configure the output part of VSP DRM pipeline for the given frame @cfg.width
* and @cfg.height. This sets up formats on the BRx source pad, the WPF sink and
* source pads, and the LIF sink pad.
*
* The @pipe_index argument selects which DRM pipeline to setup. The number of
* available pipelines depend on the VSP instance.
*
* As the media bus code on the blend unit source pad is conditioned by the
* configuration of its sink 0 pad, we also set up the formats on all blend unit
* sinks, even if the configuration will be overwritten later by
* vsp1_du_setup_rpf(). This ensures that the blend unit configuration is set to
* a well defined state.
*
* Return 0 on success or a negative error code on failure.
*/
int vsp1_du_setup_lif(struct device *dev, unsigned int pipe_index,
const struct vsp1_du_lif_config *cfg)
{
struct vsp1_device *vsp1 = dev_get_drvdata(dev);
struct vsp1_drm_pipeline *drm_pipe;
struct vsp1_pipeline *pipe;
unsigned long flags;
unsigned int i;
int ret;
if (pipe_index >= vsp1->info->lif_count)
return -EINVAL;
drm_pipe = &vsp1->drm->pipe[pipe_index];
pipe = &drm_pipe->pipe;
if (!cfg) {
struct vsp1_brx *brx;
mutex_lock(&vsp1->drm->lock);
brx = to_brx(&pipe->brx->subdev);
/*
* NULL configuration means the CRTC is being disabled, stop
* the pipeline and turn the light off.
*/
ret = vsp1_pipeline_stop(pipe);
if (ret == -ETIMEDOUT)
dev_err(vsp1->dev, "DRM pipeline stop timeout\n");
for (i = 0; i < ARRAY_SIZE(pipe->inputs); ++i) {
struct vsp1_rwpf *rpf = pipe->inputs[i];
if (!rpf)
continue;
/*
* Remove the RPF from the pipe and the list of BRx
* inputs.
*/
WARN_ON(!rpf->entity.pipe);
rpf->entity.pipe = NULL;
list_del(&rpf->entity.list_pipe);
pipe->inputs[i] = NULL;
brx->inputs[rpf->brx_input].rpf = NULL;
}
drm_pipe->du_complete = NULL;
pipe->num_inputs = 0;
dev_dbg(vsp1->dev, "%s: pipe %u: releasing %s\n",
__func__, pipe->lif->index,
BRX_NAME(pipe->brx));
list_del(&pipe->brx->list_pipe);
pipe->brx->pipe = NULL;
pipe->brx = NULL;
mutex_unlock(&vsp1->drm->lock);
vsp1_dlm_reset(pipe->output->dlm);
vsp1_device_put(vsp1);
dev_dbg(vsp1->dev, "%s: pipeline disabled\n", __func__);
return 0;
}
/* Reset the underrun counter */
pipe->underrun_count = 0;
drm_pipe->width = cfg->width;
drm_pipe->height = cfg->height;
pipe->interlaced = cfg->interlaced;
dev_dbg(vsp1->dev, "%s: configuring LIF%u with format %ux%u%s\n",
__func__, pipe_index, cfg->width, cfg->height,
pipe->interlaced ? "i" : "");
mutex_lock(&vsp1->drm->lock);
/* Setup formats through the pipeline. */
ret = vsp1_du_pipeline_setup_inputs(vsp1, pipe);
if (ret < 0)
goto unlock;
ret = vsp1_du_pipeline_setup_output(vsp1, pipe);
if (ret < 0)
goto unlock;
/* Enable the VSP1. */
ret = vsp1_device_get(vsp1);
if (ret < 0)
goto unlock;
/*
* Register a callback to allow us to notify the DRM driver of frame
* completion events.
