| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2000-2006 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_bit.h" |
| #include "xfs_mount.h" |
| #include "xfs_trans.h" |
| #include "xfs_buf_item.h" |
| #include "xfs_trans_priv.h" |
| #include "xfs_trace.h" |
| #include "xfs_log.h" |
| #include "xfs_log_priv.h" |
| #include "xfs_log_recover.h" |
| #include "xfs_error.h" |
| #include "xfs_inode.h" |
| #include "xfs_dir2.h" |
| #include "xfs_quota.h" |
| |
| /* |
| * This structure is used during recovery to record the buf log items which |
| * have been canceled and should not be replayed. |
| */ |
| struct xfs_buf_cancel { |
| xfs_daddr_t bc_blkno; |
| uint bc_len; |
| int bc_refcount; |
| struct list_head bc_list; |
| }; |
| |
| static struct xfs_buf_cancel * |
| xlog_find_buffer_cancelled( |
| struct xlog *log, |
| xfs_daddr_t blkno, |
| uint len) |
| { |
| struct list_head *bucket; |
| struct xfs_buf_cancel *bcp; |
| |
| if (!log->l_buf_cancel_table) |
| return NULL; |
| |
| bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); |
| list_for_each_entry(bcp, bucket, bc_list) { |
| if (bcp->bc_blkno == blkno && bcp->bc_len == len) |
| return bcp; |
| } |
| |
| return NULL; |
| } |
| |
| static bool |
| xlog_add_buffer_cancelled( |
| struct xlog *log, |
| xfs_daddr_t blkno, |
| uint len) |
| { |
| struct xfs_buf_cancel *bcp; |
| |
| /* |
| * If we find an existing cancel record, this indicates that the buffer |
| * was cancelled multiple times. To ensure that during pass 2 we keep |
| * the record in the table until we reach its last occurrence in the |
| * log, a reference count is kept to tell how many times we expect to |
| * see this record during the second pass. |
| */ |
| bcp = xlog_find_buffer_cancelled(log, blkno, len); |
| if (bcp) { |
| bcp->bc_refcount++; |
| return false; |
| } |
| |
| bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), 0); |
| bcp->bc_blkno = blkno; |
| bcp->bc_len = len; |
| bcp->bc_refcount = 1; |
| list_add_tail(&bcp->bc_list, XLOG_BUF_CANCEL_BUCKET(log, blkno)); |
| return true; |
| } |
| |
| /* |
| * Check if there is and entry for blkno, len in the buffer cancel record table. |
| */ |
| bool |
| xlog_is_buffer_cancelled( |
| struct xlog *log, |
| xfs_daddr_t blkno, |
| uint len) |
| { |
| return xlog_find_buffer_cancelled(log, blkno, len) != NULL; |
| } |
| |
| /* |
| * Check if there is and entry for blkno, len in the buffer cancel record table, |
| * and decremented the reference count on it if there is one. |
| * |
| * Remove the cancel record once the refcount hits zero, so that if the same |
| * buffer is re-used again after its last cancellation we actually replay the |
| * changes made at that point. |
| */ |
| static bool |
| xlog_put_buffer_cancelled( |
| struct xlog *log, |
| xfs_daddr_t blkno, |
| uint len) |
| { |
| struct xfs_buf_cancel *bcp; |
| |
| bcp = xlog_find_buffer_cancelled(log, blkno, len); |
| if (!bcp) { |
| ASSERT(0); |
| return false; |
| } |
| |
| if (--bcp->bc_refcount == 0) { |
| list_del(&bcp->bc_list); |
| kmem_free(bcp); |
| } |
| return true; |
| } |
| |
| /* log buffer item recovery */ |
| |
| /* |
| * Sort buffer items for log recovery. Most buffer items should end up on the |
| * buffer list and are recovered first, with the following exceptions: |
| * |
| * 1. XFS_BLF_CANCEL buffers must be processed last because some log items |
| * might depend on the incor ecancellation record, and replaying a cancelled |
| * buffer item can remove the incore record. |
| * |
| * 2. XFS_BLF_INODE_BUF buffers are handled after most regular items so that |
| * we replay di_next_unlinked only after flushing the inode 'free' state |
| * to the inode buffer. |
| * |
| * See xlog_recover_reorder_trans for more details. |
| */ |
| STATIC enum xlog_recover_reorder |
| xlog_recover_buf_reorder( |
| struct xlog_recover_item *item) |
