blob: 9dbb13adb6613d4abadc5d93aaaac0f5657501fc [file] [log] [blame]
/*
* Copyright 2023 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "umc_v12_0.h"
#include "amdgpu_ras.h"
#include "amdgpu_umc.h"
#include "amdgpu.h"
#include "umc/umc_12_0_0_offset.h"
#include "umc/umc_12_0_0_sh_mask.h"
#include "mp/mp_13_0_6_sh_mask.h"
#define MAX_ECC_NUM_PER_RETIREMENT 32
#define DELAYED_TIME_FOR_GPU_RESET 1000 //ms
static inline uint64_t get_umc_v12_0_reg_offset(struct amdgpu_device *adev,
uint32_t node_inst,
uint32_t umc_inst,
uint32_t ch_inst)
{
uint32_t index = umc_inst * adev->umc.channel_inst_num + ch_inst;
uint64_t cross_node_offset = (node_inst == 0) ? 0 : UMC_V12_0_CROSS_NODE_OFFSET;
umc_inst = index / 4;
ch_inst = index % 4;
return adev->umc.channel_offs * ch_inst + UMC_V12_0_INST_DIST * umc_inst +
UMC_V12_0_NODE_DIST * node_inst + cross_node_offset;
}
static int umc_v12_0_reset_error_count_per_channel(struct amdgpu_device *adev,
uint32_t node_inst, uint32_t umc_inst,
uint32_t ch_inst, void *data)
{
uint64_t odecc_err_cnt_addr;
uint64_t umc_reg_offset =
get_umc_v12_0_reg_offset(adev, node_inst, umc_inst, ch_inst);
odecc_err_cnt_addr =
SOC15_REG_OFFSET(UMC, 0, regUMCCH0_OdEccErrCnt);
/* clear error count */
WREG32_PCIE_EXT((odecc_err_cnt_addr + umc_reg_offset) * 4,
UMC_V12_0_CE_CNT_INIT);
return 0;
}
static void umc_v12_0_reset_error_count(struct amdgpu_device *adev)
{
amdgpu_umc_loop_channels(adev,
umc_v12_0_reset_error_count_per_channel, NULL);
}
bool umc_v12_0_is_deferred_error(struct amdgpu_device *adev, uint64_t mc_umc_status)
{
dev_dbg(adev->dev,
"MCA_UMC_STATUS(0x%llx): Val:%llu, Poison:%llu, Deferred:%llu, PCC:%llu, UC:%llu, TCC:%llu\n",
mc_umc_status,
REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, Val),
REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, Poison),
REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, Deferred),
REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, PCC),
REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, UC),
REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, TCC)
);
return (amdgpu_ras_is_poison_mode_supported(adev) &&
(REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, Val) == 1) &&
(REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, Deferred) == 1));
}
bool umc_v12_0_is_uncorrectable_error(struct amdgpu_device *adev, uint64_t mc_umc_status)
{
if (umc_v12_0_is_deferred_error(adev, mc_umc_status))
return false;
return ((REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, Val) == 1) &&
(REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, PCC) == 1 ||
REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, UC) == 1 ||
REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, TCC) == 1));
}
bool umc_v12_0_is_correctable_error(struct amdgpu_device *adev, uint64_t mc_umc_status)
{
if (umc_v12_0_is_deferred_error(adev, mc_umc_status))
return false;
return (REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, Val) == 1 &&
(REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, CECC) == 1 ||
(REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, UECC) == 1 &&
REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, UC) == 0) ||
/* Identify data parity error in replay mode */
((REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, ErrorCodeExt) == 0x5 ||
REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, ErrorCodeExt) == 0xb) &&
!(umc_v12_0_is_uncorrectable_error(adev, mc_umc_status)))));
}
static void umc_v12_0_query_error_count_per_type(struct amdgpu_device *adev,
uint64_t umc_reg_offset,
unsigned long *error_count,
check_error_type_func error_type_func)
{
uint64_t mc_umc_status;
uint64_t mc_umc_status_addr;
mc_umc_status_addr =
SOC15_REG_OFFSET(UMC, 0, regMCA_UMC_UMC0_MCUMC_STATUST0);
/* Check MCUMC_STATUS */
mc_umc_status =
RREG64_PCIE_EXT((mc_umc_status_addr + umc_reg_offset) * 4);
if (error_type_func(adev, mc_umc_status))
*error_count += 1;
}
static int umc_v12_0_query_error_count(struct amdgpu_device *adev,
uint32_t node_inst, uint32_t umc_inst,
uint32_t ch_inst, void *data)
{
struct ras_err_data *err_data = (struct ras_err_data *)data;
unsigned long ue_count = 0, ce_count = 0, de_count = 0;
/* NOTE: node_inst is converted by adev->umc.active_mask and the range is [0-3],
* which can be used as die ID directly */
struct amdgpu_smuio_mcm_config_info mcm_info = {
.socket_id = adev->smuio.funcs->get_socket_id(adev),
.die_id = node_inst,
};
uint64_t umc_reg_offset =
get_umc_v12_0_reg_offset(adev, node_inst, umc_inst, ch_inst);
umc_v12_0_query_error_count_per_type(adev, umc_reg_offset,
&ce_count, umc_v12_0_is_correctable_error);
umc_v12_0_query_error_count_per_type(adev, umc_reg_offset,
&ue_count, umc_v12_0_is_uncorrectable_error);
umc_v12_0_query_error_count_per_type(adev, umc_reg_offset,
&de_count, umc_v12_0_is_deferred_error);
amdgpu_ras_error_statistic_ue_count(err_data, &mcm_info, NULL, ue_count);
amdgpu_ras_error_statistic_ce_count(err_data, &mcm_info, NULL, ce_count);
amdgpu_ras_error_statistic_de_count(err_data, &mcm_info, NULL, de_count);
return 0;
}
static void umc_v12_0_query_ras_error_count(struct amdgpu_device *adev,
void *ras_error_status)
{
amdgpu_umc_loop_channels(adev,
umc_v12_0_query_error_count, ras_error_status);
umc_v12_0_reset_error_count(adev);
}
static void umc_v12_0_convert_error_address(struct amdgpu_device *adev,
struct ras_err_data *err_data,
struct ta_ras_query_address_input *addr_in)
{
uint32_t col, row, row_xor, bank, channel_index;
uint64_t soc_pa, retired_page, column, err_addr;
struct ta_ras_query_address_output addr_out;
err_addr = addr_in->ma.err_addr;
addr_in->addr_type = TA_RAS_MCA_TO_PA;
if (psp_ras_query_address(&adev->psp, addr_in, &addr_out)) {
dev_warn(adev->dev, "Failed to query RAS physical address for 0x%llx",
err_addr);
return;
}
soc_pa = addr_out.pa.pa;
bank = addr_out.pa.bank;
channel_index = addr_out.pa.channel_idx;
col = (err_addr >> 1) & 0x1fULL;
row = (err_addr >> 10) & 0x3fffULL;
row_xor = row ^ (0x1ULL << 13);
/* clear [C3 C2] in soc physical address */
soc_pa &= ~(0x3ULL << UMC_V12_0_PA_C2_BIT);
/* clear [C4] in soc physical address */
soc_pa &= ~(0x1ULL << UMC_V12_0_PA_C4_BIT);
/* loop for all possibilities of [C4 C3 C2] */
for (column = 0; column < UMC_V12_0_NA_MAP_PA_NUM; column++) {
retired_page = soc_pa | ((column & 0x3) << UMC_V12_0_PA_C2_BIT);
retired_page |= (((column & 0x4) >> 2) << UMC_V12_0_PA_C4_BIT);
/* include column bit 0 and 1 */
col &= 0x3;
col |= (column << 2);
dev_info(adev->dev,
"Error Address(PA):0x%-10llx Row:0x%-4x Col:0x%-2x Bank:0x%x Channel:0x%x\n",
retired_page, row, col, bank, channel_index);
amdgpu_umc_fill_error_record(err_data, err_addr,
