blob: 74e35f8ddefcf916777c7e6fca0c6d318860aff1 [file] [log] [blame]
/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#define SWSMU_CODE_LAYER_L1
#include <linux/firmware.h>
#include <linux/pci.h>
#include <linux/power_supply.h>
#include <linux/reboot.h>
#include "amdgpu.h"
#include "amdgpu_smu.h"
#include "smu_internal.h"
#include "atom.h"
#include "arcturus_ppt.h"
#include "navi10_ppt.h"
#include "sienna_cichlid_ppt.h"
#include "renoir_ppt.h"
#include "vangogh_ppt.h"
#include "aldebaran_ppt.h"
#include "yellow_carp_ppt.h"
#include "cyan_skillfish_ppt.h"
#include "smu_v13_0_0_ppt.h"
#include "smu_v13_0_4_ppt.h"
#include "smu_v13_0_5_ppt.h"
#include "smu_v13_0_6_ppt.h"
#include "smu_v13_0_7_ppt.h"
#include "smu_v14_0_0_ppt.h"
#include "smu_v14_0_2_ppt.h"
#include "amd_pcie.h"
/*
* DO NOT use these for err/warn/info/debug messages.
* Use dev_err, dev_warn, dev_info and dev_dbg instead.
* They are more MGPU friendly.
*/
#undef pr_err
#undef pr_warn
#undef pr_info
#undef pr_debug
static const struct amd_pm_funcs swsmu_pm_funcs;
static int smu_force_smuclk_levels(struct smu_context *smu,
enum smu_clk_type clk_type,
uint32_t mask);
static int smu_handle_task(struct smu_context *smu,
enum amd_dpm_forced_level level,
enum amd_pp_task task_id);
static int smu_reset(struct smu_context *smu);
static int smu_set_fan_speed_pwm(void *handle, u32 speed);
static int smu_set_fan_control_mode(void *handle, u32 value);
static int smu_set_power_limit(void *handle, uint32_t limit);
static int smu_set_fan_speed_rpm(void *handle, uint32_t speed);
static int smu_set_gfx_cgpg(struct smu_context *smu, bool enabled);
static int smu_set_mp1_state(void *handle, enum pp_mp1_state mp1_state);
static int smu_sys_get_pp_feature_mask(void *handle,
char *buf)
{
struct smu_context *smu = handle;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
return smu_get_pp_feature_mask(smu, buf);
}
static int smu_sys_set_pp_feature_mask(void *handle,
uint64_t new_mask)
{
struct smu_context *smu = handle;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
return smu_set_pp_feature_mask(smu, new_mask);
}
int smu_set_residency_gfxoff(struct smu_context *smu, bool value)
{
if (!smu->ppt_funcs->set_gfx_off_residency)
return -EINVAL;
return smu_set_gfx_off_residency(smu, value);
}
int smu_get_residency_gfxoff(struct smu_context *smu, u32 *value)
{
if (!smu->ppt_funcs->get_gfx_off_residency)
return -EINVAL;
return smu_get_gfx_off_residency(smu, value);
}
int smu_get_entrycount_gfxoff(struct smu_context *smu, u64 *value)
{
if (!smu->ppt_funcs->get_gfx_off_entrycount)
return -EINVAL;
return smu_get_gfx_off_entrycount(smu, value);
}
int smu_get_status_gfxoff(struct smu_context *smu, uint32_t *value)
{
if (!smu->ppt_funcs->get_gfx_off_status)
return -EINVAL;
*value = smu_get_gfx_off_status(smu);
return 0;
}
int smu_set_soft_freq_range(struct smu_context *smu,
enum smu_clk_type clk_type,
uint32_t min,
uint32_t max)
{
int ret = 0;
if (smu->ppt_funcs->set_soft_freq_limited_range)
ret = smu->ppt_funcs->set_soft_freq_limited_range(smu,
clk_type,
min,
max);
return ret;
}
int smu_get_dpm_freq_range(struct smu_context *smu,
enum smu_clk_type clk_type,
uint32_t *min,
uint32_t *max)
{
int ret = -ENOTSUPP;
if (!min && !max)
return -EINVAL;
if (smu->ppt_funcs->get_dpm_ultimate_freq)
ret = smu->ppt_funcs->get_dpm_ultimate_freq(smu,
clk_type,
min,
max);
return ret;
}
int smu_set_gfx_power_up_by_imu(struct smu_context *smu)
{
int ret = 0;
struct amdgpu_device *adev = smu->adev;
if (smu->ppt_funcs->set_gfx_power_up_by_imu) {
ret = smu->ppt_funcs->set_gfx_power_up_by_imu(smu);
if (ret)
dev_err(adev->dev, "Failed to enable gfx imu!\n");
}
return ret;
}
static u32 smu_get_mclk(void *handle, bool low)
{
struct smu_context *smu = handle;
uint32_t clk_freq;
int ret = 0;
ret = smu_get_dpm_freq_range(smu, SMU_UCLK,
low ? &clk_freq : NULL,
!low ? &clk_freq : NULL);
if (ret)
return 0;
return clk_freq * 100;
}
static u32 smu_get_sclk(void *handle, bool low)
{
struct smu_context *smu = handle;
uint32_t clk_freq;
int ret = 0;
ret = smu_get_dpm_freq_range(smu, SMU_GFXCLK,
low ? &clk_freq : NULL,
!low ? &clk_freq : NULL);
if (ret)
return 0;
return clk_freq * 100;
}
static int smu_set_gfx_imu_enable(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP)
return 0;
if (amdgpu_in_reset(smu->adev) || adev->in_s0ix)
return 0;
return smu_set_gfx_power_up_by_imu(smu);
}
static bool is_vcn_enabled(struct amdgpu_device *adev)
{
int i;
for (i = 0; i < adev->num_ip_blocks; i++) {
if ((adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_VCN ||
adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_JPEG) &&
!adev->ip_blocks[i].status.valid)
return false;
}
return true;
}
static int smu_dpm_set_vcn_enable(struct smu_context *smu,
bool enable)
{
struct smu_power_context *smu_power = &smu->smu_power;
struct smu_power_gate *power_gate = &smu_power->power_gate;
int ret = 0;
/*
* don't poweron vcn/jpeg when they are skipped.
*/
if (!is_vcn_enabled(smu->adev))
return 0;
if (!smu->ppt_funcs->dpm_set_vcn_enable)
return 0;
if (atomic_read(&power_gate->vcn_gated) ^ enable)
return 0;
ret = smu->ppt_funcs->dpm_set_vcn_enable(smu, enable);
if (!ret)
atomic_set(&power_gate->vcn_gated, !enable);
return ret;
}
static int smu_dpm_set_jpeg_enable(struct smu_context *smu,
bool enable)
{
struct smu_power_context *smu_power = &smu->smu_power;
struct smu_power_gate *power_gate = &smu_power->power_gate;
int ret = 0;
if (!is_vcn_enabled(smu->adev))
return 0;
if (!smu->ppt_funcs->dpm_set_jpeg_enable)
return 0;
if (atomic_read(&power_gate->jpeg_gated) ^ enable)
return 0;
ret = smu->ppt_funcs->dpm_set_jpeg_enable(smu, enable);
if (!ret)
atomic_set(&power_gate->jpeg_gated, !enable);
return ret;
}
static int smu_dpm_set_vpe_enable(struct smu_context *smu,
bool enable)
{
struct smu_power_context *smu_power = &smu->smu_power;
struct smu_power_gate *power_gate = &smu_power->power_gate;
int ret = 0;
if (!smu->ppt_funcs->dpm_set_vpe_enable)
return 0;
if (atomic_read(&power_gate->vpe_gated) ^ enable)
return 0;
ret = smu->ppt_funcs->dpm_set_vpe_enable(smu, enable);
if (!ret)
atomic_set(&power_gate->vpe_gated, !enable);
return ret;
}
static int smu_dpm_set_umsch_mm_enable(struct smu_context *smu,
bool enable)
{
struct smu_power_context *smu_power = &smu->smu_power;
struct smu_power_gate *power_gate = &smu_power->power_gate;
int ret = 0;
if (!smu->adev->enable_umsch_mm)
return 0;
if (!smu->ppt_funcs->dpm_set_umsch_mm_enable)
return 0;
if (atomic_read(&power_gate->umsch_mm_gated) ^ enable)
return 0;
ret = smu->ppt_funcs->dpm_set_umsch_mm_enable(smu, enable);
if (!ret)
atomic_set(&power_gate->umsch_mm_gated, !enable);
return ret;
}
static int smu_set_mall_enable(struct smu_context *smu)
{
int ret = 0;
if (!smu->ppt_funcs->set_mall_enable)
return 0;
ret = smu->ppt_funcs->set_mall_enable(smu);
return ret;
}
/**
* smu_dpm_set_power_gate - power gate/ungate the specific IP block
*
* @handle: smu_context pointer
* @block_type: the IP block to power gate/ungate
* @gate: to power gate if true, ungate otherwise
*
* This API uses no smu->mutex lock protection due to:
* 1. It is either called by other IP block(gfx/sdma/vcn/uvd/vce).
* This is guarded to be race condition free by the caller.
* 2. Or get called on user setting request of power_dpm_force_performance_level.
* Under this case, the smu->mutex lock protection is already enforced on
* the parent API smu_force_performance_level of the call path.
*/
static int smu_dpm_set_power_gate(void *handle,
uint32_t block_type,
bool gate)
{
struct smu_context *smu = handle;
int ret = 0;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) {
dev_WARN(smu->adev->dev,
"SMU uninitialized but power %s requested for %u!\n",
gate ? "gate" : "ungate", block_type);
return -EOPNOTSUPP;
}
switch (block_type) {
/*
* Some legacy code of amdgpu_vcn.c and vcn_v2*.c still uses
* AMD_IP_BLOCK_TYPE_UVD for VCN. So, here both of them are kept.
*/
case AMD_IP_BLOCK_TYPE_UVD:
case AMD_IP_BLOCK_TYPE_VCN:
ret = smu_dpm_set_vcn_enable(smu, !gate);
if (ret)
dev_err(smu->adev->dev, "Failed to power %s VCN!\n",
gate ? "gate" : "ungate");
break;
case AMD_IP_BLOCK_TYPE_GFX:
ret = smu_gfx_off_control(smu, gate);
if (ret)
dev_err(smu->adev->dev, "Failed to %s gfxoff!\n",
gate ? "enable" : "disable");
break;
case AMD_IP_BLOCK_TYPE_SDMA:
ret = smu_powergate_sdma(smu, gate);
if (ret)
dev_err(smu->adev->dev, "Failed to power %s SDMA!\n",
gate ? "gate" : "ungate");
break;
case AMD_IP_BLOCK_TYPE_JPEG:
ret = smu_dpm_set_jpeg_enable(smu, !gate);
if (ret)
dev_err(smu->adev->dev, "Failed to power %s JPEG!\n",
gate ? "gate" : "ungate");
break;
case AMD_IP_BLOCK_TYPE_VPE:
ret = smu_dpm_set_vpe_enable(smu, !gate);
if (ret)
dev_err(smu->adev->dev, "Failed to power %s VPE!\n",
gate ? "gate" : "ungate");
break;
default:
dev_err(smu->adev->dev, "Unsupported block type!\n");
return -EINVAL;
}
return ret;
}
/**
* smu_set_user_clk_dependencies - set user profile clock dependencies
*
* @smu: smu_context pointer
* @clk: enum smu_clk_type type
*
* Enable/Disable the clock dependency for the @clk type.
*/
static void smu_set_user_clk_dependencies(struct smu_context *smu, enum smu_clk_type clk)
{
if (smu->adev->in_suspend)
return;
if (clk == SMU_MCLK) {
smu->user_dpm_profile.clk_dependency = 0;
smu->user_dpm_profile.clk_dependency = BIT(SMU_FCLK) | BIT(SMU_SOCCLK);
} else if (clk == SMU_FCLK) {
/* MCLK takes precedence over FCLK */
if (smu->user_dpm_profile.clk_dependency == (BIT(SMU_FCLK) | BIT(SMU_SOCCLK)))
return;
smu->user_dpm_profile.clk_dependency = 0;
smu->user_dpm_profile.clk_dependency = BIT(SMU_MCLK) | BIT(SMU_SOCCLK);
} else if (clk == SMU_SOCCLK) {
/* MCLK takes precedence over SOCCLK */
if (smu->user_dpm_profile.clk_dependency == (BIT(SMU_FCLK) | BIT(SMU_SOCCLK)))
return;
smu->user_dpm_profile.clk_dependency = 0;
smu->user_dpm_profile.clk_dependency = BIT(SMU_MCLK) | BIT(SMU_FCLK);
} else
/* Add clk dependencies here, if any */
return;
}
/**
* smu_restore_dpm_user_profile - reinstate user dpm profile
*
* @smu: smu_context pointer
*
* Restore the saved user power configurations include power limit,
* clock frequencies, fan control mode and fan speed.
