| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * cfg80211 scan result handling |
| * |
| * Copyright 2008 Johannes Berg <johannes@sipsolutions.net> |
| * Copyright 2013-2014 Intel Mobile Communications GmbH |
| * Copyright 2016 Intel Deutschland GmbH |
| * Copyright (C) 2018-2024 Intel Corporation |
| */ |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/module.h> |
| #include <linux/netdevice.h> |
| #include <linux/wireless.h> |
| #include <linux/nl80211.h> |
| #include <linux/etherdevice.h> |
| #include <linux/crc32.h> |
| #include <linux/bitfield.h> |
| #include <net/arp.h> |
| #include <net/cfg80211.h> |
| #include <net/cfg80211-wext.h> |
| #include <net/iw_handler.h> |
| #include <kunit/visibility.h> |
| #include "core.h" |
| #include "nl80211.h" |
| #include "wext-compat.h" |
| #include "rdev-ops.h" |
| |
| /** |
| * DOC: BSS tree/list structure |
| * |
| * At the top level, the BSS list is kept in both a list in each |
| * registered device (@bss_list) as well as an RB-tree for faster |
| * lookup. In the RB-tree, entries can be looked up using their |
| * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID |
| * for other BSSes. |
| * |
| * Due to the possibility of hidden SSIDs, there's a second level |
| * structure, the "hidden_list" and "hidden_beacon_bss" pointer. |
| * The hidden_list connects all BSSes belonging to a single AP |
| * that has a hidden SSID, and connects beacon and probe response |
| * entries. For a probe response entry for a hidden SSID, the |
| * hidden_beacon_bss pointer points to the BSS struct holding the |
| * beacon's information. |
| * |
| * Reference counting is done for all these references except for |
| * the hidden_list, so that a beacon BSS struct that is otherwise |
| * not referenced has one reference for being on the bss_list and |
| * one for each probe response entry that points to it using the |
| * hidden_beacon_bss pointer. When a BSS struct that has such a |
| * pointer is get/put, the refcount update is also propagated to |
| * the referenced struct, this ensure that it cannot get removed |
| * while somebody is using the probe response version. |
| * |
| * Note that the hidden_beacon_bss pointer never changes, due to |
| * the reference counting. Therefore, no locking is needed for |
| * it. |
| * |
| * Also note that the hidden_beacon_bss pointer is only relevant |
| * if the driver uses something other than the IEs, e.g. private |
| * data stored in the BSS struct, since the beacon IEs are |
| * also linked into the probe response struct. |
| */ |
| |
| /* |
| * Limit the number of BSS entries stored in mac80211. Each one is |
| * a bit over 4k at most, so this limits to roughly 4-5M of memory. |
| * If somebody wants to really attack this though, they'd likely |
| * use small beacons, and only one type of frame, limiting each of |
| * the entries to a much smaller size (in order to generate more |
| * entries in total, so overhead is bigger.) |
| */ |
| static int bss_entries_limit = 1000; |
| module_param(bss_entries_limit, int, 0644); |
| MODULE_PARM_DESC(bss_entries_limit, |
| "limit to number of scan BSS entries (per wiphy, default 1000)"); |
| |
| #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ) |
| |
| static void bss_free(struct cfg80211_internal_bss *bss) |
| { |
| struct cfg80211_bss_ies *ies; |
| |
| if (WARN_ON(atomic_read(&bss->hold))) |
| return; |
| |
| ies = (void *)rcu_access_pointer(bss->pub.beacon_ies); |
| if (ies && !bss->pub.hidden_beacon_bss) |
| kfree_rcu(ies, rcu_head); |
| ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies); |
| if (ies) |
| kfree_rcu(ies, rcu_head); |
| |
| /* |
| * This happens when the module is removed, it doesn't |
| * really matter any more save for completeness |
| */ |
| if (!list_empty(&bss->hidden_list)) |
| list_del(&bss->hidden_list); |
| |
| kfree(bss); |
| } |
| |
| static inline void bss_ref_get(struct cfg80211_registered_device *rdev, |
| struct cfg80211_internal_bss *bss) |
| { |
| lockdep_assert_held(&rdev->bss_lock); |
| |
| bss->refcount++; |
| |
| if (bss->pub.hidden_beacon_bss) |
| bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++; |
| |
| if (bss->pub.transmitted_bss) |
| bss_from_pub(bss->pub.transmitted_bss)->refcount++; |
| } |
| |
| static inline void bss_ref_put(struct cfg80211_registered_device *rdev, |
| struct cfg80211_internal_bss *bss) |
| { |
| lockdep_assert_held(&rdev->bss_lock); |
| |
| if (bss->pub.hidden_beacon_bss) { |
| struct cfg80211_internal_bss *hbss; |
| |
| hbss = bss_from_pub(bss->pub.hidden_beacon_bss); |
| hbss->refcount--; |
| if (hbss->refcount == 0) |
| bss_free(hbss); |
| } |
| |
| if (bss->pub.transmitted_bss) { |
| struct cfg80211_internal_bss *tbss; |
| |
| tbss = bss_from_pub(bss->pub.transmitted_bss); |
| tbss->refcount--; |
| if (tbss->refcount == 0) |
| bss_free(tbss); |
| } |
| |
| bss->refcount--; |
| if (bss->refcount == 0) |
| bss_free(bss); |
| } |
| |
| static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev, |
| struct cfg80211_internal_bss *bss) |
| { |
| lockdep_assert_held(&rdev->bss_lock); |
| |
| if (!list_empty(&bss->hidden_list)) { |
| /* |
| * don't remove the beacon entry if it has |
| * probe responses associated with it |
| */ |
| if (!bss->pub.hidden_beacon_bss) |
| return false; |
| /* |
| * if it's a probe response entry break its |
| * link to the other entries in the group |
| */ |
| list_del_init(&bss->hidden_list); |
| } |
| |
| list_del_init(&bss->list); |
| list_del_init(&bss->pub.nontrans_list); |
| rb_erase(&bss->rbn, &rdev->bss_tree); |
| rdev->bss_entries--; |
| WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list), |
| "rdev bss entries[%d]/list[empty:%d] corruption\n", |
| rdev->bss_entries, list_empty(&rdev->bss_list)); |
| bss_ref_put(rdev, bss); |
| return true; |
| } |
| |
| bool cfg80211_is_element_inherited(const struct element *elem, |
| const struct element *non_inherit_elem) |
| { |
| u8 id_len, ext_id_len, i, loop_len, id; |
| const u8 *list; |
| |
| if (elem->id == WLAN_EID_MULTIPLE_BSSID) |
| return false; |
| |
| if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 && |
| elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK) |
| return false; |
| |
| if (!non_inherit_elem || non_inherit_elem->datalen < 2) |
| return true; |
| |
| /* |
| * non inheritance element format is: |
| * ext ID (56) | IDs list len | list | extension IDs list len | list |
| * Both lists are optional. Both lengths are mandatory. |
| * This means valid length is: |
| * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths |
| */ |
| id_len = non_inherit_elem->data[1]; |
| if (non_inherit_elem->datalen < 3 + id_len) |
| return true; |
| |
| ext_id_len = non_inherit_elem->data[2 + id_len]; |
| if (non_inherit_elem->datalen < 3 + id_len + ext_id_len) |
| return true; |
| |
| if (elem->id == WLAN_EID_EXTENSION) { |
| if (!ext_id_len) |
| return true; |
| loop_len = ext_id_len; |
| list = &non_inherit_elem->data[3 + id_len]; |
| id = elem->data[0]; |
| } else { |
| if (!id_len) |
| return true; |
| loop_len = id_len; |
| list = &non_inherit_elem->data[2]; |
| id = elem->id; |
| } |
| |
| for (i = 0; i < loop_len; i++) { |
| if (list[i] == id) |
| return false; |
| } |
| |
| return true; |
| } |
| EXPORT_SYMBOL(cfg80211_is_element_inherited); |
| |
| static size_t cfg80211_copy_elem_with_frags(const struct element *elem, |
| const u8 *ie, size_t ie_len, |
| u8 **pos, u8 *buf, size_t buf_len) |
| { |
| if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len || |
| elem->data + elem->datalen > ie + ie_len)) |
| return 0; |
| |
| if (elem->datalen + 2 > buf + buf_len - *pos) |
| return 0; |
| |
| memcpy(*pos, elem, elem->datalen + 2); |
| *pos += elem->datalen + 2; |
| |
| /* Finish if it is not fragmented */ |
| if (elem->datalen != 255) |
| return *pos - buf; |
| |
| ie_len = ie + ie_len - elem->data - elem->datalen; |
| ie = (const u8 *)elem->data + elem->datalen; |
| |
| for_each_element(elem, ie, ie_len) { |
| if (elem->id != WLAN_EID_FRAGMENT) |
| break; |
| |
| if (elem->datalen + 2 > buf + buf_len - *pos) |
| return 0; |
| |
| memcpy(*pos, elem, elem->datalen + 2); |
| *pos += elem->datalen + 2; |
| |
| if (elem->datalen != 255) |
| break; |
| } |
| |
| return *pos - buf; |
| } |
| |
| VISIBLE_IF_CFG80211_KUNIT size_t |
| cfg80211_gen_new_ie(const u8 *ie, size_t ielen, |
| const u8 *subie, size_t subie_len, |
| u8 *new_ie, size_t new_ie_len) |
| { |
| const struct element *non_inherit_elem, *parent, *sub; |
| u8 *pos = new_ie; |
| u8 id, ext_id; |
| unsigned int match_len; |
| |
| non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, |
| subie, subie_len); |
| |
| /* We copy the elements one by one from the parent to the generated |
| * elements. |
| * If they are not inherited (included in subie or in the non |
| * inheritance element), then we copy all occurrences the first time |
| * we see this element type. |
| */ |
| for_each_element(parent, ie, ielen) { |
| if (parent->id == WLAN_EID_FRAGMENT) |
| continue; |
| |
| if (parent->id == WLAN_EID_EXTENSION) { |
| if (parent->datalen < 1) |
| continue; |
| |
| id = WLAN_EID_EXTENSION; |
| ext_id = parent->data[0]; |
| match_len = 1; |
| } else { |
| id = parent->id; |
| match_len = 0; |
| } |
| |
| /* Find first occurrence in subie */ |
| sub = cfg80211_find_elem_match(id, subie, subie_len, |
| &ext_id, match_len, 0); |
| |
| /* Copy from parent if not in subie and inherited */ |
| if (!sub && |
| cfg80211_is_element_inherited(parent, non_inherit_elem)) { |
| if (!cfg80211_copy_elem_with_frags(parent, |
| ie, ielen, |
| &pos, new_ie, |
| new_ie_len)) |
| return 0; |
| |
| continue; |
| } |
| |
| /* Already copied if an earlier element had the same type */ |
| if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie, |
| &ext_id, match_len, 0)) |
| continue; |
| |
| /* Not inheriting, copy all similar elements from subie */ |
| while (sub) { |
| if (!cfg80211_copy_elem_with_frags(sub, |
| subie, subie_len, |
| &pos, new_ie, |
| new_ie_len)) |
| return 0; |
| |
| sub = cfg80211_find_elem_match(id, |
| sub->data + sub->datalen, |
| subie_len + subie - |
| (sub->data + |
| sub->datalen), |
| &ext_id, match_len, 0); |
| } |
| } |
| |
| /* The above misses elements that are included in subie but not in the |
| * parent, so do a pass over subie and append those. |
| * Skip the non-tx BSSID caps and non-inheritance element. |
| */ |
| for_each_element(sub, subie, subie_len) { |
| if (sub->id == WLAN_EID_NON_TX_BSSID_CAP) |
| continue; |
| |
| if (sub->id == WLAN_EID_FRAGMENT) |
| continue; |
| |
| if (sub->id == WLAN_EID_EXTENSION) { |
| if (sub->datalen < 1) |
| continue; |
| |
| id = WLAN_EID_EXTENSION; |
| ext_id = sub->data[0]; |
| match_len = 1; |
| |
| if (ext_id == WLAN_EID_EXT_NON_INHERITANCE) |
| continue; |
| } else { |
| id = sub->id; |
| match_len = 0; |
| } |
| |
| /* Processed if one was included in the parent */ |
| if (cfg80211_find_elem_match(id, ie, ielen, |
| &ext_id, match_len, 0)) |
| continue; |
| |
| if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len, |
| &pos, new_ie, new_ie_len)) |
| return 0; |
| } |
| |
| return pos - new_ie; |
| } |
| EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie); |
| |
| static bool is_bss(struct cfg80211_bss *a, const u8 *bssid, |
| const u8 *ssid, size_t ssid_len) |
| { |
| const struct cfg80211_bss_ies *ies; |
| const struct element *ssid_elem; |
| |
| if (bssid && !ether_addr_equal(a->bssid, bssid)) |
| return false; |
| |
| if (!ssid) |
| return true; |
| |
| ies = rcu_access_pointer(a->ies); |
| if (!ies) |
| return false; |
| ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); |
| if (!ssid_elem) |
| return false; |
| if (ssid_elem->datalen != ssid_len) |
| return false; |
| return memcmp(ssid_elem->data, ssid, ssid_len) == 0; |
| } |
| |
| static int |
| cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss, |
| struct cfg80211_bss *nontrans_bss) |
| { |
| const struct element *ssid_elem; |
| struct cfg80211_bss *bss = NULL; |
| |
| rcu_read_lock(); |
| ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID); |
| if (!ssid_elem) { |
| rcu_read_unlock(); |
| return -EINVAL; |
| } |
| |
| /* check if nontrans_bss is in the list */ |
| list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) { |
| if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data, |
| ssid_elem->datalen)) { |
| rcu_read_unlock(); |
| return 0; |
| } |
| } |
| |
| rcu_read_unlock(); |
| |
| /* |
| * This is a bit weird - it's not on the list, but already on another |
| * one! The only way that could happen is if there's some BSSID/SSID |
| * shared by multiple APs in their multi-BSSID profiles, potentially |
| * with hidden SSID mixed in ... ignore it. |
| */ |
| if (!list_empty(&nontrans_bss->nontrans_list)) |
| return -EINVAL; |
| |
| /* add to the list */ |
| list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list); |
| return 0; |
| } |
| |
| static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev, |
| unsigned long expire_time) |
| { |
| struct cfg80211_internal_bss *bss, *tmp; |
| bool expired = false; |
| |
| lockdep_assert_held(&rdev->bss_lock); |
| |
| list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) { |
| if (atomic_read(&bss->hold)) |
| continue; |
| if (!time_after(expire_time, bss->ts)) |
| continue; |
| |
| if (__cfg80211_unlink_bss(rdev, bss)) |
| expired = true; |