| { |
| struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr; |
| |
| if (buf_f->blf_flags & XFS_BLF_CANCEL) |
| return XLOG_REORDER_CANCEL_LIST; |
| if (buf_f->blf_flags & XFS_BLF_INODE_BUF) |
| return XLOG_REORDER_INODE_BUFFER_LIST; |
| return XLOG_REORDER_BUFFER_LIST; |
| } |
| |
| STATIC void |
| xlog_recover_buf_ra_pass2( |
| struct xlog *log, |
| struct xlog_recover_item *item) |
| { |
| struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr; |
| |
| xlog_buf_readahead(log, buf_f->blf_blkno, buf_f->blf_len, NULL); |
| } |
| |
| /* |
| * Build up the table of buf cancel records so that we don't replay cancelled |
| * data in the second pass. |
| */ |
| static int |
| xlog_recover_buf_commit_pass1( |
| struct xlog *log, |
| struct xlog_recover_item *item) |
| { |
| struct xfs_buf_log_format *bf = item->ri_buf[0].i_addr; |
| |
| if (!xfs_buf_log_check_iovec(&item->ri_buf[0])) { |
| xfs_err(log->l_mp, "bad buffer log item size (%d)", |
| item->ri_buf[0].i_len); |
| return -EFSCORRUPTED; |
| } |
| |
| if (!(bf->blf_flags & XFS_BLF_CANCEL)) |
| trace_xfs_log_recover_buf_not_cancel(log, bf); |
| else if (xlog_add_buffer_cancelled(log, bf->blf_blkno, bf->blf_len)) |
| trace_xfs_log_recover_buf_cancel_add(log, bf); |
| else |
| trace_xfs_log_recover_buf_cancel_ref_inc(log, bf); |
| return 0; |
| } |
| |
| /* |
| * Validate the recovered buffer is of the correct type and attach the |
| * appropriate buffer operations to them for writeback. Magic numbers are in a |
| * few places: |
| * the first 16 bits of the buffer (inode buffer, dquot buffer), |
| * the first 32 bits of the buffer (most blocks), |
| * inside a struct xfs_da_blkinfo at the start of the buffer. |
| */ |
| static void |
| xlog_recover_validate_buf_type( |
| struct xfs_mount *mp, |
| struct xfs_buf *bp, |
| struct xfs_buf_log_format *buf_f, |
| xfs_lsn_t current_lsn) |
| { |
| struct xfs_da_blkinfo *info = bp->b_addr; |
| uint32_t magic32; |
| uint16_t magic16; |
| uint16_t magicda; |
| char *warnmsg = NULL; |
| |
| /* |
| * We can only do post recovery validation on items on CRC enabled |
| * fielsystems as we need to know when the buffer was written to be able |
| * to determine if we should have replayed the item. If we replay old |
| * metadata over a newer buffer, then it will enter a temporarily |
| * inconsistent state resulting in verification failures. Hence for now |
| * just avoid the verification stage for non-crc filesystems |
| */ |
| if (!xfs_sb_version_hascrc(&mp->m_sb)) |
| return; |
| |
| magic32 = be32_to_cpu(*(__be32 *)bp->b_addr); |
| magic16 = be16_to_cpu(*(__be16*)bp->b_addr); |
| magicda = be16_to_cpu(info->magic); |
| switch (xfs_blft_from_flags(buf_f)) { |
| case XFS_BLFT_BTREE_BUF: |
| switch (magic32) { |
| case XFS_ABTB_CRC_MAGIC: |
| case XFS_ABTB_MAGIC: |
| bp->b_ops = &xfs_bnobt_buf_ops; |
| break; |
| case XFS_ABTC_CRC_MAGIC: |
| case XFS_ABTC_MAGIC: |
| bp->b_ops = &xfs_cntbt_buf_ops; |
| break; |
| case XFS_IBT_CRC_MAGIC: |
| case XFS_IBT_MAGIC: |
| bp->b_ops = &xfs_inobt_buf_ops; |
| break; |
| case XFS_FIBT_CRC_MAGIC: |
| case XFS_FIBT_MAGIC: |
| bp->b_ops = &xfs_finobt_buf_ops; |
| break; |
| case XFS_BMAP_CRC_MAGIC: |
| case XFS_BMAP_MAGIC: |
| bp->b_ops = &xfs_bmbt_buf_ops; |
| break; |
| case XFS_RMAP_CRC_MAGIC: |
| bp->b_ops = &xfs_rmapbt_buf_ops; |
| break; |
| case XFS_REFC_CRC_MAGIC: |
| bp->b_ops = &xfs_refcountbt_buf_ops; |
| break; |
| default: |
| warnmsg = "Bad btree block magic!"; |
| break; |
| } |
| break; |
| case XFS_BLFT_AGF_BUF: |
| if (magic32 != XFS_AGF_MAGIC) { |
| warnmsg = "Bad AGF block magic!"; |
| break; |
| } |
| bp->b_ops = &xfs_agf_buf_ops; |
| break; |
| case XFS_BLFT_AGFL_BUF: |
| if (magic32 != XFS_AGFL_MAGIC) { |
| warnmsg = "Bad AGFL block magic!"; |
| break; |
| } |
| bp->b_ops = &xfs_agfl_buf_ops; |
| break; |
| case XFS_BLFT_AGI_BUF: |