*/
static void smu_restore_dpm_user_profile(struct smu_context *smu)
{
struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
int ret = 0;
if (!smu->adev->in_suspend)
return;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return;
/* Enable restore flag */
smu->user_dpm_profile.flags |= SMU_DPM_USER_PROFILE_RESTORE;
/* set the user dpm power limit */
if (smu->user_dpm_profile.power_limit) {
ret = smu_set_power_limit(smu, smu->user_dpm_profile.power_limit);
if (ret)
dev_err(smu->adev->dev, "Failed to set power limit value\n");
}
/* set the user dpm clock configurations */
if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL) {
enum smu_clk_type clk_type;
for (clk_type = 0; clk_type < SMU_CLK_COUNT; clk_type++) {
/*
* Iterate over smu clk type and force the saved user clk
* configs, skip if clock dependency is enabled
*/
if (!(smu->user_dpm_profile.clk_dependency & BIT(clk_type)) &&
smu->user_dpm_profile.clk_mask[clk_type]) {
ret = smu_force_smuclk_levels(smu, clk_type,
smu->user_dpm_profile.clk_mask[clk_type]);
if (ret)
dev_err(smu->adev->dev,
"Failed to set clock type = %d\n", clk_type);
}
}
}
/* set the user dpm fan configurations */
if (smu->user_dpm_profile.fan_mode == AMD_FAN_CTRL_MANUAL ||
smu->user_dpm_profile.fan_mode == AMD_FAN_CTRL_NONE) {
ret = smu_set_fan_control_mode(smu, smu->user_dpm_profile.fan_mode);
if (ret != -EOPNOTSUPP) {
smu->user_dpm_profile.fan_speed_pwm = 0;
smu->user_dpm_profile.fan_speed_rpm = 0;
smu->user_dpm_profile.fan_mode = AMD_FAN_CTRL_AUTO;
dev_err(smu->adev->dev, "Failed to set manual fan control mode\n");
}
if (smu->user_dpm_profile.fan_speed_pwm) {
ret = smu_set_fan_speed_pwm(smu, smu->user_dpm_profile.fan_speed_pwm);
if (ret != -EOPNOTSUPP)
dev_err(smu->adev->dev, "Failed to set manual fan speed in pwm\n");
}
if (smu->user_dpm_profile.fan_speed_rpm) {
ret = smu_set_fan_speed_rpm(smu, smu->user_dpm_profile.fan_speed_rpm);
if (ret != -EOPNOTSUPP)
dev_err(smu->adev->dev, "Failed to set manual fan speed in rpm\n");
}
}
/* Restore user customized OD settings */
if (smu->user_dpm_profile.user_od) {
if (smu->ppt_funcs->restore_user_od_settings) {
ret = smu->ppt_funcs->restore_user_od_settings(smu);
if (ret)
dev_err(smu->adev->dev, "Failed to upload customized OD settings\n");
}
}
/* Disable restore flag */
smu->user_dpm_profile.flags &= ~SMU_DPM_USER_PROFILE_RESTORE;
}
static int smu_get_power_num_states(void *handle,
struct pp_states_info *state_info)
{
if (!state_info)
return -EINVAL;
/* not support power state */
memset(state_info, 0, sizeof(struct pp_states_info));
state_info->nums = 1;
state_info->states[0] = POWER_STATE_TYPE_DEFAULT;
return 0;
}
bool is_support_sw_smu(struct amdgpu_device *adev)
{
/* vega20 is 11.0.2, but it's supported via the powerplay code */
if (adev->asic_type == CHIP_VEGA20)
return false;
if (amdgpu_ip_version(adev, MP1_HWIP, 0) >= IP_VERSION(11, 0, 0))
return true;
return false;
}
bool is_support_cclk_dpm(struct amdgpu_device *adev)
{
struct smu_context *smu = adev->powerplay.pp_handle;
if (!smu_feature_is_enabled(smu, SMU_FEATURE_CCLK_DPM_BIT))
return false;
return true;
}
static int smu_sys_get_pp_table(void *handle,
char **table)
{
struct smu_context *smu = handle;
struct smu_table_context *smu_table = &smu->smu_table;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
if (!smu_table->power_play_table && !smu_table->hardcode_pptable)
return -EINVAL;
if (smu_table->hardcode_pptable)
*table = smu_table->hardcode_pptable;
else
*table = smu_table->power_play_table;
return smu_table->power_play_table_size;
}
static int smu_sys_set_pp_table(void *handle,
const char *buf,
size_t size)
{
struct smu_context *smu = handle;
struct smu_table_context *smu_table = &smu->smu_table;
ATOM_COMMON_TABLE_HEADER *header = (ATOM_COMMON_TABLE_HEADER *)buf;
int ret = 0;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
if (header->usStructureSize != size) {
dev_err(smu->adev->dev, "pp table size not matched !\n");
return -EIO;
}
if (!smu_table->hardcode_pptable) {
smu_table->hardcode_pptable = kzalloc(size, GFP_KERNEL);
if (!smu_table->hardcode_pptable)
return -ENOMEM;
}
memcpy(smu_table->hardcode_pptable, buf, size);
smu_table->power_play_table = smu_table->hardcode_pptable;
smu_table->power_play_table_size = size;
/*
* Special hw_fini action(for Navi1x, the DPMs disablement will be
* skipped) may be needed for custom pptable uploading.
*/
smu->uploading_custom_pp_table = true;
ret = smu_reset(smu);
if (ret)
dev_info(smu->adev->dev, "smu reset failed, ret = %d\n", ret);
smu->uploading_custom_pp_table = false;
return ret;
}
static int smu_get_driver_allowed_feature_mask(struct smu_context *smu)
{
struct smu_feature *feature = &smu->smu_feature;
uint32_t allowed_feature_mask[SMU_FEATURE_MAX/32];
int ret = 0;
/*
* With SCPM enabled, the allowed featuremasks setting(via
* PPSMC_MSG_SetAllowedFeaturesMaskLow/High) is not permitted.
* That means there is no way to let PMFW knows the settings below.
* Thus, we just assume all the features are allowed under
* such scenario.
*/
if (smu->adev->scpm_enabled) {
bitmap_fill(feature->allowed, SMU_FEATURE_MAX);
return 0;
}
bitmap_zero(feature->allowed, SMU_FEATURE_MAX);
ret = smu_get_allowed_feature_mask(smu, allowed_feature_mask,
SMU_FEATURE_MAX/32);
if (ret)
return ret;
bitmap_or(feature->allowed, feature->allowed,
(unsigned long *)allowed_feature_mask,
feature->feature_num);
return ret;
}
static int smu_set_funcs(struct amdgpu_device *adev)
{
struct smu_context *smu = adev->powerplay.pp_handle;
if (adev->pm.pp_feature & PP_OVERDRIVE_MASK)
smu->od_enabled = true;
switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) {
case IP_VERSION(11, 0, 0):
case IP_VERSION(11, 0, 5):
case IP_VERSION(11, 0, 9):
navi10_set_ppt_funcs(smu);
break;
case IP_VERSION(11, 0, 7):
case IP_VERSION(11, 0, 11):
case IP_VERSION(11, 0, 12):
case IP_VERSION(11, 0, 13):
sienna_cichlid_set_ppt_funcs(smu);
break;
case IP_VERSION(12, 0, 0):
case IP_VERSION(12, 0, 1):
renoir_set_ppt_funcs(smu);
break;
case IP_VERSION(11, 5, 0):
vangogh_set_ppt_funcs(smu);
break;
case IP_VERSION(13, 0, 1):
case IP_VERSION(13, 0, 3):
case IP_VERSION(13, 0, 8):
yellow_carp_set_ppt_funcs(smu);
break;
case IP_VERSION(13, 0, 4):
case IP_VERSION(13, 0, 11):
smu_v13_0_4_set_ppt_funcs(smu);
break;
case IP_VERSION(13, 0, 5):
smu_v13_0_5_set_ppt_funcs(smu);
break;
case IP_VERSION(11, 0, 8):
cyan_skillfish_set_ppt_funcs(smu);
break;
case IP_VERSION(11, 0, 2):
adev->pm.pp_feature &= ~PP_GFXOFF_MASK;
arcturus_set_ppt_funcs(smu);
/* OD is not supported on Arcturus */
smu->od_enabled = false;
break;
case IP_VERSION(13, 0, 2):
aldebaran_set_ppt_funcs(smu);
/* Enable pp_od_clk_voltage node */
smu->od_enabled = true;
break;
case IP_VERSION(13, 0, 0):
case IP_VERSION(13, 0, 10):
smu_v13_0_0_set_ppt_funcs(smu);
break;
case IP_VERSION(13, 0, 6):
case IP_VERSION(13, 0, 14):
smu_v13_0_6_set_ppt_funcs(smu);
/* Enable pp_od_clk_voltage node */
smu->od_enabled = true;
break;
case IP_VERSION(13, 0, 7):
smu_v13_0_7_set_ppt_funcs(smu);
break;
case IP_VERSION(14, 0, 0):
case IP_VERSION(14, 0, 1):
case IP_VERSION(14, 0, 4):
smu_v14_0_0_set_ppt_funcs(smu);
break;
case IP_VERSION(14, 0, 2):
case IP_VERSION(14, 0, 3):
smu_v14_0_2_set_ppt_funcs(smu);
break;
default:
return -EINVAL;
}
return 0;
}
static int smu_early_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct smu_context *smu;
int r;
smu = kzalloc(sizeof(struct smu_context), GFP_KERNEL);
if (!smu)
return -ENOMEM;
smu->adev = adev;
smu->pm_enabled = !!amdgpu_dpm;
smu->is_apu = false;
smu->smu_baco.state = SMU_BACO_STATE_NONE;
smu->smu_baco.platform_support = false;
smu->smu_baco.maco_support = false;
smu->user_dpm_profile.fan_mode = -1;
mutex_init(&smu->message_lock);
adev->powerplay.pp_handle = smu;
adev->powerplay.pp_funcs = &swsmu_pm_funcs;
r = smu_set_funcs(adev);
if (r)
return r;
return smu_init_microcode(smu);
}
static int smu_set_default_dpm_table(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
struct smu_power_context *smu_power = &smu->smu_power;
struct smu_power_gate *power_gate = &smu_power->power_gate;
int vcn_gate, jpeg_gate;
int ret = 0;
if (!smu->ppt_funcs->set_default_dpm_table)
return 0;
if (adev->pg_flags & AMD_PG_SUPPORT_VCN)
vcn_gate = atomic_read(&power_gate->vcn_gated);
if (adev->pg_flags & AMD_PG_SUPPORT_JPEG)
jpeg_gate = atomic_read(&power_gate->jpeg_gated);
if (adev->pg_flags & AMD_PG_SUPPORT_VCN) {
ret = smu_dpm_set_vcn_enable(smu, true);
if (ret)
return ret;
}
if (adev->pg_flags & AMD_PG_SUPPORT_JPEG) {
ret = smu_dpm_set_jpeg_enable(smu, true);
if (ret)
goto err_out;
}
ret = smu->ppt_funcs->set_default_dpm_table(smu);
if (ret)
dev_err(smu->adev->dev,
"Failed to setup default dpm clock tables!\n");
if (adev->pg_flags & AMD_PG_SUPPORT_JPEG)
smu_dpm_set_jpeg_enable(smu, !jpeg_gate);
err_out:
if (adev->pg_flags & AMD_PG_SUPPORT_VCN)
smu_dpm_set_vcn_enable(smu, !vcn_gate);
return ret;
}
static int smu_apply_default_config_table_settings(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
int ret = 0;
ret = smu_get_default_config_table_settings(smu,
&adev->pm.config_table);
if (ret)
return ret;
return smu_set_config_table(smu, &adev->pm.config_table);
}
static int smu_late_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct smu_context *smu = adev->powerplay.pp_handle;
int ret = 0;
smu_set_fine_grain_gfx_freq_parameters(smu);
if (!smu->pm_enabled)
return 0;
ret = smu_post_init(smu);
if (ret) {
dev_err(adev->dev, "Failed to post smu init!\n");
return ret;
}
/*
* Explicitly notify PMFW the power mode the system in. Since
* the PMFW may boot the ASIC with a different mode.
* For those supporting ACDC switch via gpio, PMFW will
* handle the switch automatically. Driver involvement
* is unnecessary.