| } |
| |
| if (expired) |
| rdev->bss_generation++; |
| } |
| |
| static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev) |
| { |
| struct cfg80211_internal_bss *bss, *oldest = NULL; |
| bool ret; |
| |
| lockdep_assert_held(&rdev->bss_lock); |
| |
| list_for_each_entry(bss, &rdev->bss_list, list) { |
| if (atomic_read(&bss->hold)) |
| continue; |
| |
| if (!list_empty(&bss->hidden_list) && |
| !bss->pub.hidden_beacon_bss) |
| continue; |
| |
| if (oldest && time_before(oldest->ts, bss->ts)) |
| continue; |
| oldest = bss; |
| } |
| |
| if (WARN_ON(!oldest)) |
| return false; |
| |
| /* |
| * The callers make sure to increase rdev->bss_generation if anything |
| * gets removed (and a new entry added), so there's no need to also do |
| * it here. |
| */ |
| |
| ret = __cfg80211_unlink_bss(rdev, oldest); |
| WARN_ON(!ret); |
| return ret; |
| } |
| |
| static u8 cfg80211_parse_bss_param(u8 data, |
| struct cfg80211_colocated_ap *coloc_ap) |
| { |
| coloc_ap->oct_recommended = |
| u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED); |
| coloc_ap->same_ssid = |
| u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID); |
| coloc_ap->multi_bss = |
| u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID); |
| coloc_ap->transmitted_bssid = |
| u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID); |
| coloc_ap->unsolicited_probe = |
| u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE); |
| coloc_ap->colocated_ess = |
| u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS); |
| |
| return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP); |
| } |
| |
| static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies, |
| const struct element **elem, u32 *s_ssid) |
| { |
| |
| *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); |
| if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN) |
| return -EINVAL; |
| |
| *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen); |
| return 0; |
| } |
| |
| VISIBLE_IF_CFG80211_KUNIT void |
| cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list) |
| { |
| struct cfg80211_colocated_ap *ap, *tmp_ap; |
| |
| list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) { |
| list_del(&ap->list); |
| kfree(ap); |
| } |
| } |
| EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_free_coloc_ap_list); |
| |
| static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry, |
| const u8 *pos, u8 length, |
| const struct element *ssid_elem, |
| u32 s_ssid_tmp) |
| { |
| u8 bss_params; |
| |
| entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED; |
| |
| /* The length is already verified by the caller to contain bss_params */ |
| if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) { |
| struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos; |
| |
| memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN); |
| entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid); |
| entry->short_ssid_valid = true; |
| |
| bss_params = tbtt_info->bss_params; |
| |
| /* Ignore disabled links */ |
| if (length >= offsetofend(typeof(*tbtt_info), mld_params)) { |
| if (le16_get_bits(tbtt_info->mld_params.params, |
| IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK)) |
| return -EINVAL; |
| } |
| |
| if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11, |
| psd_20)) |
| entry->psd_20 = tbtt_info->psd_20; |
| } else { |
| struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos; |
| |
| memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN); |
| |
| bss_params = tbtt_info->bss_params; |
| |
| if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9, |
| psd_20)) |
| entry->psd_20 = tbtt_info->psd_20; |
| } |
| |
| /* ignore entries with invalid BSSID */ |
| if (!is_valid_ether_addr(entry->bssid)) |
| return -EINVAL; |
| |
| /* skip non colocated APs */ |
| if (!cfg80211_parse_bss_param(bss_params, entry)) |
| return -EINVAL; |
| |
| /* no information about the short ssid. Consider the entry valid |
| * for now. It would later be dropped in case there are explicit |
| * SSIDs that need to be matched |
| */ |
| if (!entry->same_ssid && !entry->short_ssid_valid) |
| return 0; |
| |
| if (entry->same_ssid) { |
| entry->short_ssid = s_ssid_tmp; |
| entry->short_ssid_valid = true; |
| |
| /* |
| * This is safe because we validate datalen in |
| * cfg80211_parse_colocated_ap(), before calling this |
| * function. |
| */ |
| memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen); |
| entry->ssid_len = ssid_elem->datalen; |
| } |
| |
| return 0; |
| } |
| |
| bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len, |
| enum cfg80211_rnr_iter_ret |
| (*iter)(void *data, u8 type, |
| const struct ieee80211_neighbor_ap_info *info, |
| const u8 *tbtt_info, u8 tbtt_info_len), |
| void *iter_data) |
| { |
| const struct element *rnr; |
| const u8 *pos, *end; |
| |
| for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, |
| elems, elems_len) { |
| const struct ieee80211_neighbor_ap_info *info; |
| |
| pos = rnr->data; |
| end = rnr->data + rnr->datalen; |
| |
| /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ |
| while (sizeof(*info) <= end - pos) { |
| u8 length, i, count; |
| u8 type; |
| |
| info = (void *)pos; |
| count = u8_get_bits(info->tbtt_info_hdr, |
| IEEE80211_AP_INFO_TBTT_HDR_COUNT) + |
| 1; |
| length = info->tbtt_info_len; |
| |
| pos += sizeof(*info); |
| |
| if (count * length > end - pos) |
| return false; |
| |
| type = u8_get_bits(info->tbtt_info_hdr, |
| IEEE80211_AP_INFO_TBTT_HDR_TYPE); |
| |
| for (i = 0; i < count; i++) { |
| switch (iter(iter_data, type, info, |
| pos, length)) { |
| case RNR_ITER_CONTINUE: |
| break; |
| case RNR_ITER_BREAK: |
| return true; |
| case RNR_ITER_ERROR: |
| return false; |
| } |
| |
| pos += length; |
| } |
| } |
| |
| if (pos != end) |
| return false; |
| } |
| |
| return true; |
| } |
| EXPORT_SYMBOL_GPL(cfg80211_iter_rnr); |
| |
| struct colocated_ap_data { |
| const struct element *ssid_elem; |
| struct list_head ap_list; |
| u32 s_ssid_tmp; |
| int n_coloc; |
| }; |
| |
| static enum cfg80211_rnr_iter_ret |
| cfg80211_parse_colocated_ap_iter(void *_data, u8 type, |
| const struct ieee80211_neighbor_ap_info *info, |
| const u8 *tbtt_info, u8 tbtt_info_len) |
| { |
| struct colocated_ap_data *data = _data; |
| struct cfg80211_colocated_ap *entry; |
| enum nl80211_band band; |
| |
| if (type != IEEE80211_TBTT_INFO_TYPE_TBTT) |
| return RNR_ITER_CONTINUE; |
| |
| if (!ieee80211_operating_class_to_band(info->op_class, &band)) |
| return RNR_ITER_CONTINUE; |
| |
| /* TBTT info must include bss param + BSSID + (short SSID or |
| * same_ssid bit to be set). Ignore other options, and move to |
| * the next AP info |
| */ |
| if (band != NL80211_BAND_6GHZ || |
| !(tbtt_info_len == offsetofend(struct ieee80211_tbtt_info_7_8_9, |
| bss_params) || |
| tbtt_info_len == sizeof(struct ieee80211_tbtt_info_7_8_9) || |
| tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11, |
| bss_params))) |
| return RNR_ITER_CONTINUE; |
| |
| entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, GFP_ATOMIC); |
| if (!entry) |
| return RNR_ITER_ERROR; |
| |
| entry->center_freq = |
| ieee80211_channel_to_frequency(info->channel, band); |
| |
| if (!cfg80211_parse_ap_info(entry, tbtt_info, tbtt_info_len, |
| data->ssid_elem, data->s_ssid_tmp)) { |
| data->n_coloc++; |
| list_add_tail(&entry->list, &data->ap_list); |
| } else { |
| kfree(entry); |
| } |
| |
| return RNR_ITER_CONTINUE; |
| } |
| |
| VISIBLE_IF_CFG80211_KUNIT int |
| cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies, |
| struct list_head *list) |
| { |
| struct colocated_ap_data data = {}; |
| int ret; |
| |
| INIT_LIST_HEAD(&data.ap_list); |
| |
| ret = cfg80211_calc_short_ssid(ies, &data.ssid_elem, &data.s_ssid_tmp); |
| if (ret) |
| return 0; |
| |
| if (!cfg80211_iter_rnr(ies->data, ies->len, |
| cfg80211_parse_colocated_ap_iter, &data)) { |
| cfg80211_free_coloc_ap_list(&data.ap_list); |
| return 0; |
| } |
| |
| list_splice_tail(&data.ap_list, list); |
| return data.n_coloc; |
| } |
| EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_parse_colocated_ap); |
| |
| static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request, |
| struct ieee80211_channel *chan, |
| bool add_to_6ghz) |
| { |
| int i; |
| u32 n_channels = request->n_channels; |
| struct cfg80211_scan_6ghz_params *params = |
| &request->scan_6ghz_params[request->n_6ghz_params]; |
| |
| for (i = 0; i < n_channels; i++) { |
| if (request->channels[i] == chan) { |
| if (add_to_6ghz) |
| params->channel_idx = i; |
| return; |
| } |
| } |
| |
| request->channels[n_channels] = chan; |
| if (add_to_6ghz) |
| request->scan_6ghz_params[request->n_6ghz_params].channel_idx = |
| n_channels; |
| |
| request->n_channels++; |
| } |
| |
| static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap, |
| struct cfg80211_scan_request *request) |
| { |
| int i; |
| u32 s_ssid; |
| |
| for (i = 0; i < request->n_ssids; i++) { |
| /* wildcard ssid in the scan request */ |
| if (!request->ssids[i].ssid_len) { |
| if (ap->multi_bss && !ap->transmitted_bssid) |
| continue; |
| |
| return true; |
| } |
| |
| if (ap->ssid_len && |
| ap->ssid_len == request->ssids[i].ssid_len) { |
| if (!memcmp(request->ssids[i].ssid, ap->ssid, |
| ap->ssid_len)) |
| return true; |
| } else if (ap->short_ssid_valid) { |
| s_ssid = ~crc32_le(~0, request->ssids[i].ssid, |
| request->ssids[i].ssid_len); |
| |
| if (ap->short_ssid == s_ssid) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev) |
| { |
| u8 i; |
| struct cfg80211_colocated_ap *ap; |
| int n_channels, count = 0, err; |
| struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req; |
| LIST_HEAD(coloc_ap_list); |
| bool need_scan_psc = true; |
| const struct ieee80211_sband_iftype_data *iftd; |
| size_t size, offs_ssids, offs_6ghz_params, offs_ies; |
| |
| rdev_req->scan_6ghz = true; |
| |
| if (!rdev->wiphy.bands[NL80211_BAND_6GHZ]) |
| return -EOPNOTSUPP; |
| |
| iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ], |
| rdev_req->wdev->iftype); |
| if (!iftd || !iftd->he_cap.has_he) |
| return -EOPNOTSUPP; |
| |
| n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels; |
| |
| if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) { |
| struct cfg80211_internal_bss *intbss; |
| |
| spin_lock_bh(&rdev->bss_lock); |
| list_for_each_entry(intbss, &rdev->bss_list, list) { |
| struct cfg80211_bss *res = &intbss->pub; |
| const struct cfg80211_bss_ies *ies; |
| const struct element *ssid_elem; |
| struct cfg80211_colocated_ap *entry; |
| u32 s_ssid_tmp; |
| int ret; |
| |
| ies = rcu_access_pointer(res->ies); |
| count += cfg80211_parse_colocated_ap(ies, |
| &coloc_ap_list); |
| |
| /* In case the scan request specified a specific BSSID |
| * and the BSS is found and operating on 6GHz band then |
| * add this AP to the collocated APs list. |
| * This is relevant for ML probe requests when the lower |
| * band APs have not been discovered. |
| */ |
| if (is_broadcast_ether_addr(rdev_req->bssid) || |
| !ether_addr_equal(rdev_req->bssid, res->bssid) || |
| res->channel->band != NL80211_BAND_6GHZ) |
| continue; |
| |
| ret = cfg80211_calc_short_ssid(ies, &ssid_elem, |
| &s_ssid_tmp); |
| if (ret) |
| continue; |
| |
| entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, |
| GFP_ATOMIC); |
| |
| if (!entry) |
| continue; |
| |
| memcpy(entry->bssid, res->bssid, ETH_ALEN); |
| entry->short_ssid = s_ssid_tmp; |
| memcpy(entry->ssid, ssid_elem->data, |
| ssid_elem->datalen); |
| entry->ssid_len = ssid_elem->datalen; |
| entry->short_ssid_valid = true; |
| entry->center_freq = res->channel->center_freq; |
| |
| list_add_tail(&entry->list, &coloc_ap_list); |
| count++; |
| } |
| spin_unlock_bh(&rdev->bss_lock); |
| } |
| |
| size = struct_size(request, channels, n_channels); |
| offs_ssids = size; |
| size += sizeof(*request->ssids) * rdev_req->n_ssids; |
| offs_6ghz_params = size; |
| size += sizeof(*request->scan_6ghz_params) * count; |
| offs_ies = size; |
| size += rdev_req->ie_len; |
| |
| request = kzalloc(size, GFP_KERNEL); |
| if (!request) { |
| cfg80211_free_coloc_ap_list(&coloc_ap_list); |
| return -ENOMEM; |
| } |
| |
| *request = *rdev_req; |
| request->n_channels = 0; |
| request->n_6ghz_params = 0; |
| if (rdev_req->n_ssids) { |
| /* |
| * Add the ssids from the parent scan request to the new |
| * scan request, so the driver would be able to use them |
| * in its probe requests to discover hidden APs on PSC |
| * channels. |
| */ |
| request->ssids = (void *)request + offs_ssids; |
| memcpy(request->ssids, rdev_req->ssids, |
| sizeof(*request->ssids) * request->n_ssids); |
| } |
| request->scan_6ghz_params = (void *)request + offs_6ghz_params; |
| |
| if (rdev_req->ie_len) { |
| void *ie = (void *)request + offs_ies; |
| |
| memcpy(ie, rdev_req->ie, rdev_req->ie_len); |
| request->ie = ie; |
| } |
| |
| /* |
| * PSC channels should not be scanned in case of direct scan with 1 SSID |
| * and at least one of the reported co-located APs with same SSID |
| * indicating that all APs in the same ESS are co-located |
| */ |
| if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) { |
| list_for_each_entry(ap, &coloc_ap_list, list) { |
| if (ap->colocated_ess && |
| cfg80211_find_ssid_match(ap, request)) { |
| need_scan_psc = false; |
| break; |
| } |
| } |
| } |
| |
| /* |
| * add to the scan request the channels that need to be scanned |