| if (magic32 != XFS_AGI_MAGIC) { |
| warnmsg = "Bad AGI block magic!"; |
| break; |
| } |
| bp->b_ops = &xfs_agi_buf_ops; |
| break; |
| case XFS_BLFT_UDQUOT_BUF: |
| case XFS_BLFT_PDQUOT_BUF: |
| case XFS_BLFT_GDQUOT_BUF: |
| #ifdef CONFIG_XFS_QUOTA |
| if (magic16 != XFS_DQUOT_MAGIC) { |
| warnmsg = "Bad DQUOT block magic!"; |
| break; |
| } |
| bp->b_ops = &xfs_dquot_buf_ops; |
| #else |
| xfs_alert(mp, |
| "Trying to recover dquots without QUOTA support built in!"); |
| ASSERT(0); |
| #endif |
| break; |
| case XFS_BLFT_DINO_BUF: |
| if (magic16 != XFS_DINODE_MAGIC) { |
| warnmsg = "Bad INODE block magic!"; |
| break; |
| } |
| bp->b_ops = &xfs_inode_buf_ops; |
| break; |
| case XFS_BLFT_SYMLINK_BUF: |
| if (magic32 != XFS_SYMLINK_MAGIC) { |
| warnmsg = "Bad symlink block magic!"; |
| break; |
| } |
| bp->b_ops = &xfs_symlink_buf_ops; |
| break; |
| case XFS_BLFT_DIR_BLOCK_BUF: |
| if (magic32 != XFS_DIR2_BLOCK_MAGIC && |
| magic32 != XFS_DIR3_BLOCK_MAGIC) { |
| warnmsg = "Bad dir block magic!"; |
| break; |
| } |
| bp->b_ops = &xfs_dir3_block_buf_ops; |
| break; |
| case XFS_BLFT_DIR_DATA_BUF: |
| if (magic32 != XFS_DIR2_DATA_MAGIC && |
| magic32 != XFS_DIR3_DATA_MAGIC) { |
| warnmsg = "Bad dir data magic!"; |
| break; |
| } |
| bp->b_ops = &xfs_dir3_data_buf_ops; |
| break; |
| case XFS_BLFT_DIR_FREE_BUF: |
| if (magic32 != XFS_DIR2_FREE_MAGIC && |
| magic32 != XFS_DIR3_FREE_MAGIC) { |
| warnmsg = "Bad dir3 free magic!"; |
| break; |
| } |
| bp->b_ops = &xfs_dir3_free_buf_ops; |
| break; |
| case XFS_BLFT_DIR_LEAF1_BUF: |
| if (magicda != XFS_DIR2_LEAF1_MAGIC && |
| magicda != XFS_DIR3_LEAF1_MAGIC) { |
| warnmsg = "Bad dir leaf1 magic!"; |
| break; |
| } |
| bp->b_ops = &xfs_dir3_leaf1_buf_ops; |
| break; |
| case XFS_BLFT_DIR_LEAFN_BUF: |
| if (magicda != XFS_DIR2_LEAFN_MAGIC && |
| magicda != XFS_DIR3_LEAFN_MAGIC) { |
| warnmsg = "Bad dir leafn magic!"; |
| break; |
| } |
| bp->b_ops = &xfs_dir3_leafn_buf_ops; |
| break; |
| case XFS_BLFT_DA_NODE_BUF: |
| if (magicda != XFS_DA_NODE_MAGIC && |
| magicda != XFS_DA3_NODE_MAGIC) { |
| warnmsg = "Bad da node magic!"; |
| break; |
| } |
| bp->b_ops = &xfs_da3_node_buf_ops; |
| break; |
| case XFS_BLFT_ATTR_LEAF_BUF: |
| if (magicda != XFS_ATTR_LEAF_MAGIC && |
| magicda != XFS_ATTR3_LEAF_MAGIC) { |
| warnmsg = "Bad attr leaf magic!"; |
| break; |
| } |
| bp->b_ops = &xfs_attr3_leaf_buf_ops; |
| break; |
| case XFS_BLFT_ATTR_RMT_BUF: |
| if (magic32 != XFS_ATTR3_RMT_MAGIC) { |
| warnmsg = "Bad attr remote magic!"; |
| break; |
| } |
| bp->b_ops = &xfs_attr3_rmt_buf_ops; |
| break; |
| case XFS_BLFT_SB_BUF: |
| if (magic32 != XFS_SB_MAGIC) { |
| warnmsg = "Bad SB block magic!"; |
| break; |
| } |
| bp->b_ops = &xfs_sb_buf_ops; |
| break; |
| #ifdef CONFIG_XFS_RT |
| case XFS_BLFT_RTBITMAP_BUF: |
| case XFS_BLFT_RTSUMMARY_BUF: |
| /* no magic numbers for verification of RT buffers */ |
| bp->b_ops = &xfs_rtbuf_ops; |
| break; |
| #endif /* CONFIG_XFS_RT */ |
| default: |
| xfs_warn(mp, "Unknown buffer type %d!", |
| xfs_blft_from_flags(buf_f)); |
| break; |
| } |
| |
| /* |
| * Nothing else to do in the case of a NULL current LSN as this means |
| * the buffer is more recent than the change in the log and will be |
| * skipped. |
| */ |
| if (current_lsn == NULLCOMMITLSN) |
| return; |
| |
| if (warnmsg) { |
| xfs_warn(mp, warnmsg); |
| ASSERT(0); |
| } |
| |
| /* |
| * We must update the metadata LSN of the buffer as it is written out to |
| * ensure that older transactions never replay over this one and corrupt |
| * the buffer. This can occur if log recovery is interrupted at some |
| * point after the current transaction completes, at which point a |
| * subsequent mount starts recovery from the beginning. |
| * |
| * Write verifiers update the metadata LSN from log items attached to |