retired_page, channel_index, addr_in->ma.umc_inst);
/* shift R13 bit */
retired_page ^= (0x1ULL << UMC_V12_0_PA_R13_BIT);
dev_info(adev->dev,
"Error Address(PA):0x%-10llx Row:0x%-4x Col:0x%-2x Bank:0x%x Channel:0x%x\n",
retired_page, row_xor, col, bank, channel_index);
amdgpu_umc_fill_error_record(err_data, err_addr,
retired_page, channel_index, addr_in->ma.umc_inst);
}
}
static int umc_v12_0_convert_err_addr(struct amdgpu_device *adev,
struct ta_ras_query_address_input *addr_in,
uint64_t *pfns, int len)
{
uint32_t col, row, row_xor, bank, channel_index;
uint64_t soc_pa, retired_page, column, err_addr;
struct ta_ras_query_address_output addr_out;
uint32_t pos = 0;
err_addr = addr_in->ma.err_addr;
addr_in->addr_type = TA_RAS_MCA_TO_PA;
if (psp_ras_query_address(&adev->psp, addr_in, &addr_out)) {
dev_warn(adev->dev, "Failed to query RAS physical address for 0x%llx",
err_addr);
return 0;
}
soc_pa = addr_out.pa.pa;
bank = addr_out.pa.bank;
channel_index = addr_out.pa.channel_idx;
col = (err_addr >> 1) & 0x1fULL;
row = (err_addr >> 10) & 0x3fffULL;
row_xor = row ^ (0x1ULL << 13);
/* clear [C3 C2] in soc physical address */
soc_pa &= ~(0x3ULL << UMC_V12_0_PA_C2_BIT);
/* clear [C4] in soc physical address */
soc_pa &= ~(0x1ULL << UMC_V12_0_PA_C4_BIT);
/* loop for all possibilities of [C4 C3 C2] */
for (column = 0; column < UMC_V12_0_NA_MAP_PA_NUM; column++) {
retired_page = soc_pa | ((column & 0x3) << UMC_V12_0_PA_C2_BIT);
retired_page |= (((column & 0x4) >> 2) << UMC_V12_0_PA_C4_BIT);
if (pos >= len)
return 0;
pfns[pos++] = retired_page >> AMDGPU_GPU_PAGE_SHIFT;
/* include column bit 0 and 1 */
col &= 0x3;
col |= (column << 2);
dev_info(adev->dev,
"Error Address(PA):0x%-10llx Row:0x%-4x Col:0x%-2x Bank:0x%x Channel:0x%x\n",
retired_page, row, col, bank, channel_index);
/* shift R13 bit */
retired_page ^= (0x1ULL << UMC_V12_0_PA_R13_BIT);
if (pos >= len)
return 0;
pfns[pos++] = retired_page >> AMDGPU_GPU_PAGE_SHIFT;
dev_info(adev->dev,
"Error Address(PA):0x%-10llx Row:0x%-4x Col:0x%-2x Bank:0x%x Channel:0x%x\n",
retired_page, row_xor, col, bank, channel_index);
}
return pos;
}
static int umc_v12_0_query_error_address(struct amdgpu_device *adev,
uint32_t node_inst, uint32_t umc_inst,
uint32_t ch_inst, void *data)
{
struct ras_err_data *err_data = (struct ras_err_data *)data;
struct ta_ras_query_address_input addr_in;
uint64_t mc_umc_status_addr;
uint64_t mc_umc_status, err_addr;
uint64_t mc_umc_addrt0;
uint64_t umc_reg_offset =
get_umc_v12_0_reg_offset(adev, node_inst, umc_inst, ch_inst);
mc_umc_status_addr =
SOC15_REG_OFFSET(UMC, 0, regMCA_UMC_UMC0_MCUMC_STATUST0);
mc_umc_status = RREG64_PCIE_EXT((mc_umc_status_addr + umc_reg_offset) * 4);
if (mc_umc_status == 0)
return 0;
if (!err_data->err_addr) {
/* clear umc status */
WREG64_PCIE_EXT((mc_umc_status_addr + umc_reg_offset) * 4, 0x0ULL);
return 0;
}
/* calculate error address if ue error is detected */
if (umc_v12_0_is_uncorrectable_error(adev, mc_umc_status) ||
umc_v12_0_is_deferred_error(adev, mc_umc_status)) {
mc_umc_addrt0 =
SOC15_REG_OFFSET(UMC, 0, regMCA_UMC_UMC0_MCUMC_ADDRT0);
err_addr = RREG64_PCIE_EXT((mc_umc_addrt0 + umc_reg_offset) * 4);
err_addr = REG_GET_FIELD(err_addr, MCA_UMC_UMC0_MCUMC_ADDRT0, ErrorAddr);
if (!adev->aid_mask &&
adev->smuio.funcs &&
adev->smuio.funcs->get_socket_id)