| * regardless of the collocated APs (PSC channels or all channels |
| * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set) |
| */ |
| for (i = 0; i < rdev_req->n_channels; i++) { |
| if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ && |
| ((need_scan_psc && |
| cfg80211_channel_is_psc(rdev_req->channels[i])) || |
| !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) { |
| cfg80211_scan_req_add_chan(request, |
| rdev_req->channels[i], |
| false); |
| } |
| } |
| |
| if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ)) |
| goto skip; |
| |
| list_for_each_entry(ap, &coloc_ap_list, list) { |
| bool found = false; |
| struct cfg80211_scan_6ghz_params *scan_6ghz_params = |
| &request->scan_6ghz_params[request->n_6ghz_params]; |
| struct ieee80211_channel *chan = |
| ieee80211_get_channel(&rdev->wiphy, ap->center_freq); |
| |
| if (!chan || chan->flags & IEEE80211_CHAN_DISABLED) |
| continue; |
| |
| for (i = 0; i < rdev_req->n_channels; i++) { |
| if (rdev_req->channels[i] == chan) |
| found = true; |
| } |
| |
| if (!found) |
| continue; |
| |
| if (request->n_ssids > 0 && |
| !cfg80211_find_ssid_match(ap, request)) |
| continue; |
| |
| if (!is_broadcast_ether_addr(request->bssid) && |
| !ether_addr_equal(request->bssid, ap->bssid)) |
| continue; |
| |
| if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid) |
| continue; |
| |
| cfg80211_scan_req_add_chan(request, chan, true); |
| memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN); |
| scan_6ghz_params->short_ssid = ap->short_ssid; |
| scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid; |
| scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe; |
| scan_6ghz_params->psd_20 = ap->psd_20; |
| |
| /* |
| * If a PSC channel is added to the scan and 'need_scan_psc' is |
| * set to false, then all the APs that the scan logic is |
| * interested with on the channel are collocated and thus there |
| * is no need to perform the initial PSC channel listen. |
| */ |
| if (cfg80211_channel_is_psc(chan) && !need_scan_psc) |
| scan_6ghz_params->psc_no_listen = true; |
| |
| request->n_6ghz_params++; |
| } |
| |
| skip: |
| cfg80211_free_coloc_ap_list(&coloc_ap_list); |
| |
| if (request->n_channels) { |
| struct cfg80211_scan_request *old = rdev->int_scan_req; |
| |
| rdev->int_scan_req = request; |
| |
| /* |
| * If this scan follows a previous scan, save the scan start |
| * info from the first part of the scan |
| */ |
| if (old) |
| rdev->int_scan_req->info = old->info; |
| |
| err = rdev_scan(rdev, request); |
| if (err) { |
| rdev->int_scan_req = old; |
| kfree(request); |
| } else { |
| kfree(old); |
| } |
| |
| return err; |
| } |
| |
| kfree(request); |
| return -EINVAL; |
| } |
| |
| int cfg80211_scan(struct cfg80211_registered_device *rdev) |
| { |
| struct cfg80211_scan_request *request; |
| struct cfg80211_scan_request *rdev_req = rdev->scan_req; |
| u32 n_channels = 0, idx, i; |
| |
| if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ)) |
| return rdev_scan(rdev, rdev_req); |
| |
| for (i = 0; i < rdev_req->n_channels; i++) { |
| if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) |
| n_channels++; |
| } |
| |
| if (!n_channels) |
| return cfg80211_scan_6ghz(rdev); |
| |
| request = kzalloc(struct_size(request, channels, n_channels), |
| GFP_KERNEL); |
| if (!request) |
| return -ENOMEM; |
| |
| *request = *rdev_req; |
| request->n_channels = n_channels; |
| |
| for (i = idx = 0; i < rdev_req->n_channels; i++) { |
| if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) |
| request->channels[idx++] = rdev_req->channels[i]; |
| } |
| |
| rdev_req->scan_6ghz = false; |
| rdev->int_scan_req = request; |
| return rdev_scan(rdev, request); |
| } |
| |
| void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, |
| bool send_message) |
| { |
| struct cfg80211_scan_request *request, *rdev_req; |
| struct wireless_dev *wdev; |
| struct sk_buff *msg; |
| #ifdef CONFIG_CFG80211_WEXT |
| union iwreq_data wrqu; |
| #endif |
| |
| lockdep_assert_held(&rdev->wiphy.mtx); |
| |
| if (rdev->scan_msg) { |
| nl80211_send_scan_msg(rdev, rdev->scan_msg); |
| rdev->scan_msg = NULL; |
| return; |
| } |
| |
| rdev_req = rdev->scan_req; |
| if (!rdev_req) |
| return; |
| |
| wdev = rdev_req->wdev; |
| request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req; |
| |
| if (wdev_running(wdev) && |
| (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) && |
| !rdev_req->scan_6ghz && !request->info.aborted && |
| !cfg80211_scan_6ghz(rdev)) |
| return; |
| |
| /* |
| * This must be before sending the other events! |
| * Otherwise, wpa_supplicant gets completely confused with |
| * wext events. |
| */ |
| if (wdev->netdev) |
| cfg80211_sme_scan_done(wdev->netdev); |
| |
| if (!request->info.aborted && |
| request->flags & NL80211_SCAN_FLAG_FLUSH) { |
| /* flush entries from previous scans */ |
| spin_lock_bh(&rdev->bss_lock); |
| __cfg80211_bss_expire(rdev, request->scan_start); |
| spin_unlock_bh(&rdev->bss_lock); |
| } |
| |
| msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted); |
| |
| #ifdef CONFIG_CFG80211_WEXT |
| if (wdev->netdev && !request->info.aborted) { |
| memset(&wrqu, 0, sizeof(wrqu)); |
| |
| wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL); |
| } |
| #endif |
| |
| dev_put(wdev->netdev); |
| |
| kfree(rdev->int_scan_req); |
| rdev->int_scan_req = NULL; |
| |
| kfree(rdev->scan_req); |
| rdev->scan_req = NULL; |
| |
| if (!send_message) |
| rdev->scan_msg = msg; |
| else |
| nl80211_send_scan_msg(rdev, msg); |
| } |
| |
| void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk) |
| { |
| ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true); |
| } |
| |
| void cfg80211_scan_done(struct cfg80211_scan_request *request, |
| struct cfg80211_scan_info *info) |
| { |
| struct cfg80211_scan_info old_info = request->info; |
| |
| trace_cfg80211_scan_done(request, info); |
| WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req && |
| request != wiphy_to_rdev(request->wiphy)->int_scan_req); |
| |
| request->info = *info; |
| |
| /* |
| * In case the scan is split, the scan_start_tsf and tsf_bssid should |
| * be of the first part. In such a case old_info.scan_start_tsf should |
| * be non zero. |
| */ |
| if (request->scan_6ghz && old_info.scan_start_tsf) { |
| request->info.scan_start_tsf = old_info.scan_start_tsf; |
| memcpy(request->info.tsf_bssid, old_info.tsf_bssid, |
| sizeof(request->info.tsf_bssid)); |
| } |
| |
| request->notified = true; |
| wiphy_work_queue(request->wiphy, |
| &wiphy_to_rdev(request->wiphy)->scan_done_wk); |
| } |
| EXPORT_SYMBOL(cfg80211_scan_done); |
| |
| void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, |
| struct cfg80211_sched_scan_request *req) |
| { |
| lockdep_assert_held(&rdev->wiphy.mtx); |
| |
| list_add_rcu(&req->list, &rdev->sched_scan_req_list); |
| } |
| |
| static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev, |
| struct cfg80211_sched_scan_request *req) |
| { |
| lockdep_assert_held(&rdev->wiphy.mtx); |
| |
| list_del_rcu(&req->list); |
| kfree_rcu(req, rcu_head); |
| } |
| |
| static struct cfg80211_sched_scan_request * |
| cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid) |
| { |
| struct cfg80211_sched_scan_request *pos; |
| |
| list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list, |
| lockdep_is_held(&rdev->wiphy.mtx)) { |
| if (pos->reqid == reqid) |
| return pos; |
| } |
| return NULL; |
| } |
| |
| /* |
| * Determines if a scheduled scan request can be handled. When a legacy |
| * scheduled scan is running no other scheduled scan is allowed regardless |
| * whether the request is for legacy or multi-support scan. When a multi-support |
| * scheduled scan is running a request for legacy scan is not allowed. In this |
| * case a request for multi-support scan can be handled if resources are |
| * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached. |
| */ |
| int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, |
| bool want_multi) |
| { |
| struct cfg80211_sched_scan_request *pos; |
| int i = 0; |
| |
| list_for_each_entry(pos, &rdev->sched_scan_req_list, list) { |
| /* request id zero means legacy in progress */ |
| if (!i && !pos->reqid) |
| return -EINPROGRESS; |
| i++; |
| } |
| |
| if (i) { |
| /* no legacy allowed when multi request(s) are active */ |
| if (!want_multi) |
| return -EINPROGRESS; |
| |
| /* resource limit reached */ |
| if (i == rdev->wiphy.max_sched_scan_reqs) |
| return -ENOSPC; |
| } |
| return 0; |
| } |
| |
| void cfg80211_sched_scan_results_wk(struct work_struct *work) |
| { |
| struct cfg80211_registered_device *rdev; |
| struct cfg80211_sched_scan_request *req, *tmp; |
| |
| rdev = container_of(work, struct cfg80211_registered_device, |
| sched_scan_res_wk); |
| |
| wiphy_lock(&rdev->wiphy); |
| list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) { |
| if (req->report_results) { |
| req->report_results = false; |
| if (req->flags & NL80211_SCAN_FLAG_FLUSH) { |
| /* flush entries from previous scans */ |
| spin_lock_bh(&rdev->bss_lock); |
| __cfg80211_bss_expire(rdev, req->scan_start); |
| spin_unlock_bh(&rdev->bss_lock); |
| req->scan_start = jiffies; |
| } |
| nl80211_send_sched_scan(req, |
| NL80211_CMD_SCHED_SCAN_RESULTS); |
| } |
| } |
| wiphy_unlock(&rdev->wiphy); |
| } |
| |
| void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid) |
| { |
| struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); |
| struct cfg80211_sched_scan_request *request; |
| |
| trace_cfg80211_sched_scan_results(wiphy, reqid); |
| /* ignore if we're not scanning */ |
| |
| rcu_read_lock(); |
| request = cfg80211_find_sched_scan_req(rdev, reqid); |
| if (request) { |
| request->report_results = true; |
| queue_work(cfg80211_wq, &rdev->sched_scan_res_wk); |
| } |
| rcu_read_unlock(); |
| } |
| EXPORT_SYMBOL(cfg80211_sched_scan_results); |
| |
| void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid) |
| { |
| struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); |
| |
| lockdep_assert_held(&wiphy->mtx); |
| |
| trace_cfg80211_sched_scan_stopped(wiphy, reqid); |
| |
| __cfg80211_stop_sched_scan(rdev, reqid, true); |
| } |
| EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked); |
| |
| void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid) |
| { |
| wiphy_lock(wiphy); |
| cfg80211_sched_scan_stopped_locked(wiphy, reqid); |
| wiphy_unlock(wiphy); |
| } |
| EXPORT_SYMBOL(cfg80211_sched_scan_stopped); |
| |
| int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, |
| struct cfg80211_sched_scan_request *req, |
| bool driver_initiated) |
| { |
| lockdep_assert_held(&rdev->wiphy.mtx); |
| |
| if (!driver_initiated) { |
| int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid); |
| if (err) |
| return err; |
| } |
| |
| nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED); |
| |
| cfg80211_del_sched_scan_req(rdev, req); |
| |
| return 0; |
| } |
| |
| int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, |
| u64 reqid, bool driver_initiated) |
| { |
| struct cfg80211_sched_scan_request *sched_scan_req; |
| |
| lockdep_assert_held(&rdev->wiphy.mtx); |
| |
| sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid); |
| if (!sched_scan_req) |
| return -ENOENT; |
| |
| return cfg80211_stop_sched_scan_req(rdev, sched_scan_req, |
| driver_initiated); |
| } |
| |
| void cfg80211_bss_age(struct cfg80211_registered_device *rdev, |
| unsigned long age_secs) |
| { |
| struct cfg80211_internal_bss *bss; |
| unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC); |
| |
| spin_lock_bh(&rdev->bss_lock); |
| list_for_each_entry(bss, &rdev->bss_list, list) |
| bss->ts -= age_jiffies; |
| spin_unlock_bh(&rdev->bss_lock); |
| } |
| |
| void cfg80211_bss_expire(struct cfg80211_registered_device *rdev) |
| { |
| __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE); |
| } |
| |
| void cfg80211_bss_flush(struct wiphy *wiphy) |
| { |
| struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); |
| |
| spin_lock_bh(&rdev->bss_lock); |
| __cfg80211_bss_expire(rdev, jiffies); |
| spin_unlock_bh(&rdev->bss_lock); |
| } |
| EXPORT_SYMBOL(cfg80211_bss_flush); |
| |
| const struct element * |
| cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len, |
| const u8 *match, unsigned int match_len, |
| unsigned int match_offset) |
| { |
| const struct element *elem; |
| |
| for_each_element_id(elem, eid, ies, len) { |
| if (elem->datalen >= match_offset + match_len && |
| !memcmp(elem->data + match_offset, match, match_len)) |
| return elem; |
| } |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL(cfg80211_find_elem_match); |
| |
| const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type, |
| const u8 *ies, |
| unsigned int len) |
| { |
| const struct element *elem; |
| u8 match[] = { oui >> 16, oui >> 8, oui, oui_type }; |
| int match_len = (oui_type < 0) ? 3 : sizeof(match); |
| |
| if (WARN_ON(oui_type > 0xff)) |
| return NULL; |
| |
| elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len, |
| match, match_len, 0); |
| |
| if (!elem || elem->datalen < 4) |
| return NULL; |
| |
| return elem; |
| } |
| EXPORT_SYMBOL(cfg80211_find_vendor_elem); |
| |
| /** |
| * enum bss_compare_mode - BSS compare mode |
| * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find) |
| * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode |
| * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode |
| */ |
| enum bss_compare_mode { |
| BSS_CMP_REGULAR, |
| BSS_CMP_HIDE_ZLEN, |
| BSS_CMP_HIDE_NUL, |
| }; |
| |
| static int cmp_bss(struct cfg80211_bss *a, |
| struct cfg80211_bss *b, |
| enum bss_compare_mode mode) |
| { |
| const struct cfg80211_bss_ies *a_ies, *b_ies; |
| const u8 *ie1 = NULL; |
| const u8 *ie2 = NULL; |
| int i, r; |
| |
| if (a->channel != b->channel) |
| return (b->channel->center_freq * 1000 + b->channel->freq_offset) - |
| (a->channel->center_freq * 1000 + a->channel->freq_offset); |
| |
| a_ies = rcu_access_pointer(a->ies); |
| if (!a_ies) |
| return -1; |
| b_ies = rcu_access_pointer(b->ies); |
| if (!b_ies) |
| return 1; |
| |
| if (WLAN_CAPABILITY_IS_STA_BSS(a->capability)) |
| ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID, |
| a_ies->data, a_ies->len); |
| if (WLAN_CAPABILITY_IS_STA_BSS(b->capability)) |
| ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID, |
| b_ies->data, b_ies->len); |
| if (ie1 && ie2) { |
| int mesh_id_cmp; |
| |
| if (ie1[1] == ie2[1]) |
| mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]); |
| else |
| mesh_id_cmp = ie2[1] - ie1[1]; |
| |
| ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, |
| a_ies->data, a_ies->len); |
| ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, |
| b_ies->data, b_ies->len); |
| if (ie1 && ie2) { |
| if (mesh_id_cmp) |
| return mesh_id_cmp; |
| if (ie1[1] != ie2[1]) |
| return ie2[1] - ie1[1]; |
| return memcmp(ie1 + 2, ie2 + 2, ie1[1]); |
| } |
| } |
| |
| r = memcmp(a->bssid, b->bssid, sizeof(a->bssid)); |
| if (r) |
| return r; |
| |
| ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len); |
| ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len); |
| |
| if (!ie1 && !ie2) |
| return 0; |
| |
| /* |
| * Note that with "hide_ssid", the function returns a match if |
| * the already-present BSS ("b") is a hidden SSID beacon for |
| * the new BSS ("a"). |
| */ |
| |
| /* sort missing IE before (left of) present IE */ |
| if (!ie1) |
| return -1; |
| if (!ie2) |
| return 1; |
| |
| switch (mode) { |
| case BSS_CMP_HIDE_ZLEN: |
| /* |
| * In ZLEN mode we assume the BSS entry we're |
| * looking for has a zero-length SSID. So if |
| * the one we're looking at right now has that, |
| * return 0. Otherwise, return the difference |
| * in length, but since we're looking for the |
| * 0-length it's really equivalent to returning |
| * the length of the one we're looking at. |
| * |
| * No content comparison is needed as we assume |
| * the content length is zero. |
| */ |
| return ie2[1]; |
| case BSS_CMP_REGULAR: |
| default: |
| /* sort by length first, then by contents */ |
| if (ie1[1] != ie2[1]) |
| return ie2[1] - ie1[1]; |
| return memcmp(ie1 + 2, ie2 + 2, ie1[1]); |
| case BSS_CMP_HIDE_NUL: |
| if (ie1[1] != ie2[1]) |
| return ie2[1] - ie1[1]; |
| /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */ |
| for (i = 0; i < ie2[1]; i++) |
| if (ie2[i + 2]) |
| return -1; |
| return 0; |
| } |
| } |
| |
| static bool cfg80211_bss_type_match(u16 capability, |
| enum nl80211_band band, |
| enum ieee80211_bss_type bss_type) |
| { |
| bool ret = true; |
| u16 mask, val; |
| |
| if (bss_type == IEEE80211_BSS_TYPE_ANY) |
| return ret; |
| |
| if (band == NL80211_BAND_60GHZ) { |
| mask = WLAN_CAPABILITY_DMG_TYPE_MASK; |
| switch (bss_type) { |
| case IEEE80211_BSS_TYPE_ESS: |
| val = WLAN_CAPABILITY_DMG_TYPE_AP; |
| break; |
| case IEEE80211_BSS_TYPE_PBSS: |
| val = WLAN_CAPABILITY_DMG_TYPE_PBSS; |
| break; |
| case IEEE80211_BSS_TYPE_IBSS: |
| val = WLAN_CAPABILITY_DMG_TYPE_IBSS; |
| break; |
| default: |
| return false; |
| } |
| } else { |
| mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS; |
| switch (bss_type) { |
| case IEEE80211_BSS_TYPE_ESS: |
| val = WLAN_CAPABILITY_ESS; |
| break; |
| case IEEE80211_BSS_TYPE_IBSS: |
| val = WLAN_CAPABILITY_IBSS; |
| break; |
| case IEEE80211_BSS_TYPE_MBSS: |
| val = 0; |
| break; |
| default: |
| return false; |
| } |
| } |
| |
| ret = ((capability & mask) == val); |
| return ret; |
| } |
| |
| /* Returned bss is reference counted and must be cleaned up appropriately. */ |
| struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy, |
| struct ieee80211_channel *channel, |
| const u8 *bssid, |
| const u8 *ssid, size_t ssid_len, |
| enum ieee80211_bss_type bss_type, |
| enum ieee80211_privacy privacy, |
| u32 use_for) |
| { |
| struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); |
| struct cfg80211_internal_bss *bss, *res = NULL; |
| unsigned long now = jiffies; |
| int bss_privacy; |
| |
| trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type, |
| privacy); |
| |
| spin_lock_bh(&rdev->bss_lock); |
| |
| list_for_each_entry(bss, &rdev->bss_list, list) { |
| if (!cfg80211_bss_type_match(bss->pub.capability, |
| bss->pub.channel->band, bss_type)) |
| continue; |
| |
| bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY); |
| if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) || |
| (privacy == IEEE80211_PRIVACY_OFF && bss_privacy)) |
| continue; |
| if (channel && bss->pub.channel != channel) |
| continue; |
| if (!is_valid_ether_addr(bss->pub.bssid)) |
| continue; |
| if ((bss->pub.use_for & use_for) != use_for) |
| continue; |
| /* Don't get expired BSS structs */ |
| if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) && |
| !atomic_read(&bss->hold)) |
| continue; |
| if (is_bss(&bss->pub, bssid, ssid, ssid_len)) { |
| res = bss; |
| bss_ref_get(rdev, res); |
| break; |
| } |
| } |
| |
| spin_unlock_bh(&rdev->bss_lock); |
| if (!res) |
| return NULL; |
| trace_cfg80211_return_bss(&res->pub); |
| return &res->pub; |
| } |
| EXPORT_SYMBOL(__cfg80211_get_bss); |
| |
| static bool rb_insert_bss(struct cfg80211_registered_device *rdev, |
| struct cfg80211_internal_bss *bss) |
| { |
| struct rb_node **p = &rdev->bss_tree.rb_node; |
| struct rb_node *parent = NULL; |
| struct cfg80211_internal_bss *tbss; |
| int cmp; |
| |
| while (*p) { |
| parent = *p; |
| tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn); |
| |
| cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR); |
| |
| if (WARN_ON(!cmp)) { |
| /* will sort of leak this BSS */ |
| return false; |
| } |
| |
| if (cmp < 0) |
| p = &(*p)->rb_left; |
| else |
| p = &(*p)->rb_right; |
| } |
| |
| rb_link_node(&bss->rbn, parent, p); |
| rb_insert_color(&bss->rbn, &rdev->bss_tree); |
| return true; |
| } |
| |
| static struct cfg80211_internal_bss * |
| rb_find_bss(struct cfg80211_registered_device *rdev, |
| struct cfg80211_internal_bss *res, |
| enum bss_compare_mode mode) |
| { |
| struct rb_node *n = rdev->bss_tree.rb_node; |
| struct cfg80211_internal_bss *bss; |
| int r; |
| |
| while (n) { |
| bss = rb_entry(n, struct cfg80211_internal_bss, rbn); |
| r = cmp_bss(&res->pub, &bss->pub, mode); |
| |
| if (r == 0) |
| return bss; |
| else if (r < 0) |
| n = n->rb_left; |
| else |
| n = n->rb_right; |
| } |
| |
| return NULL; |
| } |
| |
| static void cfg80211_insert_bss(struct cfg80211_registered_device *rdev, |
| struct cfg80211_internal_bss *bss) |
| { |
| lockdep_assert_held(&rdev->bss_lock); |
| |
| if (!rb_insert_bss(rdev, bss)) |
| return; |
| list_add_tail(&bss->list, &rdev->bss_list); |
| rdev->bss_entries++; |
| } |
| |
| static void cfg80211_rehash_bss(struct cfg80211_registered_device *rdev, |
| struct cfg80211_internal_bss *bss) |
| { |
| lockdep_assert_held(&rdev->bss_lock); |
| |
| rb_erase(&bss->rbn, &rdev->bss_tree); |
| if (!rb_insert_bss(rdev, bss)) { |
| list_del(&bss->list); |
| if (!list_empty(&bss->hidden_list)) |
| list_del_init(&bss->hidden_list); |
| if (!list_empty(&bss->pub.nontrans_list)) |
| list_del_init(&bss->pub.nontrans_list); |
| rdev->bss_entries--; |
| } |
| rdev->bss_generation++; |
| } |
| |
| static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev, |
| struct cfg80211_internal_bss *new) |
| { |
| const struct cfg80211_bss_ies *ies; |
| struct cfg80211_internal_bss *bss; |
| const u8 *ie; |
| int i, ssidlen; |
| u8 fold = 0; |
| u32 n_entries = 0; |
| |
| ies = rcu_access_pointer(new->pub.beacon_ies); |
| if (WARN_ON(!ies)) |
| return false; |
| |
| ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); |
| if (!ie) { |
| /* nothing to do */ |
| return true; |
| } |
| |
| ssidlen = ie[1]; |
| for (i = 0; i < ssidlen; i++) |
| fold |= ie[2 + i]; |
| |
| if (fold) { |
| /* not a hidden SSID */ |
| return true; |
| } |
| |
| /* This is the bad part ... */ |
| |
| list_for_each_entry(bss, &rdev->bss_list, list) { |
| /* |
| * we're iterating all the entries anyway, so take the |
| * opportunity to validate the list length accounting |
| */ |
| n_entries++; |
| |
| if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid)) |
| continue; |
| if (bss->pub.channel != new->pub.channel) |
| continue; |
| if (rcu_access_pointer(bss->pub.beacon_ies)) |
| continue; |
| ies = rcu_access_pointer(bss->pub.ies); |
| if (!ies) |
| continue; |
| ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); |
| if (!ie) |
| continue; |
| if (ssidlen && ie[1] != ssidlen) |
| continue; |
| if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss)) |
| continue; |
| if (WARN_ON_ONCE(!list_empty(&bss->hidden_list))) |
| list_del(&bss->hidden_list); |
| /* combine them */ |
| list_add(&bss->hidden_list, &new->hidden_list); |
| bss->pub.hidden_beacon_bss = &new->pub; |
| new->refcount += bss->refcount; |
| rcu_assign_pointer(bss->pub.beacon_ies, |
| new->pub.beacon_ies); |
| } |
| |
| WARN_ONCE(n_entries != rdev->bss_entries, |
| "rdev bss entries[%d]/list[len:%d] corruption\n", |
| rdev->bss_entries, n_entries); |
| |
| return true; |
| } |
| |
| static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known, |
| const struct cfg80211_bss_ies *new_ies, |
| const struct cfg80211_bss_ies *old_ies) |
| { |
| struct cfg80211_internal_bss *bss; |
| |
| /* Assign beacon IEs to all sub entries */ |
| list_for_each_entry(bss, &known->hidden_list, hidden_list) { |
| const struct cfg80211_bss_ies *ies; |
| |
| ies = rcu_access_pointer(bss->pub.beacon_ies); |
| WARN_ON(ies != old_ies); |
| |
| rcu_assign_pointer(bss->pub.beacon_ies, new_ies); |
| } |
| } |
| |
| static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev, |
| struct cfg80211_internal_bss *known, |
| const struct cfg80211_bss_ies *old) |
| { |
| const struct ieee80211_ext_chansw_ie *ecsa; |
| const struct element *elem_new, *elem_old; |
| const struct cfg80211_bss_ies *new, *bcn; |
| |
| if (known->pub.proberesp_ecsa_stuck) |
| return; |
| |
| new = rcu_dereference_protected(known->pub.proberesp_ies, |
| lockdep_is_held(&rdev->bss_lock)); |
| if (WARN_ON(!new)) |
| return; |
| |
| if (new->tsf - old->tsf < USEC_PER_SEC) |
| return; |
| |
| elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN, |
| old->data, old->len); |
| if (!elem_old) |
| return; |
| |
| elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN, |
| new->data, new->len); |
| if (!elem_new) |
| return; |
| |
| bcn = rcu_dereference_protected(known->pub.beacon_ies, |
| lockdep_is_held(&rdev->bss_lock)); |
| if (bcn && |
| cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN, |
| bcn->data, bcn->len)) |
| return; |
| |
| if (elem_new->datalen != elem_old->datalen) |
| return; |
| if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie)) |
| return; |
| if (memcmp(elem_new->data, elem_old->data, elem_new->datalen)) |
| return; |
| |
| ecsa = (void *)elem_new->data; |
| |
| if (!ecsa->mode) |
| return; |
| |
| if (ecsa->new_ch_num != |
| ieee80211_frequency_to_channel(known->pub.channel->center_freq)) |
| return; |
| |
| known->pub.proberesp_ecsa_stuck = 1; |
| } |
| |
| static bool |
| cfg80211_update_known_bss(struct cfg80211_registered_device *rdev, |
| struct cfg80211_internal_bss *known, |
| struct cfg80211_internal_bss *new, |
| bool signal_valid) |
| { |
| lockdep_assert_held(&rdev->bss_lock); |
| |
| /* Update IEs */ |
| if (rcu_access_pointer(new->pub.proberesp_ies)) { |
| const struct cfg80211_bss_ies *old; |
| |
| old = rcu_access_pointer(known->pub.proberesp_ies); |
| |
| rcu_assign_pointer(known->pub.proberesp_ies, |
| new->pub.proberesp_ies); |
| /* Override possible earlier Beacon frame IEs */ |
| rcu_assign_pointer(known->pub.ies, |
| new->pub.proberesp_ies); |
| if (old) { |
| cfg80211_check_stuck_ecsa(rdev, known, old); |
| kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); |
| } |
| } |
| |
| if (rcu_access_pointer(new->pub.beacon_ies)) { |
| const struct cfg80211_bss_ies *old; |
| |
| if (known->pub.hidden_beacon_bss && |
| !list_empty(&known->hidden_list)) { |
| const struct cfg80211_bss_ies *f; |
| |
| /* The known BSS struct is one of the probe |
| * response members of a group, but we're |
| * receiving a beacon (beacon_ies in the new |
| * bss is used). This can only mean that the |
| * AP changed its beacon from not having an |
| * SSID to showing it, which is confusing so |
| * drop this information. |
| */ |
| |
| f = rcu_access_pointer(new->pub.beacon_ies); |
| kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head); |
| return false; |
| } |
| |
| old = rcu_access_pointer(known->pub.beacon_ies); |
| |
| rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies); |
| |
| /* Override IEs if they were from a beacon before */ |
| if (old == rcu_access_pointer(known->pub.ies)) |
| rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies); |
| |
| cfg80211_update_hidden_bsses(known, |