*/
adev->pm.ac_power = power_supply_is_system_supplied() > 0;
smu_set_ac_dc(smu);
if ((amdgpu_ip_version(adev, MP1_HWIP, 0) == IP_VERSION(13, 0, 1)) ||
(amdgpu_ip_version(adev, MP1_HWIP, 0) == IP_VERSION(13, 0, 3)))
return 0;
if (!amdgpu_sriov_vf(adev) || smu->od_enabled) {
ret = smu_set_default_od_settings(smu);
if (ret) {
dev_err(adev->dev, "Failed to setup default OD settings!\n");
return ret;
}
}
ret = smu_populate_umd_state_clk(smu);
if (ret) {
dev_err(adev->dev, "Failed to populate UMD state clocks!\n");
return ret;
}
ret = smu_get_asic_power_limits(smu,
&smu->current_power_limit,
&smu->default_power_limit,
&smu->max_power_limit,
&smu->min_power_limit);
if (ret) {
dev_err(adev->dev, "Failed to get asic power limits!\n");
return ret;
}
if (!amdgpu_sriov_vf(adev))
smu_get_unique_id(smu);
smu_get_fan_parameters(smu);
smu_handle_task(smu,
smu->smu_dpm.dpm_level,
AMD_PP_TASK_COMPLETE_INIT);
ret = smu_apply_default_config_table_settings(smu);
if (ret && (ret != -EOPNOTSUPP)) {
dev_err(adev->dev, "Failed to apply default DriverSmuConfig settings!\n");
return ret;
}
smu_restore_dpm_user_profile(smu);
return 0;
}
static int smu_init_fb_allocations(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *tables = smu_table->tables;
struct smu_table *driver_table = &(smu_table->driver_table);
uint32_t max_table_size = 0;
int ret, i;
/* VRAM allocation for tool table */
if (tables[SMU_TABLE_PMSTATUSLOG].size) {
ret = amdgpu_bo_create_kernel(adev,
tables[SMU_TABLE_PMSTATUSLOG].size,
tables[SMU_TABLE_PMSTATUSLOG].align,
tables[SMU_TABLE_PMSTATUSLOG].domain,
&tables[SMU_TABLE_PMSTATUSLOG].bo,
&tables[SMU_TABLE_PMSTATUSLOG].mc_address,
&tables[SMU_TABLE_PMSTATUSLOG].cpu_addr);
if (ret) {
dev_err(adev->dev, "VRAM allocation for tool table failed!\n");
return ret;
}
}
driver_table->domain = AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT;
/* VRAM allocation for driver table */
for (i = 0; i < SMU_TABLE_COUNT; i++) {
if (tables[i].size == 0)
continue;
/* If one of the tables has VRAM domain restriction, keep it in
* VRAM
*/
if ((tables[i].domain &
(AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT)) ==
AMDGPU_GEM_DOMAIN_VRAM)
driver_table->domain = AMDGPU_GEM_DOMAIN_VRAM;
if (i == SMU_TABLE_PMSTATUSLOG)
continue;
if (max_table_size < tables[i].size)
max_table_size = tables[i].size;
}
driver_table->size = max_table_size;
driver_table->align = PAGE_SIZE;
ret = amdgpu_bo_create_kernel(adev,
driver_table->size,
driver_table->align,
driver_table->domain,
&driver_table->bo,
&driver_table->mc_address,
&driver_table->cpu_addr);
if (ret) {
dev_err(adev->dev, "VRAM allocation for driver table failed!\n");
if (tables[SMU_TABLE_PMSTATUSLOG].mc_address)
amdgpu_bo_free_kernel(&tables[SMU_TABLE_PMSTATUSLOG].bo,
&tables[SMU_TABLE_PMSTATUSLOG].mc_address,
&tables[SMU_TABLE_PMSTATUSLOG].cpu_addr);
}
return ret;
}
static int smu_fini_fb_allocations(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *tables = smu_table->tables;
struct smu_table *driver_table = &(smu_table->driver_table);
if (tables[SMU_TABLE_PMSTATUSLOG].mc_address)
amdgpu_bo_free_kernel(&tables[SMU_TABLE_PMSTATUSLOG].bo,
&tables[SMU_TABLE_PMSTATUSLOG].mc_address,
&tables[SMU_TABLE_PMSTATUSLOG].cpu_addr);
amdgpu_bo_free_kernel(&driver_table->bo,
&driver_table->mc_address,
&driver_table->cpu_addr);
return 0;
}
/**
* smu_alloc_memory_pool - allocate memory pool in the system memory
*
* @smu: amdgpu_device pointer
*
* This memory pool will be used for SMC use and msg SetSystemVirtualDramAddr
* and DramLogSetDramAddr can notify it changed.
*
* Returns 0 on success, error on failure.
*/
static int smu_alloc_memory_pool(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *memory_pool = &smu_table->memory_pool;
uint64_t pool_size = smu->pool_size;
int ret = 0;
if (pool_size == SMU_MEMORY_POOL_SIZE_ZERO)
return ret;
memory_pool->size = pool_size;
memory_pool->align = PAGE_SIZE;
memory_pool->domain = AMDGPU_GEM_DOMAIN_GTT;
switch (pool_size) {
case SMU_MEMORY_POOL_SIZE_256_MB:
case SMU_MEMORY_POOL_SIZE_512_MB:
case SMU_MEMORY_POOL_SIZE_1_GB:
case SMU_MEMORY_POOL_SIZE_2_GB:
ret = amdgpu_bo_create_kernel(adev,
memory_pool->size,
memory_pool->align,
memory_pool->domain,
&memory_pool->bo,
&memory_pool->mc_address,
&memory_pool->cpu_addr);
if (ret)
dev_err(adev->dev, "VRAM allocation for dramlog failed!\n");
break;
default:
break;
}
return ret;
}
static int smu_free_memory_pool(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *memory_pool = &smu_table->memory_pool;
if (memory_pool->size == SMU_MEMORY_POOL_SIZE_ZERO)
return 0;
amdgpu_bo_free_kernel(&memory_pool->bo,
&memory_pool->mc_address,
&memory_pool->cpu_addr);
memset(memory_pool, 0, sizeof(struct smu_table));
return 0;
}
static int smu_alloc_dummy_read_table(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *dummy_read_1_table =
&smu_table->dummy_read_1_table;
struct amdgpu_device *adev = smu->adev;
int ret = 0;
if (!dummy_read_1_table->size)
return 0;
ret = amdgpu_bo_create_kernel(adev,
dummy_read_1_table->size,
dummy_read_1_table->align,
dummy_read_1_table->domain,
&dummy_read_1_table->bo,
&dummy_read_1_table->mc_address,
&dummy_read_1_table->cpu_addr);
if (ret)
dev_err(adev->dev, "VRAM allocation for dummy read table failed!\n");
return ret;
}
static void smu_free_dummy_read_table(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *dummy_read_1_table =
&smu_table->dummy_read_1_table;
amdgpu_bo_free_kernel(&dummy_read_1_table->bo,
&dummy_read_1_table->mc_address,
&dummy_read_1_table->cpu_addr);
memset(dummy_read_1_table, 0, sizeof(struct smu_table));
}
static int smu_smc_table_sw_init(struct smu_context *smu)
{
int ret;
/**
* Create smu_table structure, and init smc tables such as
* TABLE_PPTABLE, TABLE_WATERMARKS, TABLE_SMU_METRICS, and etc.
*/
ret = smu_init_smc_tables(smu);
if (ret) {
dev_err(smu->adev->dev, "Failed to init smc tables!\n");
return ret;
}
/**
* Create smu_power_context structure, and allocate smu_dpm_context and
* context size to fill the smu_power_context data.
*/
ret = smu_init_power(smu);
if (ret) {
dev_err(smu->adev->dev, "Failed to init smu_init_power!\n");
return ret;
}
/*
* allocate vram bos to store smc table contents.
*/
ret = smu_init_fb_allocations(smu);
if (ret)
return ret;
ret = smu_alloc_memory_pool(smu);
if (ret)
return ret;
ret = smu_alloc_dummy_read_table(smu);
if (ret)
return ret;
ret = smu_i2c_init(smu);
if (ret)
return ret;
return 0;
}
static int smu_smc_table_sw_fini(struct smu_context *smu)
{
int ret;
smu_i2c_fini(smu);
smu_free_dummy_read_table(smu);
ret = smu_free_memory_pool(smu);
if (ret)
return ret;
ret = smu_fini_fb_allocations(smu);
if (ret)
return ret;
ret = smu_fini_power(smu);
if (ret) {
dev_err(smu->adev->dev, "Failed to init smu_fini_power!\n");
return ret;
}
ret = smu_fini_smc_tables(smu);
if (ret) {
dev_err(smu->adev->dev, "Failed to smu_fini_smc_tables!\n");
return ret;
}
return 0;
}
static void smu_throttling_logging_work_fn(struct work_struct *work)
{
struct smu_context *smu = container_of(work, struct smu_context,
throttling_logging_work);
smu_log_thermal_throttling(smu);
}
static void smu_interrupt_work_fn(struct work_struct *work)
{
struct smu_context *smu = container_of(work, struct smu_context,
interrupt_work);
if (smu->ppt_funcs && smu->ppt_funcs->interrupt_work)
smu->ppt_funcs->interrupt_work(smu);
}
static void smu_swctf_delayed_work_handler(struct work_struct *work)
{
struct smu_context *smu =
container_of(work, struct smu_context, swctf_delayed_work.work);
struct smu_temperature_range *range =
&smu->thermal_range;
struct amdgpu_device *adev = smu->adev;
uint32_t hotspot_tmp, size;
/*
* If the hotspot temperature is confirmed as below SW CTF setting point
* after the delay enforced, nothing will be done.
* Otherwise, a graceful shutdown will be performed to prevent further damage.
*/
if (range->software_shutdown_temp &&
smu->ppt_funcs->read_sensor &&
!smu->ppt_funcs->read_sensor(smu,
AMDGPU_PP_SENSOR_HOTSPOT_TEMP,
&hotspot_tmp,
&size) &&
hotspot_tmp / 1000 < range->software_shutdown_temp)
return;
dev_emerg(adev->dev, "ERROR: GPU over temperature range(SW CTF) detected!\n");
dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU SW CTF!\n");
orderly_poweroff(true);
}
static void smu_init_xgmi_plpd_mode(struct smu_context *smu)
{
struct smu_dpm_context *dpm_ctxt = &(smu->smu_dpm);
struct smu_dpm_policy_ctxt *policy_ctxt;
struct smu_dpm_policy *policy;
policy = smu_get_pm_policy(smu, PP_PM_POLICY_XGMI_PLPD);
if (amdgpu_ip_version(smu->adev, MP1_HWIP, 0) == IP_VERSION(11, 0, 2)) {
if (policy)
policy->current_level = XGMI_PLPD_DEFAULT;
return;
}
/* PMFW put PLPD into default policy after enabling the feature */
if (smu_feature_is_enabled(smu,
SMU_FEATURE_XGMI_PER_LINK_PWR_DWN_BIT)) {
if (policy)
policy->current_level = XGMI_PLPD_DEFAULT;
} else {
policy_ctxt = dpm_ctxt->dpm_policies;
if (policy_ctxt)
policy_ctxt->policy_mask &=
~BIT(PP_PM_POLICY_XGMI_PLPD);
}
}
static int smu_sw_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct smu_context *smu = adev->powerplay.pp_handle;
int ret;
smu->pool_size = adev->pm.smu_prv_buffer_size;
smu->smu_feature.feature_num = SMU_FEATURE_MAX;
bitmap_zero(smu->smu_feature.supported, SMU_FEATURE_MAX);
bitmap_zero(smu->smu_feature.allowed, SMU_FEATURE_MAX);
INIT_WORK(&smu->throttling_logging_work, smu_throttling_logging_work_fn);
INIT_WORK(&smu->interrupt_work, smu_interrupt_work_fn);
atomic64_set(&smu->throttle_int_counter, 0);
smu->watermarks_bitmap = 0;
smu->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
smu->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
atomic_set(&smu->smu_power.power_gate.vcn_gated, 1);
atomic_set(&smu->smu_power.power_gate.jpeg_gated, 1);
atomic_set(&smu->smu_power.power_gate.vpe_gated, 1);
atomic_set(&smu->smu_power.power_gate.umsch_mm_gated, 1);
smu->workload_mask = 1 << smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT];
smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT] = 0;
smu->workload_prority[PP_SMC_POWER_PROFILE_FULLSCREEN3D] = 1;
smu->workload_prority[PP_SMC_POWER_PROFILE_POWERSAVING] = 2;
smu->workload_prority[PP_SMC_POWER_PROFILE_VIDEO] = 3;
smu->workload_prority[PP_SMC_POWER_PROFILE_VR] = 4;
smu->workload_prority[PP_SMC_POWER_PROFILE_COMPUTE] = 5;
smu->workload_prority[PP_SMC_POWER_PROFILE_CUSTOM] = 6;
smu->workload_setting[0] = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
smu->workload_setting[1] = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
smu->workload_setting[2] = PP_SMC_POWER_PROFILE_POWERSAVING;
smu->workload_setting[3] = PP_SMC_POWER_PROFILE_VIDEO;
smu->workload_setting[4] = PP_SMC_POWER_PROFILE_VR;
smu->workload_setting[5] = PP_SMC_POWER_PROFILE_COMPUTE;
smu->workload_setting[6] = PP_SMC_POWER_PROFILE_CUSTOM;
smu->display_config = &adev->pm.pm_display_cfg;
smu->smu_dpm.dpm_level = AMD_DPM_FORCED_LEVEL_AUTO;
smu->smu_dpm.requested_dpm_level = AMD_DPM_FORCED_LEVEL_AUTO;
INIT_DELAYED_WORK(&smu->swctf_delayed_work,
smu_swctf_delayed_work_handler);
ret = smu_smc_table_sw_init(smu);
if (ret) {
dev_err(adev->dev, "Failed to sw init smc table!\n");
return ret;
}
/* get boot_values from vbios to set revision, gfxclk, and etc. */
ret = smu_get_vbios_bootup_values(smu);
if (ret) {
dev_err(adev->dev, "Failed to get VBIOS boot clock values!\n");
return ret;
}
ret = smu_init_pptable_microcode(smu);
if (ret) {
dev_err(adev->dev, "Failed to setup pptable firmware!\n");
return ret;
}
ret = smu_register_irq_handler(smu);
if (ret) {
dev_err(adev->dev, "Failed to register smc irq handler!\n");
return ret;
}
/* If there is no way to query fan control mode, fan control is not supported */
if (!smu->ppt_funcs->get_fan_control_mode)
smu->adev->pm.no_fan = true;
return 0;
}
static int smu_sw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct smu_context *smu = adev->powerplay.pp_handle;
int ret;
ret = smu_smc_table_sw_fini(smu);
if (ret) {
dev_err(adev->dev, "Failed to sw fini smc table!\n");
return ret;
}
smu_fini_microcode(smu);
return 0;
}
static int smu_get_thermal_temperature_range(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
struct smu_temperature_range *range =
&smu->thermal_range;
int ret = 0;
if (!smu->ppt_funcs->get_thermal_temperature_range)
return 0;
ret = smu->ppt_funcs->get_thermal_temperature_range(smu, range);
if (ret)
return ret;
adev->pm.dpm.thermal.min_temp = range->min;
adev->pm.dpm.thermal.max_temp = range->max;
adev->pm.dpm.thermal.max_edge_emergency_temp = range->edge_emergency_max;
adev->pm.dpm.thermal.min_hotspot_temp = range->hotspot_min;
adev->pm.dpm.thermal.max_hotspot_crit_temp = range->hotspot_crit_max;
adev->pm.dpm.thermal.max_hotspot_emergency_temp = range->hotspot_emergency_max;
adev->pm.dpm.thermal.min_mem_temp = range->mem_min;
adev->pm.dpm.thermal.max_mem_crit_temp = range->mem_crit_max;
adev->pm.dpm.thermal.max_mem_emergency_temp = range->mem_emergency_max;
return ret;
}
/**
* smu_wbrf_handle_exclusion_ranges - consume the wbrf exclusion ranges
*
* @smu: smu_context pointer
*
* Retrieve the wbrf exclusion ranges and send them to PMFW for proper handling.