addr_in.ma.socket_id = adev->smuio.funcs->get_socket_id(adev);
else
addr_in.ma.socket_id = 0;
addr_in.ma.err_addr = err_addr;
addr_in.ma.ch_inst = ch_inst;
addr_in.ma.umc_inst = umc_inst;
addr_in.ma.node_inst = node_inst;
umc_v12_0_convert_error_address(adev, err_data, &addr_in);
}
/* clear umc status */
WREG64_PCIE_EXT((mc_umc_status_addr + umc_reg_offset) * 4, 0x0ULL);
return 0;
}
static void umc_v12_0_query_ras_error_address(struct amdgpu_device *adev,
void *ras_error_status)
{
amdgpu_umc_loop_channels(adev,
umc_v12_0_query_error_address, ras_error_status);
}
static int umc_v12_0_err_cnt_init_per_channel(struct amdgpu_device *adev,
uint32_t node_inst, uint32_t umc_inst,
uint32_t ch_inst, void *data)
{
uint32_t odecc_cnt_sel;
uint64_t odecc_cnt_sel_addr, odecc_err_cnt_addr;
uint64_t umc_reg_offset =
get_umc_v12_0_reg_offset(adev, node_inst, umc_inst, ch_inst);
odecc_cnt_sel_addr =
SOC15_REG_OFFSET(UMC, 0, regUMCCH0_OdEccCntSel);
odecc_err_cnt_addr =
SOC15_REG_OFFSET(UMC, 0, regUMCCH0_OdEccErrCnt);
odecc_cnt_sel = RREG32_PCIE_EXT((odecc_cnt_sel_addr + umc_reg_offset) * 4);
/* set ce error interrupt type to APIC based interrupt */
odecc_cnt_sel = REG_SET_FIELD(odecc_cnt_sel, UMCCH0_OdEccCntSel,
OdEccErrInt, 0x1);
WREG32_PCIE_EXT((odecc_cnt_sel_addr + umc_reg_offset) * 4, odecc_cnt_sel);
/* set error count to initial value */
WREG32_PCIE_EXT((odecc_err_cnt_addr + umc_reg_offset) * 4, UMC_V12_0_CE_CNT_INIT);
return 0;
}
static bool umc_v12_0_check_ecc_err_status(struct amdgpu_device *adev,
enum amdgpu_mca_error_type type, void *ras_error_status)
{
uint64_t mc_umc_status = *(uint64_t *)ras_error_status;
switch (type) {
case AMDGPU_MCA_ERROR_TYPE_UE:
return umc_v12_0_is_uncorrectable_error(adev, mc_umc_status);
case AMDGPU_MCA_ERROR_TYPE_CE:
return umc_v12_0_is_correctable_error(adev, mc_umc_status);
case AMDGPU_MCA_ERROR_TYPE_DE:
return umc_v12_0_is_deferred_error(adev, mc_umc_status);
default:
return false;
}
return false;
}
static void umc_v12_0_err_cnt_init(struct amdgpu_device *adev)
{
amdgpu_umc_loop_channels(adev,
umc_v12_0_err_cnt_init_per_channel, NULL);
}
static bool umc_v12_0_query_ras_poison_mode(struct amdgpu_device *adev)
{
/*
* Force return true, because regUMCCH0_EccCtrl
* is not accessible from host side
*/
return true;
}
const struct amdgpu_ras_block_hw_ops umc_v12_0_ras_hw_ops = {
.query_ras_error_count = umc_v12_0_query_ras_error_count,
.query_ras_error_address = umc_v12_0_query_ras_error_address,
};
static int umc_v12_0_aca_bank_parser(struct aca_handle *handle, struct aca_bank *bank,
enum aca_smu_type type, void *data)
{
struct amdgpu_device *adev = handle->adev;
struct aca_bank_info info;
enum aca_error_type err_type;
u64 status, count;
u32 ext_error_code;
int ret;
status = bank->regs[ACA_REG_IDX_STATUS];
if (umc_v12_0_is_deferred_error(adev, status))
err_type = ACA_ERROR_TYPE_DEFERRED;
else if (umc_v12_0_is_uncorrectable_error(adev, status))
err_type = ACA_ERROR_TYPE_UE;
else if (umc_v12_0_is_correctable_error(adev, status))
err_type = ACA_ERROR_TYPE_CE;
else
return 0;
ret = aca_bank_info_decode(bank, &info);
if (ret)
return ret;
amdgpu_umc_update_ecc_status(adev,
bank->regs[ACA_REG_IDX_STATUS],
bank->regs[ACA_REG_IDX_IPID],
bank->regs[ACA_REG_IDX_ADDR]);
ext_error_code = ACA_REG__STATUS__ERRORCODEEXT(status);
count = ext_error_code == 0 ?