| rcu_access_pointer(new->pub.beacon_ies), |
| old); |
| |
| if (old) |
| kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); |
| } |
| |
| known->pub.beacon_interval = new->pub.beacon_interval; |
| |
| /* don't update the signal if beacon was heard on |
| * adjacent channel. |
| */ |
| if (signal_valid) |
| known->pub.signal = new->pub.signal; |
| known->pub.capability = new->pub.capability; |
| known->ts = new->ts; |
| known->ts_boottime = new->ts_boottime; |
| known->parent_tsf = new->parent_tsf; |
| known->pub.chains = new->pub.chains; |
| memcpy(known->pub.chain_signal, new->pub.chain_signal, |
| IEEE80211_MAX_CHAINS); |
| ether_addr_copy(known->parent_bssid, new->parent_bssid); |
| known->pub.max_bssid_indicator = new->pub.max_bssid_indicator; |
| known->pub.bssid_index = new->pub.bssid_index; |
| known->pub.use_for &= new->pub.use_for; |
| known->pub.cannot_use_reasons = new->pub.cannot_use_reasons; |
| |
| return true; |
| } |
| |
| /* Returned bss is reference counted and must be cleaned up appropriately. */ |
| static struct cfg80211_internal_bss * |
| __cfg80211_bss_update(struct cfg80211_registered_device *rdev, |
| struct cfg80211_internal_bss *tmp, |
| bool signal_valid, unsigned long ts) |
| { |
| struct cfg80211_internal_bss *found = NULL; |
| struct cfg80211_bss_ies *ies; |
| |
| if (WARN_ON(!tmp->pub.channel)) |
| goto free_ies; |
| |
| tmp->ts = ts; |
| |
| if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) |
| goto free_ies; |
| |
| found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR); |
| |
| if (found) { |
| if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid)) |
| return NULL; |
| } else { |
| struct cfg80211_internal_bss *new; |
| struct cfg80211_internal_bss *hidden; |
| |
| /* |
| * create a copy -- the "res" variable that is passed in |
| * is allocated on the stack since it's not needed in the |
| * more common case of an update |
| */ |
| new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size, |
| GFP_ATOMIC); |
| if (!new) |
| goto free_ies; |
| memcpy(new, tmp, sizeof(*new)); |
| new->refcount = 1; |
| INIT_LIST_HEAD(&new->hidden_list); |
| INIT_LIST_HEAD(&new->pub.nontrans_list); |
| /* we'll set this later if it was non-NULL */ |
| new->pub.transmitted_bss = NULL; |
| |
| if (rcu_access_pointer(tmp->pub.proberesp_ies)) { |
| hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN); |
| if (!hidden) |
| hidden = rb_find_bss(rdev, tmp, |
| BSS_CMP_HIDE_NUL); |
| if (hidden) { |
| new->pub.hidden_beacon_bss = &hidden->pub; |
| list_add(&new->hidden_list, |
| &hidden->hidden_list); |
| hidden->refcount++; |
| |
| ies = (void *)rcu_access_pointer(new->pub.beacon_ies); |
| rcu_assign_pointer(new->pub.beacon_ies, |
| hidden->pub.beacon_ies); |
| if (ies) |
| kfree_rcu(ies, rcu_head); |
| } |
| } else { |
| /* |
| * Ok so we found a beacon, and don't have an entry. If |
| * it's a beacon with hidden SSID, we might be in for an |
| * expensive search for any probe responses that should |
| * be grouped with this beacon for updates ... |
| */ |
| if (!cfg80211_combine_bsses(rdev, new)) { |
| bss_ref_put(rdev, new); |
| return NULL; |
| } |
| } |
| |
| if (rdev->bss_entries >= bss_entries_limit && |
| !cfg80211_bss_expire_oldest(rdev)) { |
| bss_ref_put(rdev, new); |
| return NULL; |
| } |
| |
| /* This must be before the call to bss_ref_get */ |
| if (tmp->pub.transmitted_bss) { |
| new->pub.transmitted_bss = tmp->pub.transmitted_bss; |
| bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss)); |
| } |
| |
| cfg80211_insert_bss(rdev, new); |
| found = new; |
| } |
| |
| rdev->bss_generation++; |
| bss_ref_get(rdev, found); |
| |
| return found; |
| |
| free_ies: |
| ies = (void *)rcu_dereference(tmp->pub.beacon_ies); |
| if (ies) |
| kfree_rcu(ies, rcu_head); |
| ies = (void *)rcu_dereference(tmp->pub.proberesp_ies); |
| if (ies) |
| kfree_rcu(ies, rcu_head); |
| |
| return NULL; |
| } |
| |
| struct cfg80211_internal_bss * |
| cfg80211_bss_update(struct cfg80211_registered_device *rdev, |
| struct cfg80211_internal_bss *tmp, |
| bool signal_valid, unsigned long ts) |
| { |
| struct cfg80211_internal_bss *res; |
| |
| spin_lock_bh(&rdev->bss_lock); |
| res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts); |
| spin_unlock_bh(&rdev->bss_lock); |
| |
| return res; |
| } |
| |
| int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen, |
| enum nl80211_band band) |
| { |
| const struct element *tmp; |
| |
| if (band == NL80211_BAND_6GHZ) { |
| struct ieee80211_he_operation *he_oper; |
| |
| tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, |
| ielen); |
| if (tmp && tmp->datalen >= sizeof(*he_oper) && |
| tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) { |
| const struct ieee80211_he_6ghz_oper *he_6ghz_oper; |
| |
| he_oper = (void *)&tmp->data[1]; |
| |
| he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); |
| if (!he_6ghz_oper) |
| return -1; |
| |
| return he_6ghz_oper->primary; |
| } |
| } else if (band == NL80211_BAND_S1GHZ) { |
| tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen); |
| if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) { |
| struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data; |
| |
| return s1gop->oper_ch; |
| } |
| } else { |
| tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen); |
| if (tmp && tmp->datalen == 1) |
| return tmp->data[0]; |
| |
| tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen); |
| if (tmp && |
| tmp->datalen >= sizeof(struct ieee80211_ht_operation)) { |
| struct ieee80211_ht_operation *htop = (void *)tmp->data; |
| |
| return htop->primary_chan; |
| } |
| } |
| |
| return -1; |
| } |
| EXPORT_SYMBOL(cfg80211_get_ies_channel_number); |
| |
| /* |
| * Update RX channel information based on the available frame payload |
| * information. This is mainly for the 2.4 GHz band where frames can be received |
| * from neighboring channels and the Beacon frames use the DSSS Parameter Set |
| * element to indicate the current (transmitting) channel, but this might also |
| * be needed on other bands if RX frequency does not match with the actual |
| * operating channel of a BSS, or if the AP reports a different primary channel. |
| */ |
| static struct ieee80211_channel * |
| cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen, |
| struct ieee80211_channel *channel) |
| { |
| u32 freq; |
| int channel_number; |
| struct ieee80211_channel *alt_channel; |
| |
| channel_number = cfg80211_get_ies_channel_number(ie, ielen, |
| channel->band); |
| |
| if (channel_number < 0) { |
| /* No channel information in frame payload */ |
| return channel; |
| } |
| |
| freq = ieee80211_channel_to_freq_khz(channel_number, channel->band); |
| |
| /* |
| * Frame info (beacon/prob res) is the same as received channel, |
| * no need for further processing. |
| */ |
| if (freq == ieee80211_channel_to_khz(channel)) |
| return channel; |
| |
| alt_channel = ieee80211_get_channel_khz(wiphy, freq); |
| if (!alt_channel) { |
| if (channel->band == NL80211_BAND_2GHZ || |
| channel->band == NL80211_BAND_6GHZ) { |
| /* |
| * Better not allow unexpected channels when that could |
| * be going beyond the 1-11 range (e.g., discovering |
| * BSS on channel 12 when radio is configured for |
| * channel 11) or beyond the 6 GHz channel range. |
| */ |
| return NULL; |
| } |
| |
| /* No match for the payload channel number - ignore it */ |
| return channel; |
| } |
| |
| /* |
| * Use the channel determined through the payload channel number |
| * instead of the RX channel reported by the driver. |
| */ |
| if (alt_channel->flags & IEEE80211_CHAN_DISABLED) |
| return NULL; |
| return alt_channel; |
| } |
| |
| struct cfg80211_inform_single_bss_data { |
| struct cfg80211_inform_bss *drv_data; |
| enum cfg80211_bss_frame_type ftype; |
| struct ieee80211_channel *channel; |
| u8 bssid[ETH_ALEN]; |
| u64 tsf; |
| u16 capability; |
| u16 beacon_interval; |
| const u8 *ie; |
| size_t ielen; |
| |
| enum { |
| BSS_SOURCE_DIRECT = 0, |
| BSS_SOURCE_MBSSID, |
| BSS_SOURCE_STA_PROFILE, |
| } bss_source; |
| /* Set if reporting bss_source != BSS_SOURCE_DIRECT */ |
| struct cfg80211_bss *source_bss; |
| u8 max_bssid_indicator; |
| u8 bssid_index; |
| |
| u8 use_for; |
| u64 cannot_use_reasons; |
| }; |
| |
| enum ieee80211_ap_reg_power |
| cfg80211_get_6ghz_power_type(const u8 *elems, size_t elems_len) |
| { |
| const struct ieee80211_he_6ghz_oper *he_6ghz_oper; |
| struct ieee80211_he_operation *he_oper; |
| const struct element *tmp; |
| |
| tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, |
| elems, elems_len); |
| if (!tmp || tmp->datalen < sizeof(*he_oper) + 1 || |
| tmp->datalen < ieee80211_he_oper_size(tmp->data + 1)) |
| return IEEE80211_REG_UNSET_AP; |
| |
| he_oper = (void *)&tmp->data[1]; |
| he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); |
| |
| if (!he_6ghz_oper) |
| return IEEE80211_REG_UNSET_AP; |
| |
| switch (u8_get_bits(he_6ghz_oper->control, |
| IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) { |
| case IEEE80211_6GHZ_CTRL_REG_LPI_AP: |
| case IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP: |
| return IEEE80211_REG_LPI_AP; |
| case IEEE80211_6GHZ_CTRL_REG_SP_AP: |
| case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP: |
| return IEEE80211_REG_SP_AP; |
| case IEEE80211_6GHZ_CTRL_REG_VLP_AP: |
| return IEEE80211_REG_VLP_AP; |
| default: |
| return IEEE80211_REG_UNSET_AP; |
| } |
| } |
| |
| static bool cfg80211_6ghz_power_type_valid(const u8 *elems, size_t elems_len, |
| const u32 flags) |
| { |
| switch (cfg80211_get_6ghz_power_type(elems, elems_len)) { |
| case IEEE80211_REG_LPI_AP: |
| return true; |
| case IEEE80211_REG_SP_AP: |
| return !(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT); |
| case IEEE80211_REG_VLP_AP: |
| return !(flags & IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT); |
| default: |
| return false; |
| } |
| } |
| |
| /* Returned bss is reference counted and must be cleaned up appropriately. */ |
| static struct cfg80211_bss * |
| cfg80211_inform_single_bss_data(struct wiphy *wiphy, |
| struct cfg80211_inform_single_bss_data *data, |
| gfp_t gfp) |
| { |
| struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); |
| struct cfg80211_inform_bss *drv_data = data->drv_data; |
| struct cfg80211_bss_ies *ies; |
| struct ieee80211_channel *channel; |
| struct cfg80211_internal_bss tmp = {}, *res; |
| int bss_type; |
| bool signal_valid; |
| unsigned long ts; |
| |
| if (WARN_ON(!wiphy)) |
| return NULL; |
| |
| if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && |
| (drv_data->signal < 0 || drv_data->signal > 100))) |
| return NULL; |
| |
| if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss)) |
| return NULL; |
| |
| channel = data->channel; |
| if (!channel) |
| channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen, |
| drv_data->chan); |
| if (!channel) |
| return NULL; |
| |
| if (channel->band == NL80211_BAND_6GHZ && |
| !cfg80211_6ghz_power_type_valid(data->ie, data->ielen, |
| channel->flags)) { |
| data->use_for = 0; |
| data->cannot_use_reasons = |
| NL80211_BSS_CANNOT_USE_6GHZ_PWR_MISMATCH; |
| } |
| |
| memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN); |
| tmp.pub.channel = channel; |
| if (data->bss_source != BSS_SOURCE_STA_PROFILE) |
| tmp.pub.signal = drv_data->signal; |
| else |
| tmp.pub.signal = 0; |
| tmp.pub.beacon_interval = data->beacon_interval; |
| tmp.pub.capability = data->capability; |
| tmp.ts_boottime = drv_data->boottime_ns; |
| tmp.parent_tsf = drv_data->parent_tsf; |
| ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid); |
| tmp.pub.chains = drv_data->chains; |
| memcpy(tmp.pub.chain_signal, drv_data->chain_signal, |
| IEEE80211_MAX_CHAINS); |
| tmp.pub.use_for = data->use_for; |
| tmp.pub.cannot_use_reasons = data->cannot_use_reasons; |
| |
| switch (data->bss_source) { |
| case BSS_SOURCE_MBSSID: |
| tmp.pub.transmitted_bss = data->source_bss; |
| fallthrough; |
| case BSS_SOURCE_STA_PROFILE: |
| ts = bss_from_pub(data->source_bss)->ts; |
| tmp.pub.bssid_index = data->bssid_index; |
| tmp.pub.max_bssid_indicator = data->max_bssid_indicator; |
| break; |
| case BSS_SOURCE_DIRECT: |
| ts = jiffies; |
| |
| if (channel->band == NL80211_BAND_60GHZ) { |
| bss_type = data->capability & |
| WLAN_CAPABILITY_DMG_TYPE_MASK; |
| if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || |
| bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) |
| regulatory_hint_found_beacon(wiphy, channel, |
| gfp); |
| } else { |
| if (data->capability & WLAN_CAPABILITY_ESS) |
| regulatory_hint_found_beacon(wiphy, channel, |
| gfp); |
| } |
| break; |
| } |
| |
| /* |
| * If we do not know here whether the IEs are from a Beacon or Probe |
| * Response frame, we need to pick one of the options and only use it |
| * with the driver that does not provide the full Beacon/Probe Response |
| * frame. Use Beacon frame pointer to avoid indicating that this should |
| * override the IEs pointer should we have received an earlier |
| * indication of Probe Response data. |
| */ |
| ies = kzalloc(sizeof(*ies) + data->ielen, gfp); |
| if (!ies) |
| return NULL; |
| ies->len = data->ielen; |
| ies->tsf = data->tsf; |
| ies->from_beacon = false; |
| memcpy(ies->data, data->ie, data->ielen); |
| |
| switch (data->ftype) { |
| case CFG80211_BSS_FTYPE_BEACON: |
| case CFG80211_BSS_FTYPE_S1G_BEACON: |