* Returns 0 on success, error on failure.
*/
static int smu_wbrf_handle_exclusion_ranges(struct smu_context *smu)
{
struct wbrf_ranges_in_out wbrf_exclusion = {0};
struct freq_band_range *wifi_bands = wbrf_exclusion.band_list;
struct amdgpu_device *adev = smu->adev;
uint32_t num_of_wbrf_ranges = MAX_NUM_OF_WBRF_RANGES;
uint64_t start, end;
int ret, i, j;
ret = amd_wbrf_retrieve_freq_band(adev->dev, &wbrf_exclusion);
if (ret) {
dev_err(adev->dev, "Failed to retrieve exclusion ranges!\n");
return ret;
}
/*
* The exclusion ranges array we got might be filled with holes and duplicate
* entries. For example:
* {(2400, 2500), (0, 0), (6882, 6962), (2400, 2500), (0, 0), (6117, 6189), (0, 0)...}
* We need to do some sortups to eliminate those holes and duplicate entries.
* Expected output: {(2400, 2500), (6117, 6189), (6882, 6962), (0, 0)...}
*/
for (i = 0; i < num_of_wbrf_ranges; i++) {
start = wifi_bands[i].start;
end = wifi_bands[i].end;
/* get the last valid entry to fill the intermediate hole */
if (!start && !end) {
for (j = num_of_wbrf_ranges - 1; j > i; j--)
if (wifi_bands[j].start && wifi_bands[j].end)
break;
/* no valid entry left */
if (j <= i)
break;
start = wifi_bands[i].start = wifi_bands[j].start;
end = wifi_bands[i].end = wifi_bands[j].end;
wifi_bands[j].start = 0;
wifi_bands[j].end = 0;
num_of_wbrf_ranges = j;
}
/* eliminate duplicate entries */
for (j = i + 1; j < num_of_wbrf_ranges; j++) {
if ((wifi_bands[j].start == start) && (wifi_bands[j].end == end)) {
wifi_bands[j].start = 0;
wifi_bands[j].end = 0;
}
}
}
/* Send the sorted wifi_bands to PMFW */
ret = smu_set_wbrf_exclusion_ranges(smu, wifi_bands);
/* Try to set the wifi_bands again */
if (unlikely(ret == -EBUSY)) {
mdelay(5);
ret = smu_set_wbrf_exclusion_ranges(smu, wifi_bands);
}
return ret;
}
/**
* smu_wbrf_event_handler - handle notify events
*
* @nb: notifier block
* @action: event type
* @_arg: event data
*
* Calls relevant amdgpu function in response to wbrf event
* notification from kernel.
*/
static int smu_wbrf_event_handler(struct notifier_block *nb,
unsigned long action, void *_arg)
{
struct smu_context *smu = container_of(nb, struct smu_context, wbrf_notifier);
switch (action) {
case WBRF_CHANGED:
schedule_delayed_work(&smu->wbrf_delayed_work,
msecs_to_jiffies(SMU_WBRF_EVENT_HANDLING_PACE));
break;
default:
return NOTIFY_DONE;
}
return NOTIFY_OK;
}
/**
* smu_wbrf_delayed_work_handler - callback on delayed work timer expired
*
* @work: struct work_struct pointer
*
* Flood is over and driver will consume the latest exclusion ranges.
*/
static void smu_wbrf_delayed_work_handler(struct work_struct *work)
{
struct smu_context *smu = container_of(work, struct smu_context, wbrf_delayed_work.work);
smu_wbrf_handle_exclusion_ranges(smu);
}
/**
* smu_wbrf_support_check - check wbrf support
*
* @smu: smu_context pointer
*
* Verifies the ACPI interface whether wbrf is supported.
*/
static void smu_wbrf_support_check(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
smu->wbrf_supported = smu_is_asic_wbrf_supported(smu) && amdgpu_wbrf &&
acpi_amd_wbrf_supported_consumer(adev->dev);
if (smu->wbrf_supported)
dev_info(adev->dev, "RF interference mitigation is supported\n");
}
/**
* smu_wbrf_init - init driver wbrf support
*
* @smu: smu_context pointer
*
* Verifies the AMD ACPI interfaces and registers with the wbrf
* notifier chain if wbrf feature is supported.
* Returns 0 on success, error on failure.
*/
static int smu_wbrf_init(struct smu_context *smu)
{
int ret;
if (!smu->wbrf_supported)
return 0;
INIT_DELAYED_WORK(&smu->wbrf_delayed_work, smu_wbrf_delayed_work_handler);
smu->wbrf_notifier.notifier_call = smu_wbrf_event_handler;
ret = amd_wbrf_register_notifier(&smu->wbrf_notifier);
if (ret)
return ret;
/*
* Some wifiband exclusion ranges may be already there
* before our driver loaded. To make sure our driver
* is awared of those exclusion ranges.
*/
schedule_delayed_work(&smu->wbrf_delayed_work,
msecs_to_jiffies(SMU_WBRF_EVENT_HANDLING_PACE));
return 0;
}
/**
* smu_wbrf_fini - tear down driver wbrf support
*
* @smu: smu_context pointer
*
* Unregisters with the wbrf notifier chain.
*/
static void smu_wbrf_fini(struct smu_context *smu)
{
if (!smu->wbrf_supported)
return;
amd_wbrf_unregister_notifier(&smu->wbrf_notifier);
cancel_delayed_work_sync(&smu->wbrf_delayed_work);
}
static int smu_smc_hw_setup(struct smu_context *smu)
{
struct smu_feature *feature = &smu->smu_feature;
struct amdgpu_device *adev = smu->adev;
uint8_t pcie_gen = 0, pcie_width = 0;
uint64_t features_supported;
int ret = 0;
switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) {
case IP_VERSION(11, 0, 7):
case IP_VERSION(11, 0, 11):
case IP_VERSION(11, 5, 0):
case IP_VERSION(11, 0, 12):
if (adev->in_suspend && smu_is_dpm_running(smu)) {
dev_info(adev->dev, "dpm has been enabled\n");
ret = smu_system_features_control(smu, true);
if (ret)
dev_err(adev->dev, "Failed system features control!\n");
return ret;
}
break;
default:
break;
}
ret = smu_init_display_count(smu, 0);
if (ret) {
dev_info(adev->dev, "Failed to pre-set display count as 0!\n");
return ret;
}
ret = smu_set_driver_table_location(smu);
if (ret) {
dev_err(adev->dev, "Failed to SetDriverDramAddr!\n");
return ret;
}
/*
* Set PMSTATUSLOG table bo address with SetToolsDramAddr MSG for tools.
*/
ret = smu_set_tool_table_location(smu);
if (ret) {
dev_err(adev->dev, "Failed to SetToolsDramAddr!\n");
return ret;
}
/*
* Use msg SetSystemVirtualDramAddr and DramLogSetDramAddr can notify
* pool location.
*/
ret = smu_notify_memory_pool_location(smu);
if (ret) {
dev_err(adev->dev, "Failed to SetDramLogDramAddr!\n");
return ret;
}
/*
* It is assumed the pptable used before runpm is same as
* the one used afterwards. Thus, we can reuse the stored
* copy and do not need to resetup the pptable again.
*/
if (!adev->in_runpm) {
ret = smu_setup_pptable(smu);
if (ret) {
dev_err(adev->dev, "Failed to setup pptable!\n");
return ret;
}
}
/* smu_dump_pptable(smu); */
/*
* With SCPM enabled, PSP is responsible for the PPTable transferring
* (to SMU). Driver involvement is not needed and permitted.
*/
if (!adev->scpm_enabled) {
/*
* Copy pptable bo in the vram to smc with SMU MSGs such as
* SetDriverDramAddr and TransferTableDram2Smu.
*/
ret = smu_write_pptable(smu);
if (ret) {
dev_err(adev->dev, "Failed to transfer pptable to SMC!\n");
return ret;
}
}
/* issue Run*Btc msg */
ret = smu_run_btc(smu);
if (ret)
return ret;
/* Enable UclkShadow on wbrf supported */
if (smu->wbrf_supported) {
ret = smu_enable_uclk_shadow(smu, true);
if (ret) {
dev_err(adev->dev, "Failed to enable UclkShadow feature to support wbrf!\n");
return ret;
}
}
/*
* With SCPM enabled, these actions(and relevant messages) are
* not needed and permitted.
*/
if (!adev->scpm_enabled) {
ret = smu_feature_set_allowed_mask(smu);
if (ret) {
dev_err(adev->dev, "Failed to set driver allowed features mask!\n");
return ret;
}
}
ret = smu_system_features_control(smu, true);
if (ret) {
dev_err(adev->dev, "Failed to enable requested dpm features!\n");
return ret;
}
smu_init_xgmi_plpd_mode(smu);
ret = smu_feature_get_enabled_mask(smu, &features_supported);
if (ret) {
dev_err(adev->dev, "Failed to retrieve supported dpm features!\n");
return ret;
}
bitmap_copy(feature->supported,
(unsigned long *)&features_supported,
feature->feature_num);
if (!smu_is_dpm_running(smu))
dev_info(adev->dev, "dpm has been disabled\n");
/*
* Set initialized values (get from vbios) to dpm tables context such as
* gfxclk, memclk, dcefclk, and etc. And enable the DPM feature for each
* type of clks.
*/
ret = smu_set_default_dpm_table(smu);
if (ret) {
dev_err(adev->dev, "Failed to setup default dpm clock tables!\n");
return ret;
}
if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4)
pcie_gen = 3;
else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
pcie_gen = 2;
else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2)
pcie_gen = 1;
else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1)
pcie_gen = 0;
/* Bit 31:16: LCLK DPM level. 0 is DPM0, and 1 is DPM1
* Bit 15:8: PCIE GEN, 0 to 3 corresponds to GEN1 to GEN4
* Bit 7:0: PCIE lane width, 1 to 7 corresponds is x1 to x32
*/
if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16)
pcie_width = 6;
else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12)
pcie_width = 5;
else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8)
pcie_width = 4;
else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4)
pcie_width = 3;
else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2)
pcie_width = 2;
else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1)
pcie_width = 1;
ret = smu_update_pcie_parameters(smu, pcie_gen, pcie_width);
if (ret) {
dev_err(adev->dev, "Attempt to override pcie params failed!\n");
return ret;
}
ret = smu_get_thermal_temperature_range(smu);
if (ret) {
dev_err(adev->dev, "Failed to get thermal temperature ranges!\n");
return ret;
}
ret = smu_enable_thermal_alert(smu);
if (ret) {
dev_err(adev->dev, "Failed to enable thermal alert!\n");
return ret;
}
ret = smu_notify_display_change(smu);
if (ret) {
dev_err(adev->dev, "Failed to notify display change!\n");
return ret;
}
/*
* Set min deep sleep dce fclk with bootup value from vbios via
* SetMinDeepSleepDcefclk MSG.
*/
ret = smu_set_min_dcef_deep_sleep(smu,
smu->smu_table.boot_values.dcefclk / 100);
if (ret) {
dev_err(adev->dev, "Error setting min deepsleep dcefclk\n");
return ret;
}
/* Init wbrf support. Properly setup the notifier */
ret = smu_wbrf_init(smu);
if (ret)
dev_err(adev->dev, "Error during wbrf init call\n");
return ret;
}
static int smu_start_smc_engine(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
int ret = 0;
smu->smc_fw_state = SMU_FW_INIT;
if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
if (amdgpu_ip_version(adev, MP1_HWIP, 0) < IP_VERSION(11, 0, 0)) {
if (smu->ppt_funcs->load_microcode) {
ret = smu->ppt_funcs->load_microcode(smu);
if (ret)
return ret;
}
}
}
if (smu->ppt_funcs->check_fw_status) {
ret = smu->ppt_funcs->check_fw_status(smu);
if (ret) {
dev_err(adev->dev, "SMC is not ready\n");
return ret;
}
}
/*
* Send msg GetDriverIfVersion to check if the return value is equal
* with DRIVER_IF_VERSION of smc header.
*/
ret = smu_check_fw_version(smu);
if (ret)
return ret;
return ret;
}
static int smu_hw_init(void *handle)
{
int ret;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct smu_context *smu = adev->powerplay.pp_handle;
if (amdgpu_sriov_vf(adev) && !amdgpu_sriov_is_pp_one_vf(adev)) {
smu->pm_enabled = false;
return 0;
}
ret = smu_start_smc_engine(smu);
if (ret) {
dev_err(adev->dev, "SMC engine is not correctly up!\n");
return ret;
}
/*
* Check whether wbrf is supported. This needs to be done
* before SMU setup starts since part of SMU configuration
* relies on this.
*/
smu_wbrf_support_check(smu);
if (smu->is_apu) {
ret = smu_set_gfx_imu_enable(smu);
if (ret)
return ret;
smu_dpm_set_vcn_enable(smu, true);
smu_dpm_set_jpeg_enable(smu, true);
smu_dpm_set_vpe_enable(smu, true);
smu_dpm_set_umsch_mm_enable(smu, true);
smu_set_mall_enable(smu);
smu_set_gfx_cgpg(smu, true);
}
if (!smu->pm_enabled)
return 0;
ret = smu_get_driver_allowed_feature_mask(smu);
if (ret)
return ret;
ret = smu_smc_hw_setup(smu);
if (ret) {
dev_err(adev->dev, "Failed to setup smc hw!\n");
return ret;
}
/*
* Move maximum sustainable clock retrieving here considering
* 1. It is not needed on resume(from S3).