ACA_REG__MISC0__ERRCNT(bank->regs[ACA_REG_IDX_MISC0]) : 1ULL;
return aca_error_cache_log_bank_error(handle, &info, err_type, count);
}
static const struct aca_bank_ops umc_v12_0_aca_bank_ops = {
.aca_bank_parser = umc_v12_0_aca_bank_parser,
};
const struct aca_info umc_v12_0_aca_info = {
.hwip = ACA_HWIP_TYPE_UMC,
.mask = ACA_ERROR_UE_MASK | ACA_ERROR_CE_MASK | ACA_ERROR_DEFERRED_MASK,
.bank_ops = &umc_v12_0_aca_bank_ops,
};
static int umc_v12_0_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
{
int ret;
ret = amdgpu_umc_ras_late_init(adev, ras_block);
if (ret)
return ret;
ret = amdgpu_ras_bind_aca(adev, AMDGPU_RAS_BLOCK__UMC,
&umc_v12_0_aca_info, NULL);
if (ret)
return ret;
return 0;
}
static int umc_v12_0_update_ecc_status(struct amdgpu_device *adev,
uint64_t status, uint64_t ipid, uint64_t addr)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
uint16_t hwid, mcatype;
struct ta_ras_query_address_input addr_in;
uint64_t page_pfn[UMC_V12_0_BAD_PAGE_NUM_PER_CHANNEL];
uint64_t err_addr, hash_val = 0;
struct ras_ecc_err *ecc_err;
int count;
int ret;
hwid = REG_GET_FIELD(ipid, MCMP1_IPIDT0, HardwareID);
mcatype = REG_GET_FIELD(ipid, MCMP1_IPIDT0, McaType);
if ((hwid != MCA_UMC_HWID_V12_0) || (mcatype != MCA_UMC_MCATYPE_V12_0))
return 0;
if (!status)
return 0;
if (!umc_v12_0_is_deferred_error(adev, status))
return 0;
err_addr = REG_GET_FIELD(addr,
MCA_UMC_UMC0_MCUMC_ADDRT0, ErrorAddr);
dev_dbg(adev->dev,
"UMC:IPID:0x%llx, socket:%llu, aid:%llu, inst:%llu, ch:%llu, err_addr:0x%llx\n",
ipid,
MCA_IPID_2_SOCKET_ID(ipid),
MCA_IPID_2_DIE_ID(ipid),
MCA_IPID_2_UMC_INST(ipid),
MCA_IPID_2_UMC_CH(ipid),
err_addr);
memset(page_pfn, 0, sizeof(page_pfn));
memset(&addr_in, 0, sizeof(addr_in));
addr_in.ma.err_addr = err_addr;
addr_in.ma.ch_inst = MCA_IPID_2_UMC_CH(ipid);
addr_in.ma.umc_inst = MCA_IPID_2_UMC_INST(ipid);
addr_in.ma.node_inst = MCA_IPID_2_DIE_ID(ipid);
addr_in.ma.socket_id = MCA_IPID_2_SOCKET_ID(ipid);
count = umc_v12_0_convert_err_addr(adev,
&addr_in, page_pfn, ARRAY_SIZE(page_pfn));
if (count <= 0) {
dev_warn(adev->dev, "Fail to convert error address! count:%d\n", count);
return 0;
}
ret = amdgpu_umc_build_pages_hash(adev,
page_pfn, count, &hash_val);
if (ret) {
dev_err(adev->dev, "Fail to build error pages hash\n");
return ret;
}
ecc_err = kzalloc(sizeof(*ecc_err), GFP_KERNEL);
if (!ecc_err)
return -ENOMEM;
ecc_err->err_pages.pfn = kcalloc(count, sizeof(*ecc_err->err_pages.pfn), GFP_KERNEL);
if (!ecc_err->err_pages.pfn) {
kfree(ecc_err);
return -ENOMEM;
}
memcpy(ecc_err->err_pages.pfn, page_pfn, count * sizeof(*ecc_err->err_pages.pfn));
ecc_err->err_pages.count = count;
ecc_err->hash_index = hash_val;
ecc_err->status = status;
ecc_err->ipid = ipid;
ecc_err->addr = addr;
ret = amdgpu_umc_logs_ecc_err(adev, &con->umc_ecc_log.de_page_tree, ecc_err);
if (ret) {
if (ret == -EEXIST)
con->umc_ecc_log.de_queried_count++;
else
dev_err(adev->dev, "Fail to log ecc error! ret:%d\n", ret);
kfree(ecc_err->err_pages.pfn);
kfree(ecc_err);
return ret;
}
con->umc_ecc_log.de_queried_count++;
/* The problem case is as follows:
* 1. GPU A triggers a gpu ras reset, and GPU A drives
* GPU B to also perform a gpu ras reset.