*/
drm_pipe->du_complete = cfg->callback;
drm_pipe->du_private = cfg->callback_data;
/* Disable the display interrupts. */
vsp1_write(vsp1, VI6_DISP_IRQ_STA(pipe_index), 0);
vsp1_write(vsp1, VI6_DISP_IRQ_ENB(pipe_index), 0);
/* Configure all entities in the pipeline. */
vsp1_du_pipeline_configure(pipe);
unlock:
mutex_unlock(&vsp1->drm->lock);
if (ret < 0)
return ret;
/* Start the pipeline. */
spin_lock_irqsave(&pipe->irqlock, flags);
vsp1_pipeline_run(pipe);
spin_unlock_irqrestore(&pipe->irqlock, flags);
dev_dbg(vsp1->dev, "%s: pipeline enabled\n", __func__);
return 0;
}
EXPORT_SYMBOL_GPL(vsp1_du_setup_lif);
/**
* vsp1_du_atomic_begin - Prepare for an atomic update
* @dev: the VSP device
* @pipe_index: the DRM pipeline index
*/
void vsp1_du_atomic_begin(struct device *dev, unsigned int pipe_index)
{
}
EXPORT_SYMBOL_GPL(vsp1_du_atomic_begin);
/**
* vsp1_du_atomic_update - Setup one RPF input of the VSP pipeline
* @dev: the VSP device
* @pipe_index: the DRM pipeline index
* @rpf_index: index of the RPF to setup (0-based)
* @cfg: the RPF configuration
*
* Configure the VSP to perform image composition through RPF @rpf_index as
* described by the @cfg configuration. The image to compose is referenced by
* @cfg.mem and composed using the @cfg.src crop rectangle and the @cfg.dst
* composition rectangle. The Z-order is configurable with higher @zpos values
* displayed on top.
*
* If the @cfg configuration is NULL, the RPF will be disabled. Calling the
* function on a disabled RPF is allowed.
*
* Image format as stored in memory is expressed as a V4L2 @cfg.pixelformat
* value. The memory pitch is configurable to allow for padding at end of lines,
* or simply for images that extend beyond the crop rectangle boundaries. The
* @cfg.pitch value is expressed in bytes and applies to all planes for
* multiplanar formats.
*
* The source memory buffer is referenced by the DMA address of its planes in
* the @cfg.mem array. Up to two planes are supported. The second plane DMA
* address is ignored for formats using a single plane.
*
* This function isn't reentrant, the caller needs to serialize calls.
*
* Return 0 on success or a negative error code on failure.
*/
int vsp1_du_atomic_update(struct device *dev, unsigned int pipe_index,
unsigned int rpf_index,
const struct vsp1_du_atomic_config *cfg)
{
struct vsp1_device *vsp1 = dev_get_drvdata(dev);
struct vsp1_drm_pipeline *drm_pipe = &vsp1->drm->pipe[pipe_index];
struct vsp1_rwpf *rpf;
int ret;
if (rpf_index >= vsp1->info->rpf_count)
return -EINVAL;
rpf = vsp1->rpf[rpf_index];
if (!cfg) {
dev_dbg(vsp1->dev, "%s: RPF%u: disable requested\n", __func__,
rpf_index);
/*
* Remove the RPF from the pipeline's inputs. Keep it in the
* pipeline's entity list to let vsp1_du_pipeline_configure()
* remove it from the hardware pipeline.
*/
rpf->entity.pipe = NULL;
drm_pipe->pipe.inputs[rpf_index] = NULL;
return 0;
}
dev_dbg(vsp1->dev,
"%s: RPF%u: (%u,%u)/%ux%u -> (%u,%u)/%ux%u (%08x), pitch %u dma { %pad, %pad, %pad } zpos %u\n",
__func__, rpf_index,
cfg->src.left, cfg->src.top, cfg->src.width, cfg->src.height,
cfg->dst.left, cfg->dst.top, cfg->dst.width, cfg->dst.height,
cfg->pixelformat, cfg->pitch, &cfg->mem[0], &cfg->mem[1],
&cfg->mem[2], cfg->zpos);
/*
* Store the format, stride, memory buffer address, crop and compose
* rectangles and Z-order position and for the input.
*/
ret = vsp1_du_pipeline_set_rwpf_format(vsp1, rpf, cfg->pixelformat,
cfg->pitch);
if (ret < 0)
return ret;
rpf->alpha = cfg->alpha;
rpf->mem.addr[0] = cfg->mem[0];
rpf->mem.addr[1] = cfg->mem[1];
rpf->mem.addr[2] = cfg->mem[2];
rpf->format.flags = cfg->premult ? V4L2_PIX_FMT_FLAG_PREMUL_ALPHA : 0;
vsp1->drm->inputs[rpf_index].crop = cfg->src;
vsp1->drm->inputs[rpf_index].compose = cfg->dst;
vsp1->drm->inputs[rpf_index].zpos = cfg->zpos;
drm_pipe->pipe.inputs[rpf_index] = rpf;
return 0;
}
EXPORT_SYMBOL_GPL(vsp1_du_atomic_update);
/**
* vsp1_du_atomic_flush - Commit an atomic update
* @dev: the VSP device
* @pipe_index: the DRM pipeline index
* @cfg: atomic pipe configuration
*/
void vsp1_du_atomic_flush(struct device *dev, unsigned int pipe_index,
const struct vsp1_du_atomic_pipe_config *cfg)
{
struct vsp1_device *vsp1 = dev_get_drvdata(dev);
struct vsp1_drm_pipeline *drm_pipe = &vsp1->drm->pipe[pipe_index];
struct vsp1_pipeline *pipe = &drm_pipe->pipe;
int ret;
drm_pipe->crc = cfg->crc;
mutex_lock(&vsp1->drm->lock);
if (cfg->writeback.pixelformat) {
const struct vsp1_du_writeback_config *wb_cfg = &cfg->writeback;
ret = vsp1_du_pipeline_set_rwpf_format(vsp1, pipe->output,
wb_cfg->pixelformat,
wb_cfg->pitch);
if (WARN_ON(ret < 0))
goto done;
pipe->output->mem.addr[0] = wb_cfg->mem[0];
pipe->output->mem.addr[1] = wb_cfg->mem[1];
pipe->output->mem.addr[2] = wb_cfg->mem[2];
pipe->output->writeback = true;
}
vsp1_du_pipeline_setup_inputs(vsp1, pipe);
vsp1_du_pipeline_configure(pipe);
done:
mutex_unlock(&vsp1->drm->lock);
}
EXPORT_SYMBOL_GPL(vsp1_du_atomic_flush);
int vsp1_du_map_sg(struct device *dev, struct sg_table *sgt)
{
struct vsp1_device *vsp1 = dev_get_drvdata(dev);
/*
* As all the buffers allocated by the DU driver are coherent, we can
* skip cache sync. This will need to be revisited when support for
* non-coherent buffers will be added to the DU driver.
*/
return dma_map_sgtable(vsp1->bus_master, sgt, DMA_TO_DEVICE,
DMA_ATTR_SKIP_CPU_SYNC);
}
EXPORT_SYMBOL_GPL(vsp1_du_map_sg);
void vsp1_du_unmap_sg(struct device *dev, struct sg_table *sgt)
{
struct vsp1_device *vsp1 = dev_get_drvdata(dev);
dma_unmap_sgtable(vsp1->bus_master, sgt, DMA_TO_DEVICE,
DMA_ATTR_SKIP_CPU_SYNC);
}
EXPORT_SYMBOL_GPL(vsp1_du_unmap_sg);
/* -----------------------------------------------------------------------------
* Initialization
*/
int vsp1_drm_init(struct vsp1_device *vsp1)
{
unsigned int i;
vsp1->drm = devm_kzalloc(vsp1->dev, sizeof(*vsp1->drm), GFP_KERNEL);
if (!vsp1->drm)
return -ENOMEM;
mutex_init(&vsp1->drm->lock);
/* Create one DRM pipeline per LIF. */
for (i = 0; i < vsp1->info->lif_count; ++i) {
struct vsp1_drm_pipeline *drm_pipe = &vsp1->drm->pipe[i];
struct vsp1_pipeline *pipe = &drm_pipe->pipe;
init_waitqueue_head(&drm_pipe->wait_queue);
vsp1_pipeline_init(pipe);
pipe->frame_end = vsp1_du_pipeline_frame_end;
/*
* The output side of the DRM pipeline is static, add the
* corresponding entities manually.
*/
pipe->output = vsp1->wpf[i];
pipe->lif = &vsp1->lif[i]->entity;
pipe->output->entity.pipe = pipe;
pipe->output->entity.sink = pipe->lif;
pipe->output->entity.sink_pad = 0;
list_add_tail(&pipe->output->entity.list_pipe, &pipe->entities);
pipe->lif->pipe = pipe;
list_add_tail(&pipe->lif->list_pipe, &pipe->entities);
/*
* CRC computation is initially disabled, don't add the UIF to
* the pipeline.
*/
if (i < vsp1->info->uif_count)
drm_pipe->uif = &vsp1->uif[i]->entity;
}
/* Disable all RPFs initially. */
for (i = 0; i < vsp1->info->rpf_count; ++i) {
struct vsp1_rwpf *input = vsp1->rpf[i];
INIT_LIST_HEAD(&input->entity.list_pipe);
}
return 0;
}
void vsp1_drm_cleanup(struct vsp1_device *vsp1)
{
mutex_destroy(&vsp1->drm->lock);
}