| * the buffer. Therefore, initialize a bli purely to carry the LSN to |
| * the verifier. We'll clean it up in our ->iodone() callback. |
| */ |
| if (bp->b_ops) { |
| struct xfs_buf_log_item *bip; |
| |
| ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone); |
| bp->b_iodone = xlog_recover_iodone; |
| xfs_buf_item_init(bp, mp); |
| bip = bp->b_log_item; |
| bip->bli_item.li_lsn = current_lsn; |
| } |
| } |
| |
| /* |
| * Perform a 'normal' buffer recovery. Each logged region of the |
| * buffer should be copied over the corresponding region in the |
| * given buffer. The bitmap in the buf log format structure indicates |
| * where to place the logged data. |
| */ |
| STATIC void |
| xlog_recover_do_reg_buffer( |
| struct xfs_mount *mp, |
| struct xlog_recover_item *item, |
| struct xfs_buf *bp, |
| struct xfs_buf_log_format *buf_f, |
| xfs_lsn_t current_lsn) |
| { |
| int i; |
| int bit; |
| int nbits; |
| xfs_failaddr_t fa; |
| const size_t size_disk_dquot = sizeof(struct xfs_disk_dquot); |
| |
| trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); |
| |
| bit = 0; |
| i = 1; /* 0 is the buf format structure */ |
| while (1) { |
| bit = xfs_next_bit(buf_f->blf_data_map, |
| buf_f->blf_map_size, bit); |
| if (bit == -1) |
| break; |
| nbits = xfs_contig_bits(buf_f->blf_data_map, |
| buf_f->blf_map_size, bit); |
| ASSERT(nbits > 0); |
| ASSERT(item->ri_buf[i].i_addr != NULL); |
| ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); |
| ASSERT(BBTOB(bp->b_length) >= |
| ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT)); |
| |
| /* |
| * The dirty regions logged in the buffer, even though |
| * contiguous, may span multiple chunks. This is because the |
| * dirty region may span a physical page boundary in a buffer |
| * and hence be split into two separate vectors for writing into |
| * the log. Hence we need to trim nbits back to the length of |
| * the current region being copied out of the log. |
| */ |
| if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT)) |
| nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT; |
| |
| /* |
| * Do a sanity check if this is a dquot buffer. Just checking |
| * the first dquot in the buffer should do. XXXThis is |
| * probably a good thing to do for other buf types also. |
| */ |
| fa = NULL; |
| if (buf_f->blf_flags & |
| (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { |
| if (item->ri_buf[i].i_addr == NULL) { |
| xfs_alert(mp, |
| "XFS: NULL dquot in %s.", __func__); |
| goto next; |
| } |
| if (item->ri_buf[i].i_len < size_disk_dquot) { |
| xfs_alert(mp, |
| "XFS: dquot too small (%d) in %s.", |
| item->ri_buf[i].i_len, __func__); |
| goto next; |
| } |
| fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr, |
| -1, 0); |
| if (fa) { |
| xfs_alert(mp, |
| "dquot corrupt at %pS trying to replay into block 0x%llx", |
| fa, bp->b_bn); |
| goto next; |
| } |
| } |
| |
| memcpy(xfs_buf_offset(bp, |
| (uint)bit << XFS_BLF_SHIFT), /* dest */ |
| item->ri_buf[i].i_addr, /* source */ |
| nbits<<XFS_BLF_SHIFT); /* length */ |
| next: |
| i++; |
| bit += nbits; |
| } |
| |
| /* Shouldn't be any more regions */ |
| ASSERT(i == item->ri_total); |
| |
| xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn); |
| } |
| |
| /* |
| * Perform a dquot buffer recovery. |
| * Simple algorithm: if we have found a QUOTAOFF log item of the same type |
| * (ie. USR or GRP), then just toss this buffer away; don't recover it. |
| * Else, treat it as a regular buffer and do recovery. |
| * |
| * Return false if the buffer was tossed and true if we recovered the buffer to |
| * indicate to the caller if the buffer needs writing. |
| */ |
| STATIC bool |
| xlog_recover_do_dquot_buffer( |
| struct xfs_mount *mp, |
| struct xlog *log, |
| struct xlog_recover_item *item, |
| struct xfs_buf *bp, |
| struct xfs_buf_log_format *buf_f) |
| { |
| uint type; |
| |