* 2. After gpu B ras reset started, gpu B queried a DE
* data. Since the DE data was queried in the ras reset
* thread instead of the page retirement thread, bad
* page retirement work would not be triggered. Then
* even if all gpu resets are completed, the bad pages
* will be cached in RAM until GPU B's bad page retirement
* work is triggered again and then saved to eeprom.
* Trigger delayed work to save the bad pages to eeprom in time
* after gpu ras reset is completed.
*/
if (amdgpu_ras_in_recovery(adev))
schedule_delayed_work(&con->page_retirement_dwork,
msecs_to_jiffies(DELAYED_TIME_FOR_GPU_RESET));
return 0;
}
static int umc_v12_0_fill_error_record(struct amdgpu_device *adev,
struct ras_ecc_err *ecc_err, void *ras_error_status)
{
struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
uint32_t i = 0;
int ret = 0;
if (!err_data || !ecc_err)
return -EINVAL;
for (i = 0; i < ecc_err->err_pages.count; i++) {
ret = amdgpu_umc_fill_error_record(err_data,
ecc_err->addr,
ecc_err->err_pages.pfn[i] << AMDGPU_GPU_PAGE_SHIFT,
MCA_IPID_2_UMC_CH(ecc_err->ipid),
MCA_IPID_2_UMC_INST(ecc_err->ipid));
if (ret)
break;
}
err_data->de_count++;
return ret;
}
static void umc_v12_0_query_ras_ecc_err_addr(struct amdgpu_device *adev,
void *ras_error_status)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
struct ras_ecc_err *entries[MAX_ECC_NUM_PER_RETIREMENT];
struct radix_tree_root *ecc_tree;
int new_detected, ret, i;
ecc_tree = &con->umc_ecc_log.de_page_tree;
mutex_lock(&con->umc_ecc_log.lock);
new_detected = radix_tree_gang_lookup_tag(ecc_tree, (void **)entries,
0, ARRAY_SIZE(entries), UMC_ECC_NEW_DETECTED_TAG);
for (i = 0; i < new_detected; i++) {
if (!entries[i])
continue;
ret = umc_v12_0_fill_error_record(adev, entries[i], ras_error_status);
if (ret) {
dev_err(adev->dev, "Fail to fill umc error record, ret:%d\n", ret);
break;
}
radix_tree_tag_clear(ecc_tree, entries[i]->hash_index, UMC_ECC_NEW_DETECTED_TAG);
}
mutex_unlock(&con->umc_ecc_log.lock);
}
struct amdgpu_umc_ras umc_v12_0_ras = {
.ras_block = {
.hw_ops = &umc_v12_0_ras_hw_ops,
.ras_late_init = umc_v12_0_ras_late_init,
},
.err_cnt_init = umc_v12_0_err_cnt_init,
.query_ras_poison_mode = umc_v12_0_query_ras_poison_mode,
.ecc_info_query_ras_error_address = umc_v12_0_query_ras_ecc_err_addr,
.check_ecc_err_status = umc_v12_0_check_ecc_err_status,
.update_ecc_status = umc_v12_0_update_ecc_status,
};