| ies->from_beacon = true; |
| fallthrough; |
| case CFG80211_BSS_FTYPE_UNKNOWN: |
| rcu_assign_pointer(tmp.pub.beacon_ies, ies); |
| break; |
| case CFG80211_BSS_FTYPE_PRESP: |
| rcu_assign_pointer(tmp.pub.proberesp_ies, ies); |
| break; |
| } |
| rcu_assign_pointer(tmp.pub.ies, ies); |
| |
| signal_valid = drv_data->chan == channel; |
| spin_lock_bh(&rdev->bss_lock); |
| res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts); |
| if (!res) |
| goto drop; |
| |
| rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data); |
| |
| if (data->bss_source == BSS_SOURCE_MBSSID) { |
| /* this is a nontransmitting bss, we need to add it to |
| * transmitting bss' list if it is not there |
| */ |
| if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) { |
| if (__cfg80211_unlink_bss(rdev, res)) { |
| rdev->bss_generation++; |
| res = NULL; |
| } |
| } |
| |
| if (!res) |
| goto drop; |
| } |
| spin_unlock_bh(&rdev->bss_lock); |
| |
| trace_cfg80211_return_bss(&res->pub); |
| /* __cfg80211_bss_update gives us a referenced result */ |
| return &res->pub; |
| |
| drop: |
| spin_unlock_bh(&rdev->bss_lock); |
| return NULL; |
| } |
| |
| static const struct element |
| *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen, |
| const struct element *mbssid_elem, |
| const struct element *sub_elem) |
| { |
| const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen; |
| const struct element *next_mbssid; |
| const struct element *next_sub; |
| |
| next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, |
| mbssid_end, |
| ielen - (mbssid_end - ie)); |
| |
| /* |
| * If it is not the last subelement in current MBSSID IE or there isn't |
| * a next MBSSID IE - profile is complete. |
| */ |
| if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) || |
| !next_mbssid) |
| return NULL; |
| |
| /* For any length error, just return NULL */ |
| |
| if (next_mbssid->datalen < 4) |
| return NULL; |
| |
| next_sub = (void *)&next_mbssid->data[1]; |
| |
| if (next_mbssid->data + next_mbssid->datalen < |
| next_sub->data + next_sub->datalen) |
| return NULL; |
| |
| if (next_sub->id != 0 || next_sub->datalen < 2) |
| return NULL; |
| |
| /* |
| * Check if the first element in the next sub element is a start |
| * of a new profile |
| */ |
| return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ? |
| NULL : next_mbssid; |
| } |
| |
| size_t cfg80211_merge_profile(const u8 *ie, size_t ielen, |
| const struct element *mbssid_elem, |
| const struct element *sub_elem, |
| u8 *merged_ie, size_t max_copy_len) |
| { |
| size_t copied_len = sub_elem->datalen; |
| const struct element *next_mbssid; |
| |
| if (sub_elem->datalen > max_copy_len) |
| return 0; |
| |
| memcpy(merged_ie, sub_elem->data, sub_elem->datalen); |
| |
| while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen, |
| mbssid_elem, |
| sub_elem))) { |
| const struct element *next_sub = (void *)&next_mbssid->data[1]; |
| |
| if (copied_len + next_sub->datalen > max_copy_len) |
| break; |
| memcpy(merged_ie + copied_len, next_sub->data, |
| next_sub->datalen); |
| copied_len += next_sub->datalen; |
| } |
| |
| return copied_len; |
| } |
| EXPORT_SYMBOL(cfg80211_merge_profile); |
| |
| static void |
| cfg80211_parse_mbssid_data(struct wiphy *wiphy, |
| struct cfg80211_inform_single_bss_data *tx_data, |
| struct cfg80211_bss *source_bss, |
| gfp_t gfp) |
| { |
| struct cfg80211_inform_single_bss_data data = { |
| .drv_data = tx_data->drv_data, |
| .ftype = tx_data->ftype, |
| .tsf = tx_data->tsf, |
| .beacon_interval = tx_data->beacon_interval, |
| .source_bss = source_bss, |
| .bss_source = BSS_SOURCE_MBSSID, |
| .use_for = tx_data->use_for, |
| .cannot_use_reasons = tx_data->cannot_use_reasons, |
| }; |
| const u8 *mbssid_index_ie; |
| const struct element *elem, *sub; |
| u8 *new_ie, *profile; |
| u64 seen_indices = 0; |
| struct cfg80211_bss *bss; |
| |
| if (!source_bss) |
| return; |
| if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, |
| tx_data->ie, tx_data->ielen)) |
| return; |
| if (!wiphy->support_mbssid) |
| return; |
| if (wiphy->support_only_he_mbssid && |
| !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, |
| tx_data->ie, tx_data->ielen)) |
| return; |
| |
| new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); |
| if (!new_ie) |
| return; |
| |
| profile = kmalloc(tx_data->ielen, gfp); |
| if (!profile) |
| goto out; |
| |
| for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, |
| tx_data->ie, tx_data->ielen) { |
| if (elem->datalen < 4) |
| continue; |
| if (elem->data[0] < 1 || (int)elem->data[0] > 8) |
| continue; |
| for_each_element(sub, elem->data + 1, elem->datalen - 1) { |
| u8 profile_len; |
| |
| if (sub->id != 0 || sub->datalen < 4) { |
| /* not a valid BSS profile */ |
| continue; |
| } |
| |
| if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || |
| sub->data[1] != 2) { |
| /* The first element within the Nontransmitted |
| * BSSID Profile is not the Nontransmitted |
| * BSSID Capability element. |
| */ |
| continue; |
| } |
| |
| memset(profile, 0, tx_data->ielen); |
| profile_len = cfg80211_merge_profile(tx_data->ie, |
| tx_data->ielen, |
| elem, |
| sub, |
| profile, |
| tx_data->ielen); |
| |
| /* found a Nontransmitted BSSID Profile */ |
| mbssid_index_ie = cfg80211_find_ie |
| (WLAN_EID_MULTI_BSSID_IDX, |
| profile, profile_len); |
| if (!mbssid_index_ie || mbssid_index_ie[1] < 1 || |
| mbssid_index_ie[2] == 0 || |
| mbssid_index_ie[2] > 46 || |
| mbssid_index_ie[2] >= (1 << elem->data[0])) { |
| /* No valid Multiple BSSID-Index element */ |
| continue; |
| } |
| |
| if (seen_indices & BIT_ULL(mbssid_index_ie[2])) |
| /* We don't support legacy split of a profile */ |
| net_dbg_ratelimited("Partial info for BSSID index %d\n", |
| mbssid_index_ie[2]); |
| |
| seen_indices |= BIT_ULL(mbssid_index_ie[2]); |
| |
| data.bssid_index = mbssid_index_ie[2]; |
| data.max_bssid_indicator = elem->data[0]; |
| |
| cfg80211_gen_new_bssid(tx_data->bssid, |
| data.max_bssid_indicator, |
| data.bssid_index, |
| data.bssid); |
| |
| memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); |
| data.ie = new_ie; |
| data.ielen = cfg80211_gen_new_ie(tx_data->ie, |
| tx_data->ielen, |
| profile, |
| profile_len, |
| new_ie, |
| IEEE80211_MAX_DATA_LEN); |
| if (!data.ielen) |
| continue; |
| |
| data.capability = get_unaligned_le16(profile + 2); |
| bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp); |
| if (!bss) |
| break; |
| cfg80211_put_bss(wiphy, bss); |
| } |
| } |
| |
| out: |
| kfree(new_ie); |
| kfree(profile); |
| } |
| |
| ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies, |
| size_t ieslen, u8 *data, size_t data_len, |
| u8 frag_id) |
| { |
| const struct element *next; |
| ssize_t copied; |
| u8 elem_datalen; |
| |
| if (!elem) |
| return -EINVAL; |
| |
| /* elem might be invalid after the memmove */ |
| next = (void *)(elem->data + elem->datalen); |
| elem_datalen = elem->datalen; |
| |
| if (elem->id == WLAN_EID_EXTENSION) { |
| copied = elem->datalen - 1; |
| |
| if (data) { |
| if (copied > data_len) |
| return -ENOSPC; |
| |
| memmove(data, elem->data + 1, copied); |
| } |
| } else { |
| copied = elem->datalen; |
| |
| if (data) { |
| if (copied > data_len) |
| return -ENOSPC; |
| |
| memmove(data, elem->data, copied); |
| } |
| } |
| |
| /* Fragmented elements must have 255 bytes */ |
| if (elem_datalen < 255) |
| return copied; |
| |
| for (elem = next; |
| elem->data < ies + ieslen && |
| elem->data + elem->datalen <= ies + ieslen; |
| elem = next) { |
| /* elem might be invalid after the memmove */ |
| next = (void *)(elem->data + elem->datalen); |
| |
| if (elem->id != frag_id) |
| break; |
| |
| elem_datalen = elem->datalen; |
| |
| if (data) { |
| if (copied + elem_datalen > data_len) |
| return -ENOSPC; |
| |
| memmove(data + copied, elem->data, elem_datalen); |
| } |
| |
| copied += elem_datalen; |
| |
| /* Only the last fragment may be short */ |
| if (elem_datalen != 255) |
| break; |
| } |
| |
| return copied; |
| } |
| EXPORT_SYMBOL(cfg80211_defragment_element); |
| |
| struct cfg80211_mle { |
| struct ieee80211_multi_link_elem *mle; |
| struct ieee80211_mle_per_sta_profile |
| *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS]; |
| ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS]; |
| |
| u8 data[]; |
| }; |
| |
| static struct cfg80211_mle * |
| cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen, |
| gfp_t gfp) |
| { |
| const struct element *elem; |
| struct cfg80211_mle *res; |
| size_t buf_len; |
| ssize_t mle_len; |
| u8 common_size, idx; |
| |
| if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1)) |
| return NULL; |
| |
| /* Required length for first defragmentation */ |
| buf_len = mle->datalen - 1; |
| for_each_element(elem, mle->data + mle->datalen, |
| ielen - sizeof(*mle) + mle->datalen) { |
| if (elem->id != WLAN_EID_FRAGMENT) |
| break; |
| |
| buf_len += elem->datalen; |
| } |
| |
| res = kzalloc(struct_size(res, data, buf_len), gfp); |
| if (!res) |
| return NULL; |
| |
| mle_len = cfg80211_defragment_element(mle, ie, ielen, |
| res->data, buf_len, |
| WLAN_EID_FRAGMENT); |
| if (mle_len < 0) |
| goto error; |
| |
| res->mle = (void *)res->data; |
| |
| /* Find the sub-element area in the buffer */ |
| common_size = ieee80211_mle_common_size((u8 *)res->mle); |
| ie = res->data + common_size; |
| ielen = mle_len - common_size; |
| |
| idx = 0; |
| for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE, |
| ie, ielen) { |
| res->sta_prof[idx] = (void *)elem->data; |
| res->sta_prof_len[idx] = elem->datalen; |
| |
| idx++; |
| if (idx >= IEEE80211_MLD_MAX_NUM_LINKS) |
| break; |
| } |
| if (!for_each_element_completed(elem, ie, ielen)) |
| goto error; |
| |
| /* Defragment sta_info in-place */ |
| for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx]; |
| idx++) { |
| if (res->sta_prof_len[idx] < 255) |
| continue; |
| |
| elem = (void *)res->sta_prof[idx] - 2; |
| |
| if (idx + 1 < ARRAY_SIZE(res->sta_prof) && |
| res->sta_prof[idx + 1]) |
| buf_len = (u8 *)res->sta_prof[idx + 1] - |
| (u8 *)res->sta_prof[idx]; |
| else |
| buf_len = ielen + ie - (u8 *)elem; |
| |
| res->sta_prof_len[idx] = |
| cfg80211_defragment_element(elem, |
| (u8 *)elem, buf_len, |
| (u8 *)res->sta_prof[idx], |
| buf_len, |
| IEEE80211_MLE_SUBELEM_FRAGMENT); |
| if (res->sta_prof_len[idx] < 0) |
| goto error; |
| } |
| |
| return res; |
| |
| error: |
| kfree(res); |
| return NULL; |
| } |
| |
| struct tbtt_info_iter_data { |
| const struct ieee80211_neighbor_ap_info *ap_info; |
| u8 param_ch_count; |
| u32 use_for; |
| u8 mld_id, link_id; |
| bool non_tx; |
| }; |
| |
| static enum cfg80211_rnr_iter_ret |
| cfg802121_mld_ap_rnr_iter(void *_data, u8 type, |
| const struct ieee80211_neighbor_ap_info *info, |
| const u8 *tbtt_info, u8 tbtt_info_len) |
| { |
| const struct ieee80211_rnr_mld_params *mld_params; |
| struct tbtt_info_iter_data *data = _data; |
| u8 link_id; |
| bool non_tx = false; |
| |
| if (type == IEEE80211_TBTT_INFO_TYPE_TBTT && |
| tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11, |
| mld_params)) { |
| const struct ieee80211_tbtt_info_ge_11 *tbtt_info_ge_11 = |
| (void *)tbtt_info; |
| |
| non_tx = (tbtt_info_ge_11->bss_params & |
| (IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID | |
| IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID)) == |
| IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID; |
| mld_params = &tbtt_info_ge_11->mld_params; |
| } else if (type == IEEE80211_TBTT_INFO_TYPE_MLD && |
| tbtt_info_len >= sizeof(struct ieee80211_rnr_mld_params)) |
| mld_params = (void *)tbtt_info; |
| else |
| return RNR_ITER_CONTINUE; |
| |
| link_id = le16_get_bits(mld_params->params, |
| IEEE80211_RNR_MLD_PARAMS_LINK_ID); |
| |
| if (data->mld_id != mld_params->mld_id) |
| return RNR_ITER_CONTINUE; |
| |
| if (data->link_id != link_id) |
| return RNR_ITER_CONTINUE; |
| |
| data->ap_info = info; |
| data->param_ch_count = |
| le16_get_bits(mld_params->params, |
| IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT); |
| data->non_tx = non_tx; |
| |
| if (type == IEEE80211_TBTT_INFO_TYPE_TBTT) |
| data->use_for = NL80211_BSS_USE_FOR_ALL; |
| else |
| data->use_for = NL80211_BSS_USE_FOR_MLD_LINK; |
| return RNR_ITER_BREAK; |
| } |
| |
| static u8 |
| cfg80211_rnr_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id, |
| const struct ieee80211_neighbor_ap_info **ap_info, |
| u8 *param_ch_count, bool *non_tx) |
| { |
| struct tbtt_info_iter_data data = { |
| .mld_id = mld_id, |
| .link_id = link_id, |
| }; |
| |
| cfg80211_iter_rnr(ie, ielen, cfg802121_mld_ap_rnr_iter, &data); |
| |
| *ap_info = data.ap_info; |
| *param_ch_count = data.param_ch_count; |
| *non_tx = data.non_tx; |
| |
| return data.use_for; |
| } |
| |
| static struct element * |
| cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid, |
| bool same_mld, u8 link_id, u8 bss_change_count, |
| gfp_t gfp) |
| { |
| const struct cfg80211_bss_ies *ies; |
| struct ieee80211_neighbor_ap_info ap_info; |
| struct ieee80211_tbtt_info_ge_11 tbtt_info; |
| u32 short_ssid; |
| const struct element *elem; |
| struct element *res; |
| |
| /* |
| * We only generate the RNR to permit ML lookups. For that we do not |
| * need an entry for the corresponding transmitting BSS, lets just skip |
| * it even though it would be easy to add. |
| */ |
| if (!same_mld) |
| return NULL; |
| |