| trace_xfs_log_recover_buf_dquot_buf(log, buf_f); |
| |
| /* |
| * Filesystems are required to send in quota flags at mount time. |
| */ |
| if (!mp->m_qflags) |
| return false; |
| |
| type = 0; |
| if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) |
| type |= XFS_DQ_USER; |
| if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) |
| type |= XFS_DQ_PROJ; |
| if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) |
| type |= XFS_DQ_GROUP; |
| /* |
| * This type of quotas was turned off, so ignore this buffer |
| */ |
| if (log->l_quotaoffs_flag & type) |
| return false; |
| |
| xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN); |
| return true; |
| } |
| |
| /* |
| * Perform recovery for a buffer full of inodes. In these buffers, the only |
| * data which should be recovered is that which corresponds to the |
| * di_next_unlinked pointers in the on disk inode structures. The rest of the |
| * data for the inodes is always logged through the inodes themselves rather |
| * than the inode buffer and is recovered in xlog_recover_inode_pass2(). |
| * |
| * The only time when buffers full of inodes are fully recovered is when the |
| * buffer is full of newly allocated inodes. In this case the buffer will |
| * not be marked as an inode buffer and so will be sent to |
| * xlog_recover_do_reg_buffer() below during recovery. |
| */ |
| STATIC int |
| xlog_recover_do_inode_buffer( |
| struct xfs_mount *mp, |
| struct xlog_recover_item *item, |
| struct xfs_buf *bp, |
| struct xfs_buf_log_format *buf_f) |
| { |
| int i; |
| int item_index = 0; |
| int bit = 0; |
| int nbits = 0; |
| int reg_buf_offset = 0; |
| int reg_buf_bytes = 0; |
| int next_unlinked_offset; |
| int inodes_per_buf; |
| xfs_agino_t *logged_nextp; |
| xfs_agino_t *buffer_nextp; |
| |
| trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); |
| |
| /* |
| * Post recovery validation only works properly on CRC enabled |
| * filesystems. |
| */ |
| if (xfs_sb_version_hascrc(&mp->m_sb)) |
| bp->b_ops = &xfs_inode_buf_ops; |
| |
| inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog; |
| for (i = 0; i < inodes_per_buf; i++) { |
| next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + |
| offsetof(xfs_dinode_t, di_next_unlinked); |
| |
| while (next_unlinked_offset >= |
| (reg_buf_offset + reg_buf_bytes)) { |
| /* |
| * The next di_next_unlinked field is beyond |
| * the current logged region. Find the next |
| * logged region that contains or is beyond |
| * the current di_next_unlinked field. |
| */ |
| bit += nbits; |
| bit = xfs_next_bit(buf_f->blf_data_map, |
| buf_f->blf_map_size, bit); |
| |
| /* |
| * If there are no more logged regions in the |
| * buffer, then we're done. |
| */ |
| if (bit == -1) |
| return 0; |
| |
| nbits = xfs_contig_bits(buf_f->blf_data_map, |
| buf_f->blf_map_size, bit); |
| ASSERT(nbits > 0); |
| reg_buf_offset = bit << XFS_BLF_SHIFT; |
| reg_buf_bytes = nbits << XFS_BLF_SHIFT; |
| item_index++; |
| } |
| |
| /* |
| * If the current logged region starts after the current |
| * di_next_unlinked field, then move on to the next |
| * di_next_unlinked field. |
| */ |
| if (next_unlinked_offset < reg_buf_offset) |
| continue; |
| |
| ASSERT(item->ri_buf[item_index].i_addr != NULL); |
| ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); |
| ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length)); |
| |
| /* |
| * The current logged region contains a copy of the |
| * current di_next_unlinked field. Extract its value |
| * and copy it to the buffer copy. |
| */ |
| logged_nextp = item->ri_buf[item_index].i_addr + |
| next_unlinked_offset - reg_buf_offset; |
| if (XFS_IS_CORRUPT(mp, *logged_nextp == 0)) { |
| xfs_alert(mp, |
| "Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). " |
| "Trying to replay bad (0) inode di_next_unlinked field.", |
| item, bp); |
