|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Per Entity Load Tracking | 
|  | * | 
|  | *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | 
|  | * | 
|  | *  Interactivity improvements by Mike Galbraith | 
|  | *  (C) 2007 Mike Galbraith <efault@gmx.de> | 
|  | * | 
|  | *  Various enhancements by Dmitry Adamushko. | 
|  | *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> | 
|  | * | 
|  | *  Group scheduling enhancements by Srivatsa Vaddagiri | 
|  | *  Copyright IBM Corporation, 2007 | 
|  | *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> | 
|  | * | 
|  | *  Scaled math optimizations by Thomas Gleixner | 
|  | *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> | 
|  | * | 
|  | *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra | 
|  | *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra | 
|  | * | 
|  | *  Move PELT related code from fair.c into this pelt.c file | 
|  | *  Author: Vincent Guittot <vincent.guittot@linaro.org> | 
|  | */ | 
|  |  | 
|  | #include <linux/sched.h> | 
|  | #include "sched.h" | 
|  | #include "pelt.h" | 
|  |  | 
|  | #include <trace/events/sched.h> | 
|  |  | 
|  | /* | 
|  | * Approximate: | 
|  | *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period) | 
|  | */ | 
|  | static u64 decay_load(u64 val, u64 n) | 
|  | { | 
|  | unsigned int local_n; | 
|  |  | 
|  | if (unlikely(n > LOAD_AVG_PERIOD * 63)) | 
|  | return 0; | 
|  |  | 
|  | /* after bounds checking we can collapse to 32-bit */ | 
|  | local_n = n; | 
|  |  | 
|  | /* | 
|  | * As y^PERIOD = 1/2, we can combine | 
|  | *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) | 
|  | * With a look-up table which covers y^n (n<PERIOD) | 
|  | * | 
|  | * To achieve constant time decay_load. | 
|  | */ | 
|  | if (unlikely(local_n >= LOAD_AVG_PERIOD)) { | 
|  | val >>= local_n / LOAD_AVG_PERIOD; | 
|  | local_n %= LOAD_AVG_PERIOD; | 
|  | } | 
|  |  | 
|  | val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3) | 
|  | { | 
|  | u32 c1, c2, c3 = d3; /* y^0 == 1 */ | 
|  |  | 
|  | /* | 
|  | * c1 = d1 y^p | 
|  | */ | 
|  | c1 = decay_load((u64)d1, periods); | 
|  |  | 
|  | /* | 
|  | *            p-1 | 
|  | * c2 = 1024 \Sum y^n | 
|  | *            n=1 | 
|  | * | 
|  | *              inf        inf | 
|  | *    = 1024 ( \Sum y^n - \Sum y^n - y^0 ) | 
|  | *              n=0        n=p | 
|  | */ | 
|  | c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024; | 
|  |  | 
|  | return c1 + c2 + c3; | 
|  | } | 
|  |  | 
|  | #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) | 
|  |  | 
|  | /* | 
|  | * Accumulate the three separate parts of the sum; d1 the remainder | 
|  | * of the last (incomplete) period, d2 the span of full periods and d3 | 
|  | * the remainder of the (incomplete) current period. | 
|  | * | 
|  | *           d1          d2           d3 | 
|  | *           ^           ^            ^ | 
|  | *           |           |            | | 
|  | *         |<->|<----------------->|<--->| | 
|  | * ... |---x---|------| ... |------|-----x (now) | 
|  | * | 
|  | *                           p-1 | 
|  | * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0 | 
|  | *                           n=1 | 
|  | * | 
|  | *    = u y^p +					(Step 1) | 
|  | * | 
|  | *                     p-1 | 
|  | *      d1 y^p + 1024 \Sum y^n + d3 y^0		(Step 2) | 
|  | *                     n=1 | 
|  | */ | 
|  | static __always_inline u32 | 
|  | accumulate_sum(u64 delta, struct sched_avg *sa, | 
|  | unsigned long load, unsigned long runnable, int running) | 
|  | { | 
|  | u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */ | 
|  | u64 periods; | 
|  |  | 
|  | delta += sa->period_contrib; | 
|  | periods = delta / 1024; /* A period is 1024us (~1ms) */ | 
|  |  | 
|  | /* | 
|  | * Step 1: decay old *_sum if we crossed period boundaries. | 
|  | */ | 
|  | if (periods) { | 
|  | sa->load_sum = decay_load(sa->load_sum, periods); | 
|  | sa->runnable_load_sum = | 
|  | decay_load(sa->runnable_load_sum, periods); | 
|  | sa->util_sum = decay_load((u64)(sa->util_sum), periods); | 
|  |  | 
|  | /* | 
|  | * Step 2 | 
|  | */ | 
|  | delta %= 1024; | 
|  | contrib = __accumulate_pelt_segments(periods, | 
|  | 1024 - sa->period_contrib, delta); | 