| /* We could use tx_data->ies if we change cfg80211_calc_short_ssid */ |
| rcu_read_lock(); |
| ies = rcu_dereference(source_bss->ies); |
| |
| ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params); |
| ap_info.tbtt_info_hdr = |
| u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT, |
| IEEE80211_AP_INFO_TBTT_HDR_TYPE) | |
| u8_encode_bits(0, IEEE80211_AP_INFO_TBTT_HDR_COUNT); |
| |
| ap_info.channel = ieee80211_frequency_to_channel(source_bss->channel->center_freq); |
| |
| /* operating class */ |
| elem = cfg80211_find_elem(WLAN_EID_SUPPORTED_REGULATORY_CLASSES, |
| ies->data, ies->len); |
| if (elem && elem->datalen >= 1) { |
| ap_info.op_class = elem->data[0]; |
| } else { |
| struct cfg80211_chan_def chandef; |
| |
| /* The AP is not providing us with anything to work with. So |
| * make up a somewhat reasonable operating class, but don't |
| * bother with it too much as no one will ever use the |
| * information. |
| */ |
| cfg80211_chandef_create(&chandef, source_bss->channel, |
| NL80211_CHAN_NO_HT); |
| |
| if (!ieee80211_chandef_to_operating_class(&chandef, |
| &ap_info.op_class)) |
| goto out_unlock; |
| } |
| |
| /* Just set TBTT offset and PSD 20 to invalid/unknown */ |
| tbtt_info.tbtt_offset = 255; |
| tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED; |
| |
| memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN); |
| if (cfg80211_calc_short_ssid(ies, &elem, &short_ssid)) |
| goto out_unlock; |
| |
| rcu_read_unlock(); |
| |
| tbtt_info.short_ssid = cpu_to_le32(short_ssid); |
| |
| tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID; |
| |
| if (is_mbssid) { |
| tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID; |
| tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID; |
| } |
| |
| tbtt_info.mld_params.mld_id = 0; |
| tbtt_info.mld_params.params = |
| le16_encode_bits(link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) | |
| le16_encode_bits(bss_change_count, |
| IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT); |
| |
| res = kzalloc(struct_size(res, data, |
| sizeof(ap_info) + ap_info.tbtt_info_len), |
| gfp); |
| if (!res) |
| return NULL; |
| |
| /* Copy the data */ |
| res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT; |
| res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len; |
| memcpy(res->data, &ap_info, sizeof(ap_info)); |
| memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len); |
| |
| return res; |
| |
| out_unlock: |
| rcu_read_unlock(); |
| return NULL; |
| } |
| |
| static void |
| cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy, |
| struct cfg80211_inform_single_bss_data *tx_data, |
| struct cfg80211_bss *source_bss, |
| const struct element *elem, |
| gfp_t gfp) |
| { |
| struct cfg80211_inform_single_bss_data data = { |
| .drv_data = tx_data->drv_data, |
| .ftype = tx_data->ftype, |
| .source_bss = source_bss, |
| .bss_source = BSS_SOURCE_STA_PROFILE, |
| }; |
| struct element *reporter_rnr = NULL; |
| struct ieee80211_multi_link_elem *ml_elem; |
| struct cfg80211_mle *mle; |
| u16 control; |
| u8 ml_common_len; |
| u8 *new_ie = NULL; |
| struct cfg80211_bss *bss; |
| u8 mld_id, reporter_link_id, bss_change_count; |
| u16 seen_links = 0; |
| u8 i; |
| |
| if (!ieee80211_mle_type_ok(elem->data + 1, |
| IEEE80211_ML_CONTROL_TYPE_BASIC, |
| elem->datalen - 1)) |
| return; |
| |
| ml_elem = (void *)(elem->data + 1); |
| control = le16_to_cpu(ml_elem->control); |
| ml_common_len = ml_elem->variable[0]; |
| |
| /* Must be present when transmitted by an AP (in a probe response) */ |
| if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) || |
| !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) || |
| !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)) |
| return; |
| |
| reporter_link_id = ieee80211_mle_get_link_id(elem->data + 1); |
| bss_change_count = ieee80211_mle_get_bss_param_ch_cnt(elem->data + 1); |
| |
| /* |
| * The MLD ID of the reporting AP is always zero. It is set if the AP |
| * is part of an MBSSID set and will be non-zero for ML Elements |
| * relating to a nontransmitted BSS (matching the Multi-BSSID Index, |
| * Draft P802.11be_D3.2, 35.3.4.2) |
| */ |
| mld_id = ieee80211_mle_get_mld_id(elem->data + 1); |
| |
| /* Fully defrag the ML element for sta information/profile iteration */ |
| mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp); |
| if (!mle) |
| return; |
| |
| /* No point in doing anything if there is no per-STA profile */ |
| if (!mle->sta_prof[0]) |
| goto out; |
| |
| new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); |
| if (!new_ie) |
| goto out; |
| |
| reporter_rnr = cfg80211_gen_reporter_rnr(source_bss, |
| u16_get_bits(control, |
| IEEE80211_MLC_BASIC_PRES_MLD_ID), |
| mld_id == 0, reporter_link_id, |
| bss_change_count, |
| gfp); |
| |
| for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) { |
| const struct ieee80211_neighbor_ap_info *ap_info; |
| enum nl80211_band band; |
| u32 freq; |
| const u8 *profile; |
| ssize_t profile_len; |
| u8 param_ch_count; |
| u8 link_id, use_for; |
| bool non_tx; |
| |
| if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i], |
| mle->sta_prof_len[i])) |
| continue; |
| |
| control = le16_to_cpu(mle->sta_prof[i]->control); |
| |
| if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE)) |
| continue; |
| |
| link_id = u16_get_bits(control, |
| IEEE80211_MLE_STA_CONTROL_LINK_ID); |
| if (seen_links & BIT(link_id)) |
| break; |
| seen_links |= BIT(link_id); |
| |
| if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) || |
| !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) || |
| !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)) |
| continue; |
| |
| memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN); |
| data.beacon_interval = |
| get_unaligned_le16(mle->sta_prof[i]->variable + 6); |
| data.tsf = tx_data->tsf + |
| get_unaligned_le64(mle->sta_prof[i]->variable + 8); |
| |
| /* sta_info_len counts itself */ |
| profile = mle->sta_prof[i]->variable + |
| mle->sta_prof[i]->sta_info_len - 1; |
| profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] - |
| profile; |
| |
| if (profile_len < 2) |
| continue; |
| |
| data.capability = get_unaligned_le16(profile); |
| profile += 2; |
| profile_len -= 2; |
| |
| /* Find in RNR to look up channel information */ |
| use_for = cfg80211_rnr_info_for_mld_ap(tx_data->ie, |
| tx_data->ielen, |
| mld_id, link_id, |
| &ap_info, |
| ¶m_ch_count, |
| &non_tx); |
| if (!use_for) |
| continue; |
| |
| /* |
| * As of 802.11be_D5.0, the specification does not give us any |
| * way of discovering both the MaxBSSID and the Multiple-BSSID |
| * Index. It does seem like the Multiple-BSSID Index element |
| * may be provided, but section 9.4.2.45 explicitly forbids |
| * including a Multiple-BSSID Element (in this case without any |
| * subelements). |
| * Without both pieces of information we cannot calculate the |
| * reference BSSID, so simply ignore the BSS. |
| */ |
| if (non_tx) |
| continue; |
| |
| /* We could sanity check the BSSID is included */ |
| |
| if (!ieee80211_operating_class_to_band(ap_info->op_class, |
| &band)) |
| continue; |
| |
| freq = ieee80211_channel_to_freq_khz(ap_info->channel, band); |
| data.channel = ieee80211_get_channel_khz(wiphy, freq); |
| |
| if (use_for == NL80211_BSS_USE_FOR_MLD_LINK && |
| !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) { |
| use_for = 0; |
| data.cannot_use_reasons = |
| NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY; |
| } |
| data.use_for = use_for; |
| |
| /* Generate new elements */ |
| memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); |
| data.ie = new_ie; |
| data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen, |
| profile, profile_len, |
| new_ie, |
| IEEE80211_MAX_DATA_LEN); |
| if (!data.ielen) |
| continue; |
| |
| /* The generated elements do not contain: |
| * - Basic ML element |
| * - A TBTT entry in the RNR for the transmitting AP |
| * |
| * This information is needed both internally and in userspace |
| * as such, we should append it here. |
| */ |
| if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len > |
| IEEE80211_MAX_DATA_LEN) |
| continue; |
| |
| /* Copy the Basic Multi-Link element including the common |
| * information, and then fix up the link ID and BSS param |
| * change count. |
| * Note that the ML element length has been verified and we |
| * also checked that it contains the link ID. |
| */ |
| new_ie[data.ielen++] = WLAN_EID_EXTENSION; |
| new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len; |
| new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK; |
| memcpy(new_ie + data.ielen, ml_elem, |
| sizeof(*ml_elem) + ml_common_len); |
| |
| new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id; |
| new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN + 1] = |
| param_ch_count; |
| |
| data.ielen += sizeof(*ml_elem) + ml_common_len; |
| |
| if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) { |
| if (data.ielen + sizeof(struct element) + |
| reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN) |
| continue; |
| |
| memcpy(new_ie + data.ielen, reporter_rnr, |
| sizeof(struct element) + reporter_rnr->datalen); |
| data.ielen += sizeof(struct element) + |
| reporter_rnr->datalen; |
| } |
| |
| bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp); |
| if (!bss) |
| break; |
| cfg80211_put_bss(wiphy, bss); |
| } |
| |
| out: |
| kfree(reporter_rnr); |
| kfree(new_ie); |
| kfree(mle); |
| } |
| |
| static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy, |
| struct cfg80211_inform_single_bss_data *tx_data, |
| struct cfg80211_bss *source_bss, |
| gfp_t gfp) |
| { |
| const struct element *elem; |
| |
| if (!source_bss) |
| return; |
| |
| if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP) |
| return; |
| |
| for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK, |
| tx_data->ie, tx_data->ielen) |
| cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss, |
| elem, gfp); |
| } |
| |
| struct cfg80211_bss * |
| cfg80211_inform_bss_data(struct wiphy *wiphy, |
| struct cfg80211_inform_bss *data, |
| enum cfg80211_bss_frame_type ftype, |
| const u8 *bssid, u64 tsf, u16 capability, |
| u16 beacon_interval, const u8 *ie, size_t ielen, |
| gfp_t gfp) |
| { |
| struct cfg80211_inform_single_bss_data inform_data = { |
| .drv_data = data, |
| .ftype = ftype, |
| .tsf = tsf, |
| .capability = capability, |
| .beacon_interval = beacon_interval, |
| .ie = ie, |
| .ielen = ielen, |
| .use_for = data->restrict_use ? |
| data->use_for : |
| NL80211_BSS_USE_FOR_ALL, |
| .cannot_use_reasons = data->cannot_use_reasons, |
| }; |
| struct cfg80211_bss *res; |
| |
| memcpy(inform_data.bssid, bssid, ETH_ALEN); |
| |
| res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp); |
| if (!res) |
| return NULL; |
| |
| /* don't do any further MBSSID/ML handling for S1G */ |
| if (ftype == CFG80211_BSS_FTYPE_S1G_BEACON) |
| return res; |
| |
| cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp); |
| |
| cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp); |
| |
| return res; |
| } |
| EXPORT_SYMBOL(cfg80211_inform_bss_data); |
| |
| struct cfg80211_bss * |
| cfg80211_inform_bss_frame_data(struct wiphy *wiphy, |
| struct cfg80211_inform_bss *data, |
| struct ieee80211_mgmt *mgmt, size_t len, |
| gfp_t gfp) |
| { |
| size_t min_hdr_len; |
| struct ieee80211_ext *ext = NULL; |
| enum cfg80211_bss_frame_type ftype; |
| u16 beacon_interval; |
| const u8 *bssid; |
| u16 capability; |
| const u8 *ie; |
| size_t ielen; |
| u64 tsf; |
| |
| if (WARN_ON(!mgmt)) |
| return NULL; |
| |
| if (WARN_ON(!wiphy)) |
| return NULL; |
| |
| BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) != |
| offsetof(struct ieee80211_mgmt, u.beacon.variable)); |
| |
| trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len); |
| |
| if (ieee80211_is_s1g_beacon(mgmt->frame_control)) { |
| ext = (void *) mgmt; |
| if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) |
| min_hdr_len = offsetof(struct ieee80211_ext, |
| u.s1g_short_beacon.variable); |
| else |
| min_hdr_len = offsetof(struct ieee80211_ext, |
| u.s1g_beacon.variable); |
| } else { |
| /* same for beacons */ |
| min_hdr_len = offsetof(struct ieee80211_mgmt, |
| u.probe_resp.variable); |
| } |
| |
| if (WARN_ON(len < min_hdr_len)) |
| return NULL; |
| |
| ielen = len - min_hdr_len; |
| ie = mgmt->u.probe_resp.variable; |
| if (ext) { |
| const struct ieee80211_s1g_bcn_compat_ie *compat; |
| const struct element *elem; |
| |
| if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) |
| ie = ext->u.s1g_short_beacon.variable; |
| else |
| ie = ext->u.s1g_beacon.variable; |
| |
| elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, ie, ielen); |
| if (!elem) |
| return NULL; |
| if (elem->datalen < sizeof(*compat)) |
| return NULL; |
| compat = (void *)elem->data; |
| bssid = ext->u.s1g_beacon.sa; |
| capability = le16_to_cpu(compat->compat_info); |
| beacon_interval = le16_to_cpu(compat->beacon_int); |
| } else { |
| bssid = mgmt->bssid; |
| beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int); |
| capability = le16_to_cpu(mgmt->u.probe_resp.capab_info); |
| } |
| |
| tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); |
| |
| if (ieee80211_is_probe_resp(mgmt->frame_control)) |
| ftype = CFG80211_BSS_FTYPE_PRESP; |
| else if (ext) |
| ftype = CFG80211_BSS_FTYPE_S1G_BEACON; |