| return -EFSCORRUPTED; |
| } |
| |
| buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset); |
| *buffer_nextp = *logged_nextp; |
| |
| /* |
| * If necessary, recalculate the CRC in the on-disk inode. We |
| * have to leave the inode in a consistent state for whoever |
| * reads it next.... |
| */ |
| xfs_dinode_calc_crc(mp, |
| xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); |
| |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * V5 filesystems know the age of the buffer on disk being recovered. We can |
| * have newer objects on disk than we are replaying, and so for these cases we |
| * don't want to replay the current change as that will make the buffer contents |
| * temporarily invalid on disk. |
| * |
| * The magic number might not match the buffer type we are going to recover |
| * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence |
| * extract the LSN of the existing object in the buffer based on it's current |
| * magic number. If we don't recognise the magic number in the buffer, then |
| * return a LSN of -1 so that the caller knows it was an unrecognised block and |
| * so can recover the buffer. |
| * |
| * Note: we cannot rely solely on magic number matches to determine that the |
| * buffer has a valid LSN - we also need to verify that it belongs to this |
| * filesystem, so we need to extract the object's LSN and compare it to that |
| * which we read from the superblock. If the UUIDs don't match, then we've got a |
| * stale metadata block from an old filesystem instance that we need to recover |
| * over the top of. |
| */ |
| static xfs_lsn_t |
| xlog_recover_get_buf_lsn( |
| struct xfs_mount *mp, |
| struct xfs_buf *bp) |
| { |
| uint32_t magic32; |
| uint16_t magic16; |
| uint16_t magicda; |
| void *blk = bp->b_addr; |
| uuid_t *uuid; |
| xfs_lsn_t lsn = -1; |
| |
| /* v4 filesystems always recover immediately */ |
| if (!xfs_sb_version_hascrc(&mp->m_sb)) |
| goto recover_immediately; |
| |
| magic32 = be32_to_cpu(*(__be32 *)blk); |
| switch (magic32) { |
| case XFS_ABTB_CRC_MAGIC: |
| case XFS_ABTC_CRC_MAGIC: |
| case XFS_ABTB_MAGIC: |
| case XFS_ABTC_MAGIC: |
| case XFS_RMAP_CRC_MAGIC: |
| case XFS_REFC_CRC_MAGIC: |
| case XFS_IBT_CRC_MAGIC: |
| case XFS_IBT_MAGIC: { |
| struct xfs_btree_block *btb = blk; |
| |
| lsn = be64_to_cpu(btb->bb_u.s.bb_lsn); |
| uuid = &btb->bb_u.s.bb_uuid; |
| break; |
| } |
| case XFS_BMAP_CRC_MAGIC: |
| case XFS_BMAP_MAGIC: { |
| struct xfs_btree_block *btb = blk; |
| |
| lsn = be64_to_cpu(btb->bb_u.l.bb_lsn); |
| uuid = &btb->bb_u.l.bb_uuid; |
| break; |
| } |
| case XFS_AGF_MAGIC: |
| lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn); |
| uuid = &((struct xfs_agf *)blk)->agf_uuid; |
| break; |
| case XFS_AGFL_MAGIC: |
| lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn); |
| uuid = &((struct xfs_agfl *)blk)->agfl_uuid; |
| break; |
| case XFS_AGI_MAGIC: |
| lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn); |
| uuid = &((struct xfs_agi *)blk)->agi_uuid; |
| break; |
| case XFS_SYMLINK_MAGIC: |
| lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn); |
| uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid; |
| break; |
| case XFS_DIR3_BLOCK_MAGIC: |
| case XFS_DIR3_DATA_MAGIC: |
| case XFS_DIR3_FREE_MAGIC: |
| lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn); |
| uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid; |
| break; |
| case XFS_ATTR3_RMT_MAGIC: |
| /* |
| * Remote attr blocks are written synchronously, rather than |
| * being logged. That means they do not contain a valid LSN |
| * (i.e. transactionally ordered) in them, and hence any time we |
| * see a buffer to replay over the top of a remote attribute |
| * block we should simply do so. |
| */ |
| goto recover_immediately; |
| case XFS_SB_MAGIC: |
| /* |
| * superblock uuids are magic. We may or may not have a |