* 2. DAL settings come between .hw_init and .late_init of SMU.
* And DAL needs to know the maximum sustainable clocks. Thus
* it cannot be put in .late_init().
*/
ret = smu_init_max_sustainable_clocks(smu);
if (ret) {
dev_err(adev->dev, "Failed to init max sustainable clocks!\n");
return ret;
}
adev->pm.dpm_enabled = true;
dev_info(adev->dev, "SMU is initialized successfully!\n");
return 0;
}
static int smu_disable_dpms(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
int ret = 0;
bool use_baco = !smu->is_apu &&
((amdgpu_in_reset(adev) &&
(amdgpu_asic_reset_method(adev) == AMD_RESET_METHOD_BACO)) ||
((adev->in_runpm || adev->in_s4) && amdgpu_asic_supports_baco(adev)));
/*
* For SMU 13.0.0 and 13.0.7, PMFW will handle the DPM features(disablement or others)
* properly on suspend/reset/unload. Driver involvement may cause some unexpected issues.
*/
switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) {
case IP_VERSION(13, 0, 0):
case IP_VERSION(13, 0, 7):
case IP_VERSION(13, 0, 10):
case IP_VERSION(14, 0, 2):
case IP_VERSION(14, 0, 3):
return 0;
default:
break;
}
/*
* For custom pptable uploading, skip the DPM features
* disable process on Navi1x ASICs.
* - As the gfx related features are under control of
* RLC on those ASICs. RLC reinitialization will be
* needed to reenable them. That will cost much more
* efforts.
*
* - SMU firmware can handle the DPM reenablement
* properly.
*/
if (smu->uploading_custom_pp_table) {
switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) {
case IP_VERSION(11, 0, 0):
case IP_VERSION(11, 0, 5):
case IP_VERSION(11, 0, 9):
case IP_VERSION(11, 0, 7):
case IP_VERSION(11, 0, 11):
case IP_VERSION(11, 5, 0):
case IP_VERSION(11, 0, 12):
case IP_VERSION(11, 0, 13):
return 0;
default:
break;
}
}
/*
* For Sienna_Cichlid, PMFW will handle the features disablement properly
* on BACO in. Driver involvement is unnecessary.
*/
if (use_baco) {
switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) {
case IP_VERSION(11, 0, 7):
case IP_VERSION(11, 0, 0):
case IP_VERSION(11, 0, 5):
case IP_VERSION(11, 0, 9):
case IP_VERSION(13, 0, 7):
return 0;
default:
break;
}
}
/*
* For GFX11 and subsequent APUs, PMFW will handle the features disablement properly
* for gpu reset and S0i3 cases. Driver involvement is unnecessary.
*/
if (IP_VERSION_MAJ(amdgpu_ip_version(adev, GC_HWIP, 0)) >= 11 &&
smu->is_apu && (amdgpu_in_reset(adev) || adev->in_s0ix))
return 0;
/*
* For gpu reset, runpm and hibernation through BACO,
* BACO feature has to be kept enabled.
*/
if (use_baco && smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT)) {
ret = smu_disable_all_features_with_exception(smu,
SMU_FEATURE_BACO_BIT);
if (ret)
dev_err(adev->dev, "Failed to disable smu features except BACO.\n");
} else {
/* DisableAllSmuFeatures message is not permitted with SCPM enabled */
if (!adev->scpm_enabled) {
ret = smu_system_features_control(smu, false);
if (ret)
dev_err(adev->dev, "Failed to disable smu features.\n");
}
}
/* Notify SMU RLC is going to be off, stop RLC and SMU interaction.
* otherwise SMU will hang while interacting with RLC if RLC is halted
* this is a WA for Vangogh asic which fix the SMU hang issue.
*/
ret = smu_notify_rlc_state(smu, false);
if (ret) {
dev_err(adev->dev, "Fail to notify rlc status!\n");
return ret;
}
if (amdgpu_ip_version(adev, GC_HWIP, 0) >= IP_VERSION(9, 4, 2) &&
!((adev->flags & AMD_IS_APU) && adev->gfx.imu.funcs) &&
!amdgpu_sriov_vf(adev) && adev->gfx.rlc.funcs->stop)
adev->gfx.rlc.funcs->stop(adev);
return ret;
}
static int smu_smc_hw_cleanup(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
int ret = 0;
smu_wbrf_fini(smu);
cancel_work_sync(&smu->throttling_logging_work);
cancel_work_sync(&smu->interrupt_work);
ret = smu_disable_thermal_alert(smu);
if (ret) {
dev_err(adev->dev, "Fail to disable thermal alert!\n");
return ret;
}
cancel_delayed_work_sync(&smu->swctf_delayed_work);
ret = smu_disable_dpms(smu);
if (ret) {
dev_err(adev->dev, "Fail to disable dpm features!\n");
return ret;
}
return 0;
}
static int smu_reset_mp1_state(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
int ret = 0;
if ((!adev->in_runpm) && (!adev->in_suspend) &&
(!amdgpu_in_reset(adev)) && amdgpu_ip_version(adev, MP1_HWIP, 0) ==
IP_VERSION(13, 0, 10) &&
!amdgpu_device_has_display_hardware(adev))
ret = smu_set_mp1_state(smu, PP_MP1_STATE_UNLOAD);
return ret;
}
static int smu_hw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct smu_context *smu = adev->powerplay.pp_handle;
int ret;
if (amdgpu_sriov_vf(adev) && !amdgpu_sriov_is_pp_one_vf(adev))
return 0;
smu_dpm_set_vcn_enable(smu, false);
smu_dpm_set_jpeg_enable(smu, false);
smu_dpm_set_vpe_enable(smu, false);
smu_dpm_set_umsch_mm_enable(smu, false);
adev->vcn.cur_state = AMD_PG_STATE_GATE;
adev->jpeg.cur_state = AMD_PG_STATE_GATE;
if (!smu->pm_enabled)
return 0;
adev->pm.dpm_enabled = false;
ret = smu_smc_hw_cleanup(smu);
if (ret)
return ret;
ret = smu_reset_mp1_state(smu);
if (ret)
return ret;
return 0;
}
static void smu_late_fini(void *handle)
{
struct amdgpu_device *adev = handle;
struct smu_context *smu = adev->powerplay.pp_handle;
kfree(smu);
}
static int smu_reset(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
int ret;
ret = smu_hw_fini(adev);
if (ret)
return ret;
ret = smu_hw_init(adev);
if (ret)
return ret;
ret = smu_late_init(adev);
if (ret)
return ret;
return 0;
}
static int smu_suspend(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct smu_context *smu = adev->powerplay.pp_handle;
int ret;
uint64_t count;
if (amdgpu_sriov_vf(adev) && !amdgpu_sriov_is_pp_one_vf(adev))
return 0;
if (!smu->pm_enabled)
return 0;
adev->pm.dpm_enabled = false;
ret = smu_smc_hw_cleanup(smu);
if (ret)
return ret;
smu->watermarks_bitmap &= ~(WATERMARKS_LOADED);
smu_set_gfx_cgpg(smu, false);
/*
* pwfw resets entrycount when device is suspended, so we save the
* last value to be used when we resume to keep it consistent
*/
ret = smu_get_entrycount_gfxoff(smu, &count);
if (!ret)
adev->gfx.gfx_off_entrycount = count;
return 0;
}
static int smu_resume(void *handle)
{
int ret;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct smu_context *smu = adev->powerplay.pp_handle;
if (amdgpu_sriov_vf(adev)&& !amdgpu_sriov_is_pp_one_vf(adev))
return 0;
if (!smu->pm_enabled)
return 0;
dev_info(adev->dev, "SMU is resuming...\n");
ret = smu_start_smc_engine(smu);
if (ret) {
dev_err(adev->dev, "SMC engine is not correctly up!\n");
return ret;
}
ret = smu_smc_hw_setup(smu);
if (ret) {
dev_err(adev->dev, "Failed to setup smc hw!\n");
return ret;
}
ret = smu_set_gfx_imu_enable(smu);
if (ret)
return ret;
smu_set_gfx_cgpg(smu, true);
smu->disable_uclk_switch = 0;
adev->pm.dpm_enabled = true;
dev_info(adev->dev, "SMU is resumed successfully!\n");
return 0;
}
static int smu_display_configuration_change(void *handle,
const struct amd_pp_display_configuration *display_config)
{
struct smu_context *smu = handle;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
if (!display_config)
return -EINVAL;
smu_set_min_dcef_deep_sleep(smu,
display_config->min_dcef_deep_sleep_set_clk / 100);
return 0;
}
static int smu_set_clockgating_state(void *handle,
enum amd_clockgating_state state)
{
return 0;
}
static int smu_set_powergating_state(void *handle,
enum amd_powergating_state state)
{
return 0;
}
static int smu_enable_umd_pstate(void *handle,
enum amd_dpm_forced_level *level)
{
uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
struct smu_context *smu = (struct smu_context*)(handle);
struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
if (!smu->is_apu && !smu_dpm_ctx->dpm_context)
return -EINVAL;
if (!(smu_dpm_ctx->dpm_level & profile_mode_mask)) {
/* enter umd pstate, save current level, disable gfx cg*/
if (*level & profile_mode_mask) {
smu_dpm_ctx->saved_dpm_level = smu_dpm_ctx->dpm_level;
smu_gpo_control(smu, false);
smu_gfx_ulv_control(smu, false);
smu_deep_sleep_control(smu, false);
amdgpu_asic_update_umd_stable_pstate(smu->adev, true);
}
} else {
/* exit umd pstate, restore level, enable gfx cg*/
if (!(*level & profile_mode_mask)) {
if (*level == AMD_DPM_FORCED_LEVEL_PROFILE_EXIT)
*level = smu_dpm_ctx->saved_dpm_level;
amdgpu_asic_update_umd_stable_pstate(smu->adev, false);
smu_deep_sleep_control(smu, true);
smu_gfx_ulv_control(smu, true);
smu_gpo_control(smu, true);
}
}
return 0;
}
static int smu_bump_power_profile_mode(struct smu_context *smu,
long *param,
uint32_t param_size)
{
int ret = 0;
if (smu->ppt_funcs->set_power_profile_mode)
ret = smu->ppt_funcs->set_power_profile_mode(smu, param, param_size);
return ret;
}
static int smu_adjust_power_state_dynamic(struct smu_context *smu,
enum amd_dpm_forced_level level,
bool skip_display_settings,
bool force_update)
{
int ret = 0;
int index = 0;
long workload[1];
struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
if (!skip_display_settings) {
ret = smu_display_config_changed(smu);
if (ret) {
dev_err(smu->adev->dev, "Failed to change display config!");
return ret;
}
}
ret = smu_apply_clocks_adjust_rules(smu);
if (ret) {
dev_err(smu->adev->dev, "Failed to apply clocks adjust rules!");
return ret;
}
if (!skip_display_settings) {
ret = smu_notify_smc_display_config(smu);
if (ret) {
dev_err(smu->adev->dev, "Failed to notify smc display config!");
return ret;
}
}
if (force_update || smu_dpm_ctx->dpm_level != level) {
ret = smu_asic_set_performance_level(smu, level);
if (ret) {
dev_err(smu->adev->dev, "Failed to set performance level!");
return ret;
}
/* update the saved copy */
smu_dpm_ctx->dpm_level = level;
}
if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM) {
index = fls(smu->workload_mask);
index = index > 0 && index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
workload[0] = smu->workload_setting[index];
if (force_update || smu->power_profile_mode != workload[0])
smu_bump_power_profile_mode(smu, workload, 0);
}
return ret;
}
static int smu_handle_task(struct smu_context *smu,
enum amd_dpm_forced_level level,
enum amd_pp_task task_id)
{
int ret = 0;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
switch (task_id) {
case AMD_PP_TASK_DISPLAY_CONFIG_CHANGE:
ret = smu_pre_display_config_changed(smu);
if (ret)
return ret;
ret = smu_adjust_power_state_dynamic(smu, level, false, false);
break;
case AMD_PP_TASK_COMPLETE_INIT:
ret = smu_adjust_power_state_dynamic(smu, level, true, true);
break;
case AMD_PP_TASK_READJUST_POWER_STATE:
ret = smu_adjust_power_state_dynamic(smu, level, true, false);
break;
default:
break;
}
return ret;
}
static int smu_handle_dpm_task(void *handle,
enum amd_pp_task task_id,
enum amd_pm_state_type *user_state)
{
struct smu_context *smu = handle;
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
return smu_handle_task(smu, smu_dpm->dpm_level, task_id);
}
static int smu_switch_power_profile(void *handle,
enum PP_SMC_POWER_PROFILE type,
bool en)
{
struct smu_context *smu = handle;
struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
long workload[1];
uint32_t index;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
if (!(type < PP_SMC_POWER_PROFILE_CUSTOM))
return -EINVAL;
if (!en) {
smu->workload_mask &= ~(1 << smu->workload_prority[type]);
index = fls(smu->workload_mask);
index = index > 0 && index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
workload[0] = smu->workload_setting[index];
} else {
smu->workload_mask |= (1 << smu->workload_prority[type]);
index = fls(smu->workload_mask);
index = index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
workload[0] = smu->workload_setting[index];
}
if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM)
smu_bump_power_profile_mode(smu, workload, 0);
return 0;
}
static enum amd_dpm_forced_level smu_get_performance_level(void *handle)
{
struct smu_context *smu = handle;
struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
if (!smu->is_apu && !smu_dpm_ctx->dpm_context)
return -EINVAL;
return smu_dpm_ctx->dpm_level;
}
static int smu_force_performance_level(void *handle,
enum amd_dpm_forced_level level)
{
struct smu_context *smu = handle;
struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
int ret = 0;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
if (!smu->is_apu && !smu_dpm_ctx->dpm_context)
return -EINVAL;
ret = smu_enable_umd_pstate(smu, &level);
if (ret)
return ret;
ret = smu_handle_task(smu, level,
AMD_PP_TASK_READJUST_POWER_STATE);
/* reset user dpm clock state */
if (!ret && smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) {
memset(smu->user_dpm_profile.clk_mask, 0, sizeof(smu->user_dpm_profile.clk_mask));
smu->user_dpm_profile.clk_dependency = 0;
}
return ret;
}
static int smu_set_display_count(void *handle, uint32_t count)
{
struct smu_context *smu = handle;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
return smu_init_display_count(smu, count);
}
static int smu_force_smuclk_levels(struct smu_context *smu,
enum smu_clk_type clk_type,
uint32_t mask)
{
struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
int ret = 0;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) {
dev_dbg(smu->adev->dev, "force clock level is for dpm manual mode only.\n");
return -EINVAL;
}
if (smu->ppt_funcs && smu->ppt_funcs->force_clk_levels) {
ret = smu->ppt_funcs->force_clk_levels(smu, clk_type, mask);
if (!ret && !(smu->user_dpm_profile.flags & SMU_DPM_USER_PROFILE_RESTORE)) {
smu->user_dpm_profile.clk_mask[clk_type] = mask;
smu_set_user_clk_dependencies(smu, clk_type);
}
}
return ret;
}
static int smu_force_ppclk_levels(void *handle,
enum pp_clock_type type,
uint32_t mask)
{
struct smu_context *smu = handle;
enum smu_clk_type clk_type;
switch (type) {
case PP_SCLK:
clk_type = SMU_SCLK; break;
case PP_MCLK:
clk_type = SMU_MCLK; break;
case PP_PCIE:
clk_type = SMU_PCIE; break;
case PP_SOCCLK:
clk_type = SMU_SOCCLK; break;
case PP_FCLK:
clk_type = SMU_FCLK; break;
case PP_DCEFCLK:
clk_type = SMU_DCEFCLK; break;
case PP_VCLK:
clk_type = SMU_VCLK; break;
case PP_VCLK1:
clk_type = SMU_VCLK1; break;
case PP_DCLK:
clk_type = SMU_DCLK; break;
case PP_DCLK1:
clk_type = SMU_DCLK1; break;
case OD_SCLK:
clk_type = SMU_OD_SCLK; break;
case OD_MCLK:
clk_type = SMU_OD_MCLK; break;
case OD_VDDC_CURVE:
clk_type = SMU_OD_VDDC_CURVE; break;
case OD_RANGE:
clk_type = SMU_OD_RANGE; break;
default:
return -EINVAL;
}
return smu_force_smuclk_levels(smu, clk_type, mask);
}
/*
* On system suspending or resetting, the dpm_enabled
* flag will be cleared. So that those SMU services which
* are not supported will be gated.