| else |
| ftype = CFG80211_BSS_FTYPE_BEACON; |
| |
| return cfg80211_inform_bss_data(wiphy, data, ftype, |
| bssid, tsf, capability, |
| beacon_interval, ie, ielen, |
| gfp); |
| } |
| EXPORT_SYMBOL(cfg80211_inform_bss_frame_data); |
| |
| void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) |
| { |
| struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); |
| |
| if (!pub) |
| return; |
| |
| spin_lock_bh(&rdev->bss_lock); |
| bss_ref_get(rdev, bss_from_pub(pub)); |
| spin_unlock_bh(&rdev->bss_lock); |
| } |
| EXPORT_SYMBOL(cfg80211_ref_bss); |
| |
| void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) |
| { |
| struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); |
| |
| if (!pub) |
| return; |
| |
| spin_lock_bh(&rdev->bss_lock); |
| bss_ref_put(rdev, bss_from_pub(pub)); |
| spin_unlock_bh(&rdev->bss_lock); |
| } |
| EXPORT_SYMBOL(cfg80211_put_bss); |
| |
| void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) |
| { |
| struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); |
| struct cfg80211_internal_bss *bss, *tmp1; |
| struct cfg80211_bss *nontrans_bss, *tmp; |
| |
| if (WARN_ON(!pub)) |
| return; |
| |
| bss = bss_from_pub(pub); |
| |
| spin_lock_bh(&rdev->bss_lock); |
| if (list_empty(&bss->list)) |
| goto out; |
| |
| list_for_each_entry_safe(nontrans_bss, tmp, |
| &pub->nontrans_list, |
| nontrans_list) { |
| tmp1 = bss_from_pub(nontrans_bss); |
| if (__cfg80211_unlink_bss(rdev, tmp1)) |
| rdev->bss_generation++; |
| } |
| |
| if (__cfg80211_unlink_bss(rdev, bss)) |
| rdev->bss_generation++; |
| out: |
| spin_unlock_bh(&rdev->bss_lock); |
| } |
| EXPORT_SYMBOL(cfg80211_unlink_bss); |
| |
| void cfg80211_bss_iter(struct wiphy *wiphy, |
| struct cfg80211_chan_def *chandef, |
| void (*iter)(struct wiphy *wiphy, |
| struct cfg80211_bss *bss, |
| void *data), |
| void *iter_data) |
| { |
| struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); |
| struct cfg80211_internal_bss *bss; |
| |
| spin_lock_bh(&rdev->bss_lock); |
| |
| list_for_each_entry(bss, &rdev->bss_list, list) { |
| if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel, |
| false)) |
| iter(wiphy, &bss->pub, iter_data); |
| } |
| |
| spin_unlock_bh(&rdev->bss_lock); |
| } |
| EXPORT_SYMBOL(cfg80211_bss_iter); |
| |
| void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev, |
| unsigned int link_id, |
| struct ieee80211_channel *chan) |
| { |
| struct wiphy *wiphy = wdev->wiphy; |
| struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); |
| struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss; |
| struct cfg80211_internal_bss *new = NULL; |
| struct cfg80211_internal_bss *bss; |
| struct cfg80211_bss *nontrans_bss; |
| struct cfg80211_bss *tmp; |
| |
| spin_lock_bh(&rdev->bss_lock); |
| |
| /* |
| * Some APs use CSA also for bandwidth changes, i.e., without actually |
| * changing the control channel, so no need to update in such a case. |
| */ |
| if (cbss->pub.channel == chan) |
| goto done; |
| |
| /* use transmitting bss */ |
| if (cbss->pub.transmitted_bss) |
| cbss = bss_from_pub(cbss->pub.transmitted_bss); |
| |
| cbss->pub.channel = chan; |
| |
| list_for_each_entry(bss, &rdev->bss_list, list) { |
| if (!cfg80211_bss_type_match(bss->pub.capability, |
| bss->pub.channel->band, |
| wdev->conn_bss_type)) |
| continue; |
| |
| if (bss == cbss) |
| continue; |
| |
| if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) { |
| new = bss; |
| break; |
| } |
| } |
| |
| if (new) { |
| /* to save time, update IEs for transmitting bss only */ |
| cfg80211_update_known_bss(rdev, cbss, new, false); |
| new->pub.proberesp_ies = NULL; |
| new->pub.beacon_ies = NULL; |
| |
| list_for_each_entry_safe(nontrans_bss, tmp, |
| &new->pub.nontrans_list, |
| nontrans_list) { |
| bss = bss_from_pub(nontrans_bss); |
| if (__cfg80211_unlink_bss(rdev, bss)) |
| rdev->bss_generation++; |
| } |
| |
| WARN_ON(atomic_read(&new->hold)); |
| if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new))) |
| rdev->bss_generation++; |
| } |
| cfg80211_rehash_bss(rdev, cbss); |
| |
| list_for_each_entry_safe(nontrans_bss, tmp, |
| &cbss->pub.nontrans_list, |
| nontrans_list) { |
| bss = bss_from_pub(nontrans_bss); |
| bss->pub.channel = chan; |
| cfg80211_rehash_bss(rdev, bss); |
| } |
| |
| done: |
| spin_unlock_bh(&rdev->bss_lock); |
| } |
| |
| #ifdef CONFIG_CFG80211_WEXT |
| static struct cfg80211_registered_device * |
| cfg80211_get_dev_from_ifindex(struct net *net, int ifindex) |
| { |
| struct cfg80211_registered_device *rdev; |
| struct net_device *dev; |
| |
| ASSERT_RTNL(); |
| |
| dev = dev_get_by_index(net, ifindex); |
| if (!dev) |
| return ERR_PTR(-ENODEV); |
| if (dev->ieee80211_ptr) |
| rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy); |
| else |
| rdev = ERR_PTR(-ENODEV); |
| dev_put(dev); |
| return rdev; |
| } |
| |
| int cfg80211_wext_siwscan(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct cfg80211_registered_device *rdev; |
| struct wiphy *wiphy; |
| struct iw_scan_req *wreq = NULL; |
| struct cfg80211_scan_request *creq; |
| int i, err, n_channels = 0; |
| enum nl80211_band band; |
| |
| if (!netif_running(dev)) |
| return -ENETDOWN; |
| |
| if (wrqu->data.length == sizeof(struct iw_scan_req)) |
| wreq = (struct iw_scan_req *)extra; |
| |
| rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); |
| |
| if (IS_ERR(rdev)) |
| return PTR_ERR(rdev); |
| |
| if (rdev->scan_req || rdev->scan_msg) |
| return -EBUSY; |
| |
| wiphy = &rdev->wiphy; |
| |
| /* Determine number of channels, needed to allocate creq */ |
| if (wreq && wreq->num_channels) { |
| /* Passed from userspace so should be checked */ |
| if (unlikely(wreq->num_channels > IW_MAX_FREQUENCIES)) |
| return -EINVAL; |
| n_channels = wreq->num_channels; |
| } else { |
| n_channels = ieee80211_get_num_supported_channels(wiphy); |
| } |
| |
| creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) + |
| n_channels * sizeof(void *), |
| GFP_ATOMIC); |
| if (!creq) |
| return -ENOMEM; |
| |
| creq->wiphy = wiphy; |
| creq->wdev = dev->ieee80211_ptr; |
| /* SSIDs come after channels */ |
| creq->ssids = (void *)&creq->channels[n_channels]; |
| creq->n_channels = n_channels; |
| creq->n_ssids = 1; |
| creq->scan_start = jiffies; |
| |
| /* translate "Scan on frequencies" request */ |
| i = 0; |
| for (band = 0; band < NUM_NL80211_BANDS; band++) { |
| int j; |
| |
| if (!wiphy->bands[band]) |
| continue; |
| |
| for (j = 0; j < wiphy->bands[band]->n_channels; j++) { |
| /* ignore disabled channels */ |
| if (wiphy->bands[band]->channels[j].flags & |
| IEEE80211_CHAN_DISABLED) |
| continue; |
| |
| /* If we have a wireless request structure and the |
| * wireless request specifies frequencies, then search |
| * for the matching hardware channel. |
| */ |
| if (wreq && wreq->num_channels) { |
| int k; |
| int wiphy_freq = wiphy->bands[band]->channels[j].center_freq; |
| for (k = 0; k < wreq->num_channels; k++) { |
| struct iw_freq *freq = |
| &wreq->channel_list[k]; |
| int wext_freq = |
| cfg80211_wext_freq(freq); |
| |
| if (wext_freq == wiphy_freq) |
| goto wext_freq_found; |
| } |
| goto wext_freq_not_found; |
| } |
| |
| wext_freq_found: |
| creq->channels[i] = &wiphy->bands[band]->channels[j]; |
| i++; |
| wext_freq_not_found: ; |
| } |
| } |
| /* No channels found? */ |
| if (!i) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| /* Set real number of channels specified in creq->channels[] */ |
| creq->n_channels = i; |
| |
| /* translate "Scan for SSID" request */ |
| if (wreq) { |
| if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { |
| if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) { |
| err = -EINVAL; |
| goto out; |
| } |
| memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len); |
| creq->ssids[0].ssid_len = wreq->essid_len; |
| } |
| if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) { |
| creq->ssids = NULL; |
| creq->n_ssids = 0; |
| } |
| } |
| |
| for (i = 0; i < NUM_NL80211_BANDS; i++) |
| if (wiphy->bands[i]) |
| creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1; |
| |
| eth_broadcast_addr(creq->bssid); |
| |
| wiphy_lock(&rdev->wiphy); |
| |
| rdev->scan_req = creq; |
| err = rdev_scan(rdev, creq); |
| if (err) { |
| rdev->scan_req = NULL; |
| /* creq will be freed below */ |
| } else { |
| nl80211_send_scan_start(rdev, dev->ieee80211_ptr); |
| /* creq now owned by driver */ |
| creq = NULL; |
| dev_hold(dev); |
| } |
| wiphy_unlock(&rdev->wiphy); |
| out: |
| kfree(creq); |
| return err; |
| } |
| EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan); |
| |
| static char *ieee80211_scan_add_ies(struct iw_request_info *info, |
| const struct cfg80211_bss_ies *ies, |
| char *current_ev, char *end_buf) |
| { |
| const u8 *pos, *end, *next; |
| struct iw_event iwe; |
| |
| if (!ies) |
| return current_ev; |
| |
| /* |
| * If needed, fragment the IEs buffer (at IE boundaries) into short |
| * enough fragments to fit into IW_GENERIC_IE_MAX octet messages. |
| */ |
| pos = ies->data; |
| end = pos + ies->len; |
| |
| while (end - pos > IW_GENERIC_IE_MAX) { |
| next = pos + 2 + pos[1]; |
| while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX) |
| next = next + 2 + next[1]; |
| |
| memset(&iwe, 0, sizeof(iwe)); |
| iwe.cmd = IWEVGENIE; |
| iwe.u.data.length = next - pos; |
| current_ev = iwe_stream_add_point_check(info, current_ev, |
| end_buf, &iwe, |
| (void *)pos); |
| if (IS_ERR(current_ev)) |
| return current_ev; |
| pos = next; |
| } |
| |
| if (end > pos) { |
| memset(&iwe, 0, sizeof(iwe)); |
| iwe.cmd = IWEVGENIE; |
| iwe.u.data.length = end - pos; |
| current_ev = iwe_stream_add_point_check(info, current_ev, |
| end_buf, &iwe, |
| (void *)pos); |
| if (IS_ERR(current_ev)) |
| return current_ev; |
| } |
| |
| return current_ev; |
| } |
| |
| static char * |
| ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info, |
| struct cfg80211_internal_bss *bss, char *current_ev, |
| char *end_buf) |
| { |
| const struct cfg80211_bss_ies *ies; |
| struct iw_event iwe; |
| const u8 *ie; |
| u8 buf[50]; |
| u8 *cfg, *p, *tmp; |
| int rem, i, sig; |
| bool ismesh = false; |
| |
| memset(&iwe, 0, sizeof(iwe)); |
| iwe.cmd = SIOCGIWAP; |
| iwe.u.ap_addr.sa_family = ARPHRD_ETHER; |
| memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN); |
| current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, |
| IW_EV_ADDR_LEN); |
| if (IS_ERR(current_ev)) |
| return current_ev; |
| |
| memset(&iwe, 0, sizeof(iwe)); |
| iwe.cmd = SIOCGIWFREQ; |
| iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq); |
| iwe.u.freq.e = 0; |
| current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, |
| IW_EV_FREQ_LEN); |
| if (IS_ERR(current_ev)) |
| return current_ev; |
| |
| memset(&iwe, 0, sizeof(iwe)); |
| iwe.cmd = SIOCGIWFREQ; |
| iwe.u.freq.m = bss->pub.channel->center_freq; |
| iwe.u.freq.e = 6; |
| current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, |
| IW_EV_FREQ_LEN); |
| if (IS_ERR(current_ev)) |
| return current_ev; |
| |
| if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) { |
| memset(&iwe, 0, sizeof(iwe)); |
| iwe.cmd = IWEVQUAL; |
| iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED | |
| IW_QUAL_NOISE_INVALID | |
| IW_QUAL_QUAL_UPDATED; |
| switch (wiphy->signal_type) { |
| case CFG80211_SIGNAL_TYPE_MBM: |
| sig = bss->pub.signal / 100; |
| iwe.u.qual.level = sig; |
| iwe.u.qual.updated |= IW_QUAL_DBM; |
| if (sig < -110) /* rather bad */ |
| sig = -110; |
| else if (sig > -40) /* perfect */ |
| sig = -40; |
| /* will give a range of 0 .. 70 */ |
| iwe.u.qual.qual = sig + 110; |
| break; |
| case CFG80211_SIGNAL_TYPE_UNSPEC: |
| iwe.u.qual.level = bss->pub.signal; |
| /* will give range 0 .. 100 */ |
| iwe.u.qual.qual = bss->pub.signal; |
| break; |
| default: |
| /* not reached */ |
| break; |
| } |
| current_ev = iwe_stream_add_event_check(info, current_ev, |
| end_buf, &iwe, |
| IW_EV_QUAL_LEN); |
| if (IS_ERR(current_ev)) |
| return current_ev; |
| } |
| |
| memset(&iwe, 0, sizeof(iwe)); |
| iwe.cmd = SIOCGIWENCODE; |
| if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY) |
| iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY; |
| else |
| iwe.u.data.flags = IW_ENCODE_DISABLED; |
| iwe.u.data.length = 0; |
| current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, |
| &iwe, ""); |
| if (IS_ERR(current_ev)) |
| return current_ev; |
| |
| rcu_read_lock(); |
| ies = rcu_dereference(bss->pub.ies); |
| rem = ies->len; |
| ie = ies->data; |
| |
| while (rem >= 2) { |
| /* invalid data */ |
| if (ie[1] > rem - 2) |
| break; |
| |
| switch (ie[0]) { |
| case WLAN_EID_SSID: |
| memset(&iwe, 0, sizeof(iwe)); |
| iwe.cmd = SIOCGIWESSID; |
| iwe.u.data.length = ie[1]; |
| iwe.u.data.flags = 1; |
| current_ev = iwe_stream_add_point_check(info, |
| current_ev, |
| end_buf, &iwe, |
| (u8 *)ie + 2); |
| if (IS_ERR(current_ev)) |
| goto unlock; |
| break; |
| case WLAN_EID_MESH_ID: |
| memset(&iwe, 0, sizeof(iwe)); |
| iwe.cmd = SIOCGIWESSID; |
| iwe.u.data.length = ie[1]; |
| iwe.u.data.flags = 1; |
| current_ev = iwe_stream_add_point_check(info, |
| current_ev, |
| end_buf, &iwe, |
| (u8 *)ie + 2); |
| if (IS_ERR(current_ev)) |
| goto unlock; |
| break; |
| case WLAN_EID_MESH_CONFIG: |
| ismesh = true; |
| if (ie[1] != sizeof(struct ieee80211_meshconf_ie)) |
| break; |
| cfg = (u8 *)ie + 2; |
| memset(&iwe, 0, sizeof(iwe)); |
| iwe.cmd = IWEVCUSTOM; