blob: 78a21357fb2de9fe88d50a26f20f0634d97dbd88 [file] [log] [blame]
/*
* Copyright © 2014 Broadcom
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/** DOC: Interrupt management for the V3D engine.
*
* We have an interrupt status register (V3D_INTCTL) which reports
* interrupts, and where writing 1 bits clears those interrupts.
* There are also a pair of interrupt registers
* (V3D_INTENA/V3D_INTDIS) where writing a 1 to their bits enables or
* disables that specific interrupt, and 0s written are ignored
* (reading either one returns the set of enabled interrupts).
*
* When we take a render frame interrupt, we need to wake the
* processes waiting for some frame to be done, and get the next frame
* submitted ASAP (so the hardware doesn't sit idle when there's work
* to do).
*
* When we take the binner out of memory interrupt, we need to
* allocate some new memory and pass it to the binner so that the
* current job can make progress.
*/
#include "vc4_drv.h"
#include "vc4_regs.h"
#define V3D_DRIVER_IRQS (V3D_INT_OUTOMEM | \
V3D_INT_FRDONE)
DECLARE_WAIT_QUEUE_HEAD(render_wait);
static void
vc4_overflow_mem_work(struct work_struct *work)
{
struct vc4_dev *vc4 =
container_of(work, struct vc4_dev, overflow_mem_work);
struct drm_device *dev = vc4->dev;
struct vc4_bo *bo;
bo = vc4_bo_create(dev, 256 * 1024, true);
if (IS_ERR(bo)) {
DRM_ERROR("Couldn't allocate binner overflow mem\n");
return;
}
/* If there's a job executing currently, then our previous
* overflow allocation is getting used in that job and we need
* to queue it to be released when the job is done. But if no
* job is executing at all, then we can free the old overflow
* object direcctly.
*
* No lock necessary for this pointer since we're the only
* ones that update the pointer, and our workqueue won't
* reenter.
*/
if (vc4->overflow_mem) {
struct vc4_exec_info *current_exec;
unsigned long irqflags;
spin_lock_irqsave(&vc4->job_lock, irqflags);
current_exec = vc4_first_job(vc4);
if (current_exec) {
vc4->overflow_mem->seqno = vc4->finished_seqno + 1;
list_add_tail(&vc4->overflow_mem->unref_head,
&current_exec->unref_list);
vc4->overflow_mem = NULL;
}
spin_unlock_irqrestore(&vc4->job_lock, irqflags);
}
if (vc4->overflow_mem)
drm_gem_object_unreference_unlocked(&vc4->overflow_mem->base.base);
vc4->overflow_mem = bo;
V3D_WRITE(V3D_BPOA, bo->base.paddr);
V3D_WRITE(V3D_BPOS, bo->base.base.size);
V3D_WRITE(V3D_INTCTL, V3D_INT_OUTOMEM);
V3D_WRITE(V3D_INTENA, V3D_INT_OUTOMEM);
}
static void
vc4_irq_finish_job(struct drm_device *dev)
{
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct vc4_exec_info *exec = vc4_first_job(vc4);
if (!exec)
return;
vc4->finished_seqno++;
list_move_tail(&exec->head, &vc4->job_done_list);
vc4_submit_next_job(dev);
wake_up_all(&vc4->job_wait_queue);
schedule_work(&vc4->job_done_work);
}
irqreturn_t
vc4_irq(int irq, void *arg)
{
struct drm_device *dev = arg;
struct vc4_dev *vc4 = to_vc4_dev(dev);
uint32_t intctl;
irqreturn_t status = IRQ_NONE;
barrier();
intctl = V3D_READ(V3D_INTCTL);
/* Acknowledge the interrupts we're handling here. The render
* frame done interrupt will be cleared, while OUTOMEM will
* stay high until the underlying cause is cleared.
*/
V3D_WRITE(V3D_INTCTL, intctl);
if (intctl & V3D_INT_OUTOMEM) {
/* Disable OUTOMEM until the work is done. */
V3D_WRITE(V3D_INTDIS, V3D_INT_OUTOMEM);
schedule_work(&vc4->overflow_mem_work);
status = IRQ_HANDLED;
}
if (intctl & V3D_INT_FRDONE) {
spin_lock(&vc4->job_lock);
vc4_irq_finish_job(dev);
spin_unlock(&vc4->job_lock);
status = IRQ_HANDLED;
}
return status;
}
void
vc4_irq_preinstall(struct drm_device *dev)
{
struct vc4_dev *vc4 = to_vc4_dev(dev);
init_waitqueue_head(&vc4->job_wait_queue);
INIT_WORK(&vc4->overflow_mem_work, vc4_overflow_mem_work);
/* Clear any pending interrupts someone might have left around
* for us.
*/
V3D_WRITE(V3D_INTCTL, V3D_DRIVER_IRQS);
}
int
vc4_irq_postinstall(struct drm_device *dev)
{
struct vc4_dev *vc4 = to_vc4_dev(dev);
/* Enable both the render done and out of memory interrupts. */
V3D_WRITE(V3D_INTENA, V3D_DRIVER_IRQS);
return 0;
}
void
vc4_irq_uninstall(struct drm_device *dev)
{
struct vc4_dev *vc4 = to_vc4_dev(dev);
/* Disable sending interrupts for our driver's IRQs. */
V3D_WRITE(V3D_INTDIS, V3D_DRIVER_IRQS);
/* Clear any pending interrupts we might have left. */
V3D_WRITE(V3D_INTCTL, V3D_DRIVER_IRQS);
cancel_work_sync(&vc4->overflow_mem_work);
}
/** Reinitializes interrupt registers when a GPU reset is performed. */
void vc4_irq_reset(struct drm_device *dev)
{
struct vc4_dev *vc4 = to_vc4_dev(dev);
unsigned long irqflags;
/* Acknowledge any stale IRQs. */
V3D_WRITE(V3D_INTCTL, V3D_DRIVER_IRQS);
/*
* Turn all our interrupts on. Binner out of memory is the
* only one we expect to trigger at this point, since we've
* just come from poweron and haven't supplied any overflow
* memory yet.
*/
V3D_WRITE(V3D_INTENA, V3D_DRIVER_IRQS);
spin_lock_irqsave(&vc4->job_lock, irqflags);
vc4_irq_finish_job(dev);
spin_unlock_irqrestore(&vc4->job_lock, irqflags);
}