* However, the mp1 state setting should still be granted
* even if the dpm_enabled cleared.
*/
static int smu_set_mp1_state(void *handle,
enum pp_mp1_state mp1_state)
{
struct smu_context *smu = handle;
int ret = 0;
if (!smu->pm_enabled)
return -EOPNOTSUPP;
if (smu->ppt_funcs &&
smu->ppt_funcs->set_mp1_state)
ret = smu->ppt_funcs->set_mp1_state(smu, mp1_state);
return ret;
}
static int smu_set_df_cstate(void *handle,
enum pp_df_cstate state)
{
struct smu_context *smu = handle;
int ret = 0;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
if (!smu->ppt_funcs || !smu->ppt_funcs->set_df_cstate)
return 0;
ret = smu->ppt_funcs->set_df_cstate(smu, state);
if (ret)
dev_err(smu->adev->dev, "[SetDfCstate] failed!\n");
return ret;
}
int smu_write_watermarks_table(struct smu_context *smu)
{
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
return smu_set_watermarks_table(smu, NULL);
}
static int smu_set_watermarks_for_clock_ranges(void *handle,
struct pp_smu_wm_range_sets *clock_ranges)
{
struct smu_context *smu = handle;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
if (smu->disable_watermark)
return 0;
return smu_set_watermarks_table(smu, clock_ranges);
}
int smu_set_ac_dc(struct smu_context *smu)
{
int ret = 0;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
/* controlled by firmware */
if (smu->dc_controlled_by_gpio)
return 0;
ret = smu_set_power_source(smu,
smu->adev->pm.ac_power ? SMU_POWER_SOURCE_AC :
SMU_POWER_SOURCE_DC);
if (ret)
dev_err(smu->adev->dev, "Failed to switch to %s mode!\n",
smu->adev->pm.ac_power ? "AC" : "DC");
return ret;
}
const struct amd_ip_funcs smu_ip_funcs = {
.name = "smu",
.early_init = smu_early_init,
.late_init = smu_late_init,
.sw_init = smu_sw_init,
.sw_fini = smu_sw_fini,
.hw_init = smu_hw_init,
.hw_fini = smu_hw_fini,
.late_fini = smu_late_fini,
.suspend = smu_suspend,
.resume = smu_resume,
.is_idle = NULL,
.check_soft_reset = NULL,
.wait_for_idle = NULL,
.soft_reset = NULL,
.set_clockgating_state = smu_set_clockgating_state,
.set_powergating_state = smu_set_powergating_state,
};
const struct amdgpu_ip_block_version smu_v11_0_ip_block = {
.type = AMD_IP_BLOCK_TYPE_SMC,
.major = 11,
.minor = 0,
.rev = 0,
.funcs = &smu_ip_funcs,
};
const struct amdgpu_ip_block_version smu_v12_0_ip_block = {
.type = AMD_IP_BLOCK_TYPE_SMC,
.major = 12,
.minor = 0,
.rev = 0,
.funcs = &smu_ip_funcs,
};
const struct amdgpu_ip_block_version smu_v13_0_ip_block = {
.type = AMD_IP_BLOCK_TYPE_SMC,
.major = 13,
.minor = 0,
.rev = 0,
.funcs = &smu_ip_funcs,
};
const struct amdgpu_ip_block_version smu_v14_0_ip_block = {
.type = AMD_IP_BLOCK_TYPE_SMC,
.major = 14,
.minor = 0,
.rev = 0,
.funcs = &smu_ip_funcs,
};
static int smu_load_microcode(void *handle)
{
struct smu_context *smu = handle;
struct amdgpu_device *adev = smu->adev;
int ret = 0;
if (!smu->pm_enabled)
return -EOPNOTSUPP;
/* This should be used for non PSP loading */
if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP)
return 0;
if (smu->ppt_funcs->load_microcode) {
ret = smu->ppt_funcs->load_microcode(smu);
if (ret) {
dev_err(adev->dev, "Load microcode failed\n");
return ret;
}
}
if (smu->ppt_funcs->check_fw_status) {
ret = smu->ppt_funcs->check_fw_status(smu);
if (ret) {
dev_err(adev->dev, "SMC is not ready\n");
return ret;
}
}
return ret;
}
static int smu_set_gfx_cgpg(struct smu_context *smu, bool enabled)
{
int ret = 0;
if (smu->ppt_funcs->set_gfx_cgpg)
ret = smu->ppt_funcs->set_gfx_cgpg(smu, enabled);
return ret;
}
static int smu_set_fan_speed_rpm(void *handle, uint32_t speed)
{
struct smu_context *smu = handle;
int ret = 0;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
if (!smu->ppt_funcs->set_fan_speed_rpm)
return -EOPNOTSUPP;
if (speed == U32_MAX)
return -EINVAL;
ret = smu->ppt_funcs->set_fan_speed_rpm(smu, speed);
if (!ret && !(smu->user_dpm_profile.flags & SMU_DPM_USER_PROFILE_RESTORE)) {
smu->user_dpm_profile.flags |= SMU_CUSTOM_FAN_SPEED_RPM;
smu->user_dpm_profile.fan_speed_rpm = speed;
/* Override custom PWM setting as they cannot co-exist */
smu->user_dpm_profile.flags &= ~SMU_CUSTOM_FAN_SPEED_PWM;
smu->user_dpm_profile.fan_speed_pwm = 0;
}
return ret;
}
/**
* smu_get_power_limit - Request one of the SMU Power Limits
*
* @handle: pointer to smu context
* @limit: requested limit is written back to this variable
* @pp_limit_level: &pp_power_limit_level which limit of the power to return
* @pp_power_type: &pp_power_type type of power
* Return: 0 on success, <0 on error
*
*/
int smu_get_power_limit(void *handle,
uint32_t *limit,
enum pp_power_limit_level pp_limit_level,
enum pp_power_type pp_power_type)
{
struct smu_context *smu = handle;
struct amdgpu_device *adev = smu->adev;
enum smu_ppt_limit_level limit_level;
uint32_t limit_type;
int ret = 0;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
switch (pp_power_type) {
case PP_PWR_TYPE_SUSTAINED:
limit_type = SMU_DEFAULT_PPT_LIMIT;
break;
case PP_PWR_TYPE_FAST:
limit_type = SMU_FAST_PPT_LIMIT;
break;
default:
return -EOPNOTSUPP;
}
switch (pp_limit_level) {
case PP_PWR_LIMIT_CURRENT:
limit_level = SMU_PPT_LIMIT_CURRENT;
break;
case PP_PWR_LIMIT_DEFAULT:
limit_level = SMU_PPT_LIMIT_DEFAULT;
break;
case PP_PWR_LIMIT_MAX:
limit_level = SMU_PPT_LIMIT_MAX;
break;
case PP_PWR_LIMIT_MIN:
limit_level = SMU_PPT_LIMIT_MIN;
break;
default:
return -EOPNOTSUPP;
}
if (limit_type != SMU_DEFAULT_PPT_LIMIT) {
if (smu->ppt_funcs->get_ppt_limit)
ret = smu->ppt_funcs->get_ppt_limit(smu, limit, limit_type, limit_level);
} else {
switch (limit_level) {
case SMU_PPT_LIMIT_CURRENT:
switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) {
case IP_VERSION(13, 0, 2):
case IP_VERSION(13, 0, 6):
case IP_VERSION(13, 0, 14):
case IP_VERSION(11, 0, 7):
case IP_VERSION(11, 0, 11):
case IP_VERSION(11, 0, 12):
case IP_VERSION(11, 0, 13):
ret = smu_get_asic_power_limits(smu,
&smu->current_power_limit,
NULL, NULL, NULL);
break;
default:
break;
}
*limit = smu->current_power_limit;
break;
case SMU_PPT_LIMIT_DEFAULT:
*limit = smu->default_power_limit;
break;
case SMU_PPT_LIMIT_MAX:
*limit = smu->max_power_limit;
break;
case SMU_PPT_LIMIT_MIN:
*limit = smu->min_power_limit;
break;
default:
return -EINVAL;
}
}
return ret;
}
static int smu_set_power_limit(void *handle, uint32_t limit)
{
struct smu_context *smu = handle;
uint32_t limit_type = limit >> 24;
int ret = 0;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
limit &= (1<<24)-1;
if (limit_type != SMU_DEFAULT_PPT_LIMIT)
if (smu->ppt_funcs->set_power_limit)
return smu->ppt_funcs->set_power_limit(smu, limit_type, limit);
if ((limit > smu->max_power_limit) || (limit < smu->min_power_limit)) {
dev_err(smu->adev->dev,
"New power limit (%d) is out of range [%d,%d]\n",
limit, smu->min_power_limit, smu->max_power_limit);
return -EINVAL;
}
if (!limit)
limit = smu->current_power_limit;
if (smu->ppt_funcs->set_power_limit) {
ret = smu->ppt_funcs->set_power_limit(smu, limit_type, limit);
if (!ret && !(smu->user_dpm_profile.flags & SMU_DPM_USER_PROFILE_RESTORE))
smu->user_dpm_profile.power_limit = limit;
}
return ret;
}
static int smu_print_smuclk_levels(struct smu_context *smu, enum smu_clk_type clk_type, char *buf)
{
int ret = 0;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
if (smu->ppt_funcs->print_clk_levels)
ret = smu->ppt_funcs->print_clk_levels(smu, clk_type, buf);
return ret;
}
static enum smu_clk_type smu_convert_to_smuclk(enum pp_clock_type type)
{
enum smu_clk_type clk_type;
switch (type) {
case PP_SCLK:
clk_type = SMU_SCLK; break;
case PP_MCLK:
clk_type = SMU_MCLK; break;
case PP_PCIE:
clk_type = SMU_PCIE; break;
case PP_SOCCLK:
clk_type = SMU_SOCCLK; break;
case PP_FCLK:
clk_type = SMU_FCLK; break;
case PP_DCEFCLK:
clk_type = SMU_DCEFCLK; break;
case PP_VCLK:
clk_type = SMU_VCLK; break;
case PP_VCLK1:
clk_type = SMU_VCLK1; break;
case PP_DCLK:
clk_type = SMU_DCLK; break;
case PP_DCLK1:
clk_type = SMU_DCLK1; break;
case OD_SCLK:
clk_type = SMU_OD_SCLK; break;
case OD_MCLK:
clk_type = SMU_OD_MCLK; break;
case OD_VDDC_CURVE:
clk_type = SMU_OD_VDDC_CURVE; break;
case OD_RANGE:
clk_type = SMU_OD_RANGE; break;
case OD_VDDGFX_OFFSET:
clk_type = SMU_OD_VDDGFX_OFFSET; break;
case OD_CCLK:
clk_type = SMU_OD_CCLK; break;
case OD_FAN_CURVE:
clk_type = SMU_OD_FAN_CURVE; break;
case OD_ACOUSTIC_LIMIT:
clk_type = SMU_OD_ACOUSTIC_LIMIT; break;
case OD_ACOUSTIC_TARGET:
clk_type = SMU_OD_ACOUSTIC_TARGET; break;
case OD_FAN_TARGET_TEMPERATURE:
clk_type = SMU_OD_FAN_TARGET_TEMPERATURE; break;
case OD_FAN_MINIMUM_PWM:
clk_type = SMU_OD_FAN_MINIMUM_PWM; break;
default:
clk_type = SMU_CLK_COUNT; break;
}
return clk_type;
}
static int smu_print_ppclk_levels(void *handle,
enum pp_clock_type type,
char *buf)
{
struct smu_context *smu = handle;
enum smu_clk_type clk_type;
clk_type = smu_convert_to_smuclk(type);
if (clk_type == SMU_CLK_COUNT)
return -EINVAL;
return smu_print_smuclk_levels(smu, clk_type, buf);
}
static int smu_emit_ppclk_levels(void *handle, enum pp_clock_type type, char *buf, int *offset)
{
struct smu_context *smu = handle;
enum smu_clk_type clk_type;
clk_type = smu_convert_to_smuclk(type);
if (clk_type == SMU_CLK_COUNT)
return -EINVAL;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
if (!smu->ppt_funcs->emit_clk_levels)
return -ENOENT;
return smu->ppt_funcs->emit_clk_levels(smu, clk_type, buf, offset);
}
static int smu_od_edit_dpm_table(void *handle,
enum PP_OD_DPM_TABLE_COMMAND type,
long *input, uint32_t size)
{
struct smu_context *smu = handle;
int ret = 0;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
if (smu->ppt_funcs->od_edit_dpm_table) {
ret = smu->ppt_funcs->od_edit_dpm_table(smu, type, input, size);
}
return ret;
}
static int smu_read_sensor(void *handle,
int sensor,
void *data,
int *size_arg)
{
struct smu_context *smu = handle;
struct smu_umd_pstate_table *pstate_table =
&smu->pstate_table;
int ret = 0;
uint32_t *size, size_val;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
if (!data || !size_arg)
return -EINVAL;
size_val = *size_arg;
size = &size_val;
if (smu->ppt_funcs->read_sensor)