|  | } | 
|  | sa->period_contrib = delta; | 
|  |  | 
|  | if (load) | 
|  | sa->load_sum += load * contrib; | 
|  | if (runnable) | 
|  | sa->runnable_load_sum += runnable * contrib; | 
|  | if (running) | 
|  | sa->util_sum += contrib << SCHED_CAPACITY_SHIFT; | 
|  |  | 
|  | return periods; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We can represent the historical contribution to runnable average as the | 
|  | * coefficients of a geometric series.  To do this we sub-divide our runnable | 
|  | * history into segments of approximately 1ms (1024us); label the segment that | 
|  | * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. | 
|  | * | 
|  | * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... | 
|  | *      p0            p1           p2 | 
|  | *     (now)       (~1ms ago)  (~2ms ago) | 
|  | * | 
|  | * Let u_i denote the fraction of p_i that the entity was runnable. | 
|  | * | 
|  | * We then designate the fractions u_i as our co-efficients, yielding the | 
|  | * following representation of historical load: | 
|  | *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... | 
|  | * | 
|  | * We choose y based on the with of a reasonably scheduling period, fixing: | 
|  | *   y^32 = 0.5 | 
|  | * | 
|  | * This means that the contribution to load ~32ms ago (u_32) will be weighted | 
|  | * approximately half as much as the contribution to load within the last ms | 
|  | * (u_0). | 
|  | * | 
|  | * When a period "rolls over" and we have new u_0`, multiplying the previous | 
|  | * sum again by y is sufficient to update: | 
|  | *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) | 
|  | *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] | 
|  | */ | 
|  | static __always_inline int | 
|  | ___update_load_sum(u64 now, struct sched_avg *sa, | 
|  | unsigned long load, unsigned long runnable, int running) | 
|  | { | 
|  | u64 delta; | 
|  |  | 
|  | delta = now - sa->last_update_time; | 
|  | /* | 
|  | * This should only happen when time goes backwards, which it | 
|  | * unfortunately does during sched clock init when we swap over to TSC. | 
|  | */ | 
|  | if ((s64)delta < 0) { | 
|  | sa->last_update_time = now; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use 1024ns as the unit of measurement since it's a reasonable | 
|  | * approximation of 1us and fast to compute. | 
|  | */ | 
|  | delta >>= 10; | 
|  | if (!delta) | 
|  | return 0; | 
|  |  | 
|  | sa->last_update_time += delta << 10; | 
|  |  | 
|  | /* | 
|  | * running is a subset of runnable (weight) so running can't be set if | 
|  | * runnable is clear. But there are some corner cases where the current | 
|  | * se has been already dequeued but cfs_rq->curr still points to it. | 
|  | * This means that weight will be 0 but not running for a sched_entity | 
|  | * but also for a cfs_rq if the latter becomes idle. As an example, | 
|  | * this happens during idle_balance() which calls | 
|  | * update_blocked_averages() | 
|  | */ | 
|  | if (!load) | 
|  | runnable = running = 0; | 
|  |  | 
|  | /* | 
|  | * Now we know we crossed measurement unit boundaries. The *_avg | 
|  | * accrues by two steps: | 
|  | * | 
|  | * Step 1: accumulate *_sum since last_update_time. If we haven't | 
|  | * crossed period boundaries, finish. | 
|  | */ | 
|  | if (!accumulate_sum(delta, sa, load, runnable, running)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static __always_inline void | 
|  | ___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runnable) | 
|  | { | 
|  | u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; | 
|  |  | 
|  | /* | 
|  | * Step 2: update *_avg. | 
|  | */ | 
|  | sa->load_avg = div_u64(load * sa->load_sum, divider); | 
|  | sa->runnable_load_avg =	div_u64(runnable * sa->runnable_load_sum, divider); | 
|  | WRITE_ONCE(sa->util_avg, sa->util_sum / divider); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sched_entity: | 
|  | * | 
|  | *   task: | 
|  | *     se_runnable() == se_weight() | 
|  | * | 
|  | *   group: [ see update_cfs_group() ] | 
|  | *     se_weight()   = tg->weight * grq->load_avg / tg->load_avg | 
|  | *     se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg | 
|  | * | 
|  | *   load_sum := runnable_sum | 
|  | *   load_avg = se_weight(se) * runnable_avg | 
|  | * | 
|  | *   runnable_load_sum := runnable_sum | 
|  | *   runnable_load_avg = se_runnable(se) * runnable_avg | 
|  | * | 
|  | * XXX collapse load_sum and runnable_load_sum | 
|  | * | 
|  | * cfq_rq: | 
|  | * | 
|  | *   load_sum = \Sum se_weight(se) * se->avg.load_sum | 
|  | *   load_avg = \Sum se->avg.load_avg | 
|  | * | 
|  | *   runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum | 
|  | *   runnable_load_avg = \Sum se->avg.runable_load_avg | 
|  | */ | 
|  |  | 
|  | int __update_load_avg_blocked_se(u64 now, struct sched_entity *se) | 
|  | { | 
|  | if (___update_load_sum(now, &se->avg, 0, 0, 0)) { | 
|  | ___update_load_avg(&se->avg, se_weight(se), se_runnable(se)); | 
|  | trace_pelt_se_tp(se); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | if (___update_load_sum(now, &se->avg, !!se->on_rq, !!se->on_rq, | 
|  | cfs_rq->curr == se)) { | 
|  |  | 
|  | ___update_load_avg(&se->avg, se_weight(se), se_runnable(se)); | 
|  | cfs_se_util_change(&se->avg); | 
|  | trace_pelt_se_tp(se); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq) | 
|  | { | 
|  | if (___update_load_sum(now, &cfs_rq->avg, | 
|  | scale_load_down(cfs_rq->load.weight), | 
|  | scale_load_down(cfs_rq->runnable_weight), | 
|  | cfs_rq->curr != NULL)) { | 
|  |  | 
|  | ___update_load_avg(&cfs_rq->avg, 1, 1); | 
|  | trace_pelt_cfs_tp(cfs_rq); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rt_rq: | 
|  | * | 
|  | *   util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked | 
|  | *   util_sum = cpu_scale * load_sum | 
|  | *   runnable_load_sum = load_sum | 
|  | * | 
|  | *   load_avg and runnable_load_avg are not supported and meaningless. | 
|  | * | 
|  | */ | 
|  |  | 
|  | int update_rt_rq_load_avg(u64 now, struct rq *rq, int running) | 
|  | { | 
|  | if (___update_load_sum(now, &rq->avg_rt, | 
|  | running, | 
|  | running, | 
|  | running)) { | 
|  |  | 
|  | ___update_load_avg(&rq->avg_rt, 1, 1); | 
|  | trace_pelt_rt_tp(rq); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * dl_rq: | 
|  | * | 
|  | *   util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked | 
|  | *   util_sum = cpu_scale * load_sum | 
|  | *   runnable_load_sum = load_sum | 
|  | * | 
|  | */ | 
|  |  | 
|  | int update_dl_rq_load_avg(u64 now, struct rq *rq, int running) | 
|  | { | 
|  | if (___update_load_sum(now, &rq->avg_dl, | 
|  | running, | 
|  | running, | 
|  | running)) { | 
|  |  | 
|  | ___update_load_avg(&rq->avg_dl, 1, 1); | 
|  | trace_pelt_dl_tp(rq); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HAVE_SCHED_AVG_IRQ | 
|  | /* | 
|  | * irq: | 
|  | * | 
|  | *   util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked | 
|  | *   util_sum = cpu_scale * load_sum | 
|  | *   runnable_load_sum = load_sum | 
|  | * | 
|  | */ | 
|  |  | 
|  | int update_irq_load_avg(struct rq *rq, u64 running) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * We can't use clock_pelt because irq time is not accounted in | 
|  | * clock_task. Instead we directly scale the running time to | 
|  | * reflect the real amount of computation | 
|  | */ | 
|  | running = cap_scale(running, arch_scale_freq_capacity(cpu_of(rq))); | 
|  | running = cap_scale(running, arch_scale_cpu_capacity(cpu_of(rq))); | 
|  |  | 
|  | /* | 
|  | * We know the time that has been used by interrupt since last update | 
|  | * but we don't when. Let be pessimistic and assume that interrupt has | 
|  | * happened just before the update. This is not so far from reality | 
|  | * because interrupt will most probably wake up task and trig an update | 
|  | * of rq clock during which the metric is updated. | 
|  | * We start to decay with normal context time and then we add the | 
|  | * interrupt context time. | 
|  | * We can safely remove running from rq->clock because | 
|  | * rq->clock += delta with delta >= running | 
|  | */ | 
|  | ret = ___update_load_sum(rq->clock - running, &rq->avg_irq, | 
|  | 0, | 
|  | 0, | 
|  | 0); | 
|  | ret += ___update_load_sum(rq->clock, &rq->avg_irq, | 
|  | 1, | 
|  | 1, | 
|  | 1); | 
|  |  | 
|  | if (ret) { | 
|  | ___update_load_avg(&rq->avg_irq, 1, 1); | 
|  | trace_pelt_irq_tp(rq); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #endif |