| * sb_meta_uuid on disk, but it will be set in the in-core |
| * superblock. We set the uuid pointer for verification |
| * according to the superblock feature mask to ensure we check |
| * the relevant UUID in the superblock. |
| */ |
| lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn); |
| if (xfs_sb_version_hasmetauuid(&mp->m_sb)) |
| uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid; |
| else |
| uuid = &((struct xfs_dsb *)blk)->sb_uuid; |
| break; |
| default: |
| break; |
| } |
| |
| if (lsn != (xfs_lsn_t)-1) { |
| if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid)) |
| goto recover_immediately; |
| return lsn; |
| } |
| |
| magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic); |
| switch (magicda) { |
| case XFS_DIR3_LEAF1_MAGIC: |
| case XFS_DIR3_LEAFN_MAGIC: |
| case XFS_DA3_NODE_MAGIC: |
| lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn); |
| uuid = &((struct xfs_da3_blkinfo *)blk)->uuid; |
| break; |
| default: |
| break; |
| } |
| |
| if (lsn != (xfs_lsn_t)-1) { |
| if (!uuid_equal(&mp->m_sb.sb_uuid, uuid)) |
| goto recover_immediately; |
| return lsn; |
| } |
| |
| /* |
| * We do individual object checks on dquot and inode buffers as they |
| * have their own individual LSN records. Also, we could have a stale |
| * buffer here, so we have to at least recognise these buffer types. |
| * |
| * A notd complexity here is inode unlinked list processing - it logs |
| * the inode directly in the buffer, but we don't know which inodes have |
| * been modified, and there is no global buffer LSN. Hence we need to |
| * recover all inode buffer types immediately. This problem will be |
| * fixed by logical logging of the unlinked list modifications. |
| */ |
| magic16 = be16_to_cpu(*(__be16 *)blk); |
| switch (magic16) { |
| case XFS_DQUOT_MAGIC: |
| case XFS_DINODE_MAGIC: |
| goto recover_immediately; |
| default: |
| break; |
| } |
| |
| /* unknown buffer contents, recover immediately */ |
| |
| recover_immediately: |
| return (xfs_lsn_t)-1; |
| |
| } |
| |
| /* |
| * This routine replays a modification made to a buffer at runtime. |
| * There are actually two types of buffer, regular and inode, which |
| * are handled differently. Inode buffers are handled differently |
| * in that we only recover a specific set of data from them, namely |
| * the inode di_next_unlinked fields. This is because all other inode |
| * data is actually logged via inode records and any data we replay |
| * here which overlaps that may be stale. |
| * |
| * When meta-data buffers are freed at run time we log a buffer item |
| * with the XFS_BLF_CANCEL bit set to indicate that previous copies |
| * of the buffer in the log should not be replayed at recovery time. |
| * This is so that if the blocks covered by the buffer are reused for |
| * file data before we crash we don't end up replaying old, freed |
| * meta-data into a user's file. |
| * |
| * To handle the cancellation of buffer log items, we make two passes |
| * over the log during recovery. During the first we build a table of |
| * those buffers which have been cancelled, and during the second we |
| * only replay those buffers which do not have corresponding cancel |
| * records in the table. See xlog_recover_buf_pass[1,2] above |
| * for more details on the implementation of the table of cancel records. |
| */ |
| STATIC int |
| xlog_recover_buf_commit_pass2( |
| struct xlog *log, |
| struct list_head *buffer_list, |
| struct xlog_recover_item *item, |
| xfs_lsn_t current_lsn) |
| { |
| struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr; |
| struct xfs_mount *mp = log->l_mp; |
| struct xfs_buf *bp; |
| int error; |
| uint buf_flags; |
| xfs_lsn_t lsn; |
| |
| /* |
| * In this pass we only want to recover all the buffers which have |
| * not been cancelled and are not cancellation buffers themselves. |