if (!smu->ppt_funcs->read_sensor(smu, sensor, data, size))
goto unlock;
switch (sensor) {
case AMDGPU_PP_SENSOR_STABLE_PSTATE_SCLK:
*((uint32_t *)data) = pstate_table->gfxclk_pstate.standard * 100;
*size = 4;
break;
case AMDGPU_PP_SENSOR_STABLE_PSTATE_MCLK:
*((uint32_t *)data) = pstate_table->uclk_pstate.standard * 100;
*size = 4;
break;
case AMDGPU_PP_SENSOR_PEAK_PSTATE_SCLK:
*((uint32_t *)data) = pstate_table->gfxclk_pstate.peak * 100;
*size = 4;
break;
case AMDGPU_PP_SENSOR_PEAK_PSTATE_MCLK:
*((uint32_t *)data) = pstate_table->uclk_pstate.peak * 100;
*size = 4;
break;
case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK:
ret = smu_feature_get_enabled_mask(smu, (uint64_t *)data);
*size = 8;
break;
case AMDGPU_PP_SENSOR_UVD_POWER:
*(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT) ? 1 : 0;
*size = 4;
break;
case AMDGPU_PP_SENSOR_VCE_POWER:
*(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_VCE_BIT) ? 1 : 0;
*size = 4;
break;
case AMDGPU_PP_SENSOR_VCN_POWER_STATE:
*(uint32_t *)data = atomic_read(&smu->smu_power.power_gate.vcn_gated) ? 0 : 1;
*size = 4;
break;
case AMDGPU_PP_SENSOR_MIN_FAN_RPM:
*(uint32_t *)data = 0;
*size = 4;
break;
default:
*size = 0;
ret = -EOPNOTSUPP;
break;
}
unlock:
// assign uint32_t to int
*size_arg = size_val;
return ret;
}
static int smu_get_apu_thermal_limit(void *handle, uint32_t *limit)
{
int ret = -EOPNOTSUPP;
struct smu_context *smu = handle;
if (smu->ppt_funcs && smu->ppt_funcs->get_apu_thermal_limit)
ret = smu->ppt_funcs->get_apu_thermal_limit(smu, limit);
return ret;
}
static int smu_set_apu_thermal_limit(void *handle, uint32_t limit)
{
int ret = -EOPNOTSUPP;
struct smu_context *smu = handle;
if (smu->ppt_funcs && smu->ppt_funcs->set_apu_thermal_limit)
ret = smu->ppt_funcs->set_apu_thermal_limit(smu, limit);
return ret;
}
static int smu_get_power_profile_mode(void *handle, char *buf)
{
struct smu_context *smu = handle;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled ||
!smu->ppt_funcs->get_power_profile_mode)
return -EOPNOTSUPP;
if (!buf)
return -EINVAL;
return smu->ppt_funcs->get_power_profile_mode(smu, buf);
}
static int smu_set_power_profile_mode(void *handle,
long *param,
uint32_t param_size)
{
struct smu_context *smu = handle;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled ||
!smu->ppt_funcs->set_power_profile_mode)
return -EOPNOTSUPP;
return smu_bump_power_profile_mode(smu, param, param_size);
}
static int smu_get_fan_control_mode(void *handle, u32 *fan_mode)
{
struct smu_context *smu = handle;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
if (!smu->ppt_funcs->get_fan_control_mode)
return -EOPNOTSUPP;
if (!fan_mode)
return -EINVAL;
*fan_mode = smu->ppt_funcs->get_fan_control_mode(smu);
return 0;
}
static int smu_set_fan_control_mode(void *handle, u32 value)
{
struct smu_context *smu = handle;
int ret = 0;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
if (!smu->ppt_funcs->set_fan_control_mode)
return -EOPNOTSUPP;
if (value == U32_MAX)
return -EINVAL;
ret = smu->ppt_funcs->set_fan_control_mode(smu, value);
if (ret)
goto out;
if (!(smu->user_dpm_profile.flags & SMU_DPM_USER_PROFILE_RESTORE)) {
smu->user_dpm_profile.fan_mode = value;
/* reset user dpm fan speed */
if (value != AMD_FAN_CTRL_MANUAL) {
smu->user_dpm_profile.fan_speed_pwm = 0;
smu->user_dpm_profile.fan_speed_rpm = 0;
smu->user_dpm_profile.flags &= ~(SMU_CUSTOM_FAN_SPEED_RPM | SMU_CUSTOM_FAN_SPEED_PWM);
}
}
out:
return ret;
}
static int smu_get_fan_speed_pwm(void *handle, u32 *speed)
{
struct smu_context *smu = handle;
int ret = 0;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
if (!smu->ppt_funcs->get_fan_speed_pwm)
return -EOPNOTSUPP;
if (!speed)
return -EINVAL;
ret = smu->ppt_funcs->get_fan_speed_pwm(smu, speed);
return ret;
}
static int smu_set_fan_speed_pwm(void *handle, u32 speed)
{
struct smu_context *smu = handle;
int ret = 0;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
if (!smu->ppt_funcs->set_fan_speed_pwm)
return -EOPNOTSUPP;
if (speed == U32_MAX)
return -EINVAL;
ret = smu->ppt_funcs->set_fan_speed_pwm(smu, speed);
if (!ret && !(smu->user_dpm_profile.flags & SMU_DPM_USER_PROFILE_RESTORE)) {
smu->user_dpm_profile.flags |= SMU_CUSTOM_FAN_SPEED_PWM;
smu->user_dpm_profile.fan_speed_pwm = speed;
/* Override custom RPM setting as they cannot co-exist */
smu->user_dpm_profile.flags &= ~SMU_CUSTOM_FAN_SPEED_RPM;
smu->user_dpm_profile.fan_speed_rpm = 0;
}
return ret;
}
static int smu_get_fan_speed_rpm(void *handle, uint32_t *speed)
{
struct smu_context *smu = handle;
int ret = 0;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
if (!smu->ppt_funcs->get_fan_speed_rpm)
return -EOPNOTSUPP;
if (!speed)
return -EINVAL;
ret = smu->ppt_funcs->get_fan_speed_rpm(smu, speed);
return ret;
}
static int smu_set_deep_sleep_dcefclk(void *handle, uint32_t clk)
{
struct smu_context *smu = handle;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
return smu_set_min_dcef_deep_sleep(smu, clk);
}
static int smu_get_clock_by_type_with_latency(void *handle,
enum amd_pp_clock_type type,
struct pp_clock_levels_with_latency *clocks)
{
struct smu_context *smu = handle;
enum smu_clk_type clk_type;
int ret = 0;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
if (smu->ppt_funcs->get_clock_by_type_with_latency) {
switch (type) {
case amd_pp_sys_clock:
clk_type = SMU_GFXCLK;
break;
case amd_pp_mem_clock:
clk_type = SMU_MCLK;
break;
case amd_pp_dcef_clock:
clk_type = SMU_DCEFCLK;
break;
case amd_pp_disp_clock:
clk_type = SMU_DISPCLK;
break;
default:
dev_err(smu->adev->dev, "Invalid clock type!\n");
return -EINVAL;
}
ret = smu->ppt_funcs->get_clock_by_type_with_latency(smu, clk_type, clocks);
}
return ret;
}
static int smu_display_clock_voltage_request(void *handle,
struct pp_display_clock_request *clock_req)
{
struct smu_context *smu = handle;
int ret = 0;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
if (smu->ppt_funcs->display_clock_voltage_request)
ret = smu->ppt_funcs->display_clock_voltage_request(smu, clock_req);
return ret;
}
static int smu_display_disable_memory_clock_switch(void *handle,
bool disable_memory_clock_switch)
{
struct smu_context *smu = handle;
int ret = -EINVAL;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
if (smu->ppt_funcs->display_disable_memory_clock_switch)
ret = smu->ppt_funcs->display_disable_memory_clock_switch(smu, disable_memory_clock_switch);
return ret;
}
static int smu_set_xgmi_pstate(void *handle,
uint32_t pstate)
{
struct smu_context *smu = handle;
int ret = 0;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
if (smu->ppt_funcs->set_xgmi_pstate)
ret = smu->ppt_funcs->set_xgmi_pstate(smu, pstate);
if (ret)
dev_err(smu->adev->dev, "Failed to set XGMI pstate!\n");
return ret;
}
static int smu_get_baco_capability(void *handle)
{
struct smu_context *smu = handle;
if (!smu->pm_enabled)
return false;
if (!smu->ppt_funcs || !smu->ppt_funcs->get_bamaco_support)
return false;
return smu->ppt_funcs->get_bamaco_support(smu);
}
static int smu_baco_set_state(void *handle, int state)
{
struct smu_context *smu = handle;
int ret = 0;
if (!smu->pm_enabled)
return -EOPNOTSUPP;
if (state == 0) {
if (smu->ppt_funcs->baco_exit)
ret = smu->ppt_funcs->baco_exit(smu);
} else if (state == 1) {
if (smu->ppt_funcs->baco_enter)
ret = smu->ppt_funcs->baco_enter(smu);
} else {
return -EINVAL;
}
if (ret)
dev_err(smu->adev->dev, "Failed to %s BACO state!\n",
(state)?"enter":"exit");
return ret;
}
bool smu_mode1_reset_is_support(struct smu_context *smu)
{
bool ret = false;
if (!smu->pm_enabled)
return false;
if (smu->ppt_funcs && smu->ppt_funcs->mode1_reset_is_support)
ret = smu->ppt_funcs->mode1_reset_is_support(smu);
return ret;
}
bool smu_mode2_reset_is_support(struct smu_context *smu)
{
bool ret = false;
if (!smu->pm_enabled)
return false;
if (smu->ppt_funcs && smu->ppt_funcs->mode2_reset_is_support)
ret = smu->ppt_funcs->mode2_reset_is_support(smu);
return ret;
}
int smu_mode1_reset(struct smu_context *smu)
{
int ret = 0;
if (!smu->pm_enabled)
return -EOPNOTSUPP;
if (smu->ppt_funcs->mode1_reset)
ret = smu->ppt_funcs->mode1_reset(smu);
return ret;
}
static int smu_mode2_reset(void *handle)
{
struct smu_context *smu = handle;
int ret = 0;
if (!smu->pm_enabled)
return -EOPNOTSUPP;
if (smu->ppt_funcs->mode2_reset)
ret = smu->ppt_funcs->mode2_reset(smu);
if (ret)
dev_err(smu->adev->dev, "Mode2 reset failed!\n");
return ret;
}
static int smu_enable_gfx_features(void *handle)
{
struct smu_context *smu = handle;
int ret = 0;
if (!smu->pm_enabled)
return -EOPNOTSUPP;
if (smu->ppt_funcs->enable_gfx_features)
ret = smu->ppt_funcs->enable_gfx_features(smu);
if (ret)
dev_err(smu->adev->dev, "enable gfx features failed!\n");
return ret;
}
static int smu_get_max_sustainable_clocks_by_dc(void *handle,
struct pp_smu_nv_clock_table *max_clocks)
{
struct smu_context *smu = handle;
int ret = 0;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
if (smu->ppt_funcs->get_max_sustainable_clocks_by_dc)
ret = smu->ppt_funcs->get_max_sustainable_clocks_by_dc(smu, max_clocks);
return ret;
}
static int smu_get_uclk_dpm_states(void *handle,
unsigned int *clock_values_in_khz,
unsigned int *num_states)
{
struct smu_context *smu = handle;
int ret = 0;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
if (smu->ppt_funcs->get_uclk_dpm_states)
ret = smu->ppt_funcs->get_uclk_dpm_states(smu, clock_values_in_khz, num_states);
return ret;
}
static enum amd_pm_state_type smu_get_current_power_state(void *handle)
{
struct smu_context *smu = handle;
enum amd_pm_state_type pm_state = POWER_STATE_TYPE_DEFAULT;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
if (smu->ppt_funcs->get_current_power_state)
pm_state = smu->ppt_funcs->get_current_power_state(smu);
return pm_state;
}
static int smu_get_dpm_clock_table(void *handle,
struct dpm_clocks *clock_table)
{
struct smu_context *smu = handle;
int ret = 0;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
if (smu->ppt_funcs->get_dpm_clock_table)
ret = smu->ppt_funcs->get_dpm_clock_table(smu, clock_table);
return ret;
}
static ssize_t smu_sys_get_gpu_metrics(void *handle, void **table)
{
struct smu_context *smu = handle;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
if (!smu->ppt_funcs->get_gpu_metrics)
return -EOPNOTSUPP;
return smu->ppt_funcs->get_gpu_metrics(smu, table);
}
static ssize_t smu_sys_get_pm_metrics(void *handle, void *pm_metrics,
size_t size)
{
struct smu_context *smu = handle;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
if (!smu->ppt_funcs->get_pm_metrics)
return -EOPNOTSUPP;
return smu->ppt_funcs->get_pm_metrics(smu, pm_metrics, size);
}
static int smu_enable_mgpu_fan_boost(void *handle)
{
struct smu_context *smu = handle;
int ret = 0;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
return -EOPNOTSUPP;
if (smu->ppt_funcs->enable_mgpu_fan_boost)
ret = smu->ppt_funcs->enable_mgpu_fan_boost(smu);
return ret;
}
static int smu_gfx_state_change_set(void *handle,
uint32_t state)
{
struct smu_context *smu = handle;
int ret = 0;
if (smu->ppt_funcs->gfx_state_change_set)
ret = smu->ppt_funcs->gfx_state_change_set(smu, state);
return ret;
}
int smu_handle_passthrough_sbr(struct smu_context *smu, bool enable)
{
int ret = 0;
if (smu->ppt_funcs->smu_handle_passthrough_sbr)
ret = smu->ppt_funcs->smu_handle_passthrough_sbr(smu, enable);
return ret;
}
int smu_get_ecc_info(struct smu_context *smu, void *umc_ecc)
{
int ret = -EOPNOTSUPP;
if (smu->ppt_funcs &&
smu->ppt_funcs->get_ecc_info)
ret = smu->ppt_funcs->get_ecc_info(smu, umc_ecc);
return ret;
}
static int smu_get_prv_buffer_details(void *handle, void **addr, size_t *size)
{
struct smu_context *smu = handle;
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *memory_pool = &smu_table->memory_pool;
if (!addr || !size)
return -EINVAL;
*addr = NULL;
*size = 0;
if (memory_pool->bo) {
*addr = memory_pool->cpu_addr;
*size = memory_pool->size;
}
return 0;
}
static void smu_print_dpm_policy(struct smu_dpm_policy *policy, char *sysbuf,
size_t *size)
{
size_t offset = *size;
int level;
for_each_set_bit(level, &policy->level_mask, PP_POLICY_MAX_LEVELS) {
if (level == policy->current_level)
offset += sysfs_emit_at(sysbuf, offset,
"%d : %s*\n", level,
policy->desc->get_desc(policy, level));
else
offset += sysfs_emit_at(sysbuf, offset,
"%d : %s\n", level,
policy->desc->get_desc(policy, level));
}
*size = offset;
}
ssize_t smu_get_pm_policy_info(struct smu_context *smu,
enum pp_pm_policy p_type, char *sysbuf)
{
struct smu_dpm_context *dpm_ctxt = &smu->smu_dpm;
struct smu_dpm_policy_ctxt *policy_ctxt;
struct smu_dpm_policy *dpm_policy;
size_t offset = 0;
policy_ctxt = dpm_ctxt->dpm_policies;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled || !policy_ctxt ||
!policy_ctxt->policy_mask)
return -EOPNOTSUPP;
if (p_type == PP_PM_POLICY_NONE)
return -EINVAL;
dpm_policy = smu_get_pm_policy(smu, p_type);
if (!dpm_policy || !dpm_policy->level_mask || !dpm_policy->desc)
return -ENOENT;
if (!sysbuf)
return -EINVAL;
smu_print_dpm_policy(dpm_policy, sysbuf, &offset);
return offset;
}
struct smu_dpm_policy *smu_get_pm_policy(struct smu_context *smu,
enum pp_pm_policy p_type)
{
struct smu_dpm_context *dpm_ctxt = &smu->smu_dpm;
struct smu_dpm_policy_ctxt *policy_ctxt;
int i;
policy_ctxt = dpm_ctxt->dpm_policies;
if (!policy_ctxt)
return NULL;
for (i = 0; i < hweight32(policy_ctxt->policy_mask); ++i) {
if (policy_ctxt->policies[i].policy_type == p_type)
return &policy_ctxt->policies[i];
}
return NULL;
}
int smu_set_pm_policy(struct smu_context *smu, enum pp_pm_policy p_type,
int level)
{
struct smu_dpm_context *dpm_ctxt = &smu->smu_dpm;
struct smu_dpm_policy *dpm_policy = NULL;
struct smu_dpm_policy_ctxt *policy_ctxt;
int ret = -EOPNOTSUPP;
policy_ctxt = dpm_ctxt->dpm_policies;
if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled || !policy_ctxt ||
!policy_ctxt->policy_mask)
return ret;
if (level < 0 || level >= PP_POLICY_MAX_LEVELS)
return -EINVAL;
dpm_policy = smu_get_pm_policy(smu, p_type);
if (!dpm_policy || !dpm_policy->level_mask || !dpm_policy->set_policy)
return ret;
if (dpm_policy->current_level == level)
return 0;
ret = dpm_policy->set_policy(smu, level);
if (!ret)
dpm_policy->current_level = level;
return ret;
}
static const struct amd_pm_funcs swsmu_pm_funcs = {
/* export for sysfs */
.set_fan_control_mode = smu_set_fan_control_mode,
.get_fan_control_mode = smu_get_fan_control_mode,
.set_fan_speed_pwm = smu_set_fan_speed_pwm,
.get_fan_speed_pwm = smu_get_fan_speed_pwm,
.force_clock_level = smu_force_ppclk_levels,
.print_clock_levels = smu_print_ppclk_levels,
.emit_clock_levels = smu_emit_ppclk_levels,
.force_performance_level = smu_force_performance_level,
.read_sensor = smu_read_sensor,
.get_apu_thermal_limit = smu_get_apu_thermal_limit,
.set_apu_thermal_limit = smu_set_apu_thermal_limit,
.get_performance_level = smu_get_performance_level,
.get_current_power_state = smu_get_current_power_state,
.get_fan_speed_rpm = smu_get_fan_speed_rpm,
.set_fan_speed_rpm = smu_set_fan_speed_rpm,
.get_pp_num_states = smu_get_power_num_states,
.get_pp_table = smu_sys_get_pp_table,
.set_pp_table = smu_sys_set_pp_table,
.switch_power_profile = smu_switch_power_profile,
/* export to amdgpu */
.dispatch_tasks = smu_handle_dpm_task,
.load_firmware = smu_load_microcode,
.set_powergating_by_smu = smu_dpm_set_power_gate,
.set_power_limit = smu_set_power_limit,
.get_power_limit = smu_get_power_limit,
.get_power_profile_mode = smu_get_power_profile_mode,
.set_power_profile_mode = smu_set_power_profile_mode,
.odn_edit_dpm_table = smu_od_edit_dpm_table,
.set_mp1_state = smu_set_mp1_state,
.gfx_state_change_set = smu_gfx_state_change_set,
/* export to DC */
.get_sclk = smu_get_sclk,
.get_mclk = smu_get_mclk,
.display_configuration_change = smu_display_configuration_change,
.get_clock_by_type_with_latency = smu_get_clock_by_type_with_latency,
.display_clock_voltage_request = smu_display_clock_voltage_request,
.enable_mgpu_fan_boost = smu_enable_mgpu_fan_boost,
.set_active_display_count = smu_set_display_count,
.set_min_deep_sleep_dcefclk = smu_set_deep_sleep_dcefclk,
.get_asic_baco_capability = smu_get_baco_capability,
.set_asic_baco_state = smu_baco_set_state,
.get_ppfeature_status = smu_sys_get_pp_feature_mask,
.set_ppfeature_status = smu_sys_set_pp_feature_mask,
.asic_reset_mode_2 = smu_mode2_reset,
.asic_reset_enable_gfx_features = smu_enable_gfx_features,
.set_df_cstate = smu_set_df_cstate,
.set_xgmi_pstate = smu_set_xgmi_pstate,
.get_gpu_metrics = smu_sys_get_gpu_metrics,
.get_pm_metrics = smu_sys_get_pm_metrics,
.set_watermarks_for_clock_ranges = smu_set_watermarks_for_clock_ranges,
.display_disable_memory_clock_switch = smu_display_disable_memory_clock_switch,
.get_max_sustainable_clocks_by_dc = smu_get_max_sustainable_clocks_by_dc,
.get_uclk_dpm_states = smu_get_uclk_dpm_states,
.get_dpm_clock_table = smu_get_dpm_clock_table,
.get_smu_prv_buf_details = smu_get_prv_buffer_details,
};
int smu_wait_for_event(struct smu_context *smu, enum smu_event_type event,
uint64_t event_arg)
{
int ret = -EINVAL;
if (smu->ppt_funcs->wait_for_event)
ret = smu->ppt_funcs->wait_for_event(smu, event, event_arg);
return ret;
}
int smu_stb_collect_info(struct smu_context *smu, void *buf, uint32_t size)
{
if (!smu->ppt_funcs->stb_collect_info || !smu->stb_context.enabled)
return -EOPNOTSUPP;
/* Confirm the buffer allocated is of correct size */
if (size != smu->stb_context.stb_buf_size)
return -EINVAL;
/*
* No need to lock smu mutex as we access STB directly through MMIO
* and not going through SMU messaging route (for now at least).
* For registers access rely on implementation internal locking.
*/
return smu->ppt_funcs->stb_collect_info(smu, buf, size);
}
#if defined(CONFIG_DEBUG_FS)
static int smu_stb_debugfs_open(struct inode *inode, struct file *filp)
{
struct amdgpu_device *adev = filp->f_inode->i_private;
struct smu_context *smu = adev->powerplay.pp_handle;
unsigned char *buf;
int r;
buf = kvmalloc_array(smu->stb_context.stb_buf_size, sizeof(*buf), GFP_KERNEL);
if (!buf)
return -ENOMEM;
r = smu_stb_collect_info(smu, buf, smu->stb_context.stb_buf_size);
if (r)
goto out;
filp->private_data = buf;
return 0;
out:
kvfree(buf);
return r;
}
static ssize_t smu_stb_debugfs_read(struct file *filp, char __user *buf, size_t size,
loff_t *pos)
{
struct amdgpu_device *adev = filp->f_inode->i_private;
struct smu_context *smu = adev->powerplay.pp_handle;
if (!filp->private_data)
return -EINVAL;
return simple_read_from_buffer(buf,
size,
pos, filp->private_data,
smu->stb_context.stb_buf_size);
}
static int smu_stb_debugfs_release(struct inode *inode, struct file *filp)
{
kvfree(filp->private_data);
filp->private_data = NULL;
return 0;
}
/*
* We have to define not only read method but also
* open and release because .read takes up to PAGE_SIZE
* data each time so and so is invoked multiple times.
* We allocate the STB buffer in .open and release it
* in .release
*/
static const struct file_operations smu_stb_debugfs_fops = {
.owner = THIS_MODULE,
.open = smu_stb_debugfs_open,
.read = smu_stb_debugfs_read,
.release = smu_stb_debugfs_release,
.llseek = default_llseek,
};
#endif
void amdgpu_smu_stb_debug_fs_init(struct amdgpu_device *adev)
{
#if defined(CONFIG_DEBUG_FS)
struct smu_context *smu = adev->powerplay.pp_handle;
if (!smu || (!smu->stb_context.stb_buf_size))
return;
debugfs_create_file_size("amdgpu_smu_stb_dump",
S_IRUSR,
adev_to_drm(adev)->primary->debugfs_root,
adev,
&smu_stb_debugfs_fops,
smu->stb_context.stb_buf_size);
#endif
}
int smu_send_hbm_bad_pages_num(struct smu_context *smu, uint32_t size)
{
int ret = 0;
if (smu->ppt_funcs && smu->ppt_funcs->send_hbm_bad_pages_num)
ret = smu->ppt_funcs->send_hbm_bad_pages_num(smu, size);
return ret;
}
int smu_send_hbm_bad_channel_flag(struct smu_context *smu, uint32_t size)
{
int ret = 0;
if (smu->ppt_funcs && smu->ppt_funcs->send_hbm_bad_channel_flag)
ret = smu->ppt_funcs->send_hbm_bad_channel_flag(smu, size);
return ret;
}
int smu_send_rma_reason(struct smu_context *smu)
{
int ret = 0;
if (smu->ppt_funcs && smu->ppt_funcs->send_rma_reason)
ret = smu->ppt_funcs->send_rma_reason(smu);
return ret;
}