| */ |
| if (buf_f->blf_flags & XFS_BLF_CANCEL) { |
| if (xlog_put_buffer_cancelled(log, buf_f->blf_blkno, |
| buf_f->blf_len)) |
| goto cancelled; |
| } else { |
| |
| if (xlog_is_buffer_cancelled(log, buf_f->blf_blkno, |
| buf_f->blf_len)) |
| goto cancelled; |
| } |
| |
| trace_xfs_log_recover_buf_recover(log, buf_f); |
| |
| buf_flags = 0; |
| if (buf_f->blf_flags & XFS_BLF_INODE_BUF) |
| buf_flags |= XBF_UNMAPPED; |
| |
| error = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, |
| buf_flags, &bp, NULL); |
| if (error) |
| return error; |
| |
| /* |
| * Recover the buffer only if we get an LSN from it and it's less than |
| * the lsn of the transaction we are replaying. |
| * |
| * Note that we have to be extremely careful of readahead here. |
| * Readahead does not attach verfiers to the buffers so if we don't |
| * actually do any replay after readahead because of the LSN we found |
| * in the buffer if more recent than that current transaction then we |
| * need to attach the verifier directly. Failure to do so can lead to |
| * future recovery actions (e.g. EFI and unlinked list recovery) can |
| * operate on the buffers and they won't get the verifier attached. This |
| * can lead to blocks on disk having the correct content but a stale |
| * CRC. |
| * |
| * It is safe to assume these clean buffers are currently up to date. |
| * If the buffer is dirtied by a later transaction being replayed, then |
| * the verifier will be reset to match whatever recover turns that |
| * buffer into. |
| */ |
| lsn = xlog_recover_get_buf_lsn(mp, bp); |
| if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { |
| trace_xfs_log_recover_buf_skip(log, buf_f); |
| xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN); |
| goto out_release; |
| } |
| |
| if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { |
| error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); |
| if (error) |
| goto out_release; |
| } else if (buf_f->blf_flags & |
| (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { |
| bool dirty; |
| |
| dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); |
| if (!dirty) |
| goto out_release; |
| } else { |
| xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn); |
| } |
| |
| /* |
| * Perform delayed write on the buffer. Asynchronous writes will be |
| * slower when taking into account all the buffers to be flushed. |
| * |
| * Also make sure that only inode buffers with good sizes stay in |
| * the buffer cache. The kernel moves inodes in buffers of 1 block |
| * or inode_cluster_size bytes, whichever is bigger. The inode |
| * buffers in the log can be a different size if the log was generated |
| * by an older kernel using unclustered inode buffers or a newer kernel |
| * running with a different inode cluster size. Regardless, if the |
| * the inode buffer size isn't max(blocksize, inode_cluster_size) |
| * for *our* value of inode_cluster_size, then we need to keep |
| * the buffer out of the buffer cache so that the buffer won't |
| * overlap with future reads of those inodes. |
| */ |
| if (XFS_DINODE_MAGIC == |
| be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && |
| (BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) { |
| xfs_buf_stale(bp); |
| error = xfs_bwrite(bp); |
| } else { |
| ASSERT(bp->b_mount == mp); |
| bp->b_iodone = xlog_recover_iodone; |
| xfs_buf_delwri_queue(bp, buffer_list); |
| } |
| |
| out_release: |
| xfs_buf_relse(bp); |
| return error; |
| cancelled: |
| trace_xfs_log_recover_buf_cancel(log, buf_f); |
| return 0; |
| } |
| |
| const struct xlog_recover_item_ops xlog_buf_item_ops = { |
| .item_type = XFS_LI_BUF, |
| .reorder = xlog_recover_buf_reorder, |
| .ra_pass2 = xlog_recover_buf_ra_pass2, |
| .commit_pass1 = xlog_recover_buf_commit_pass1, |
| .commit_pass2 = xlog_recover_buf_commit_pass2, |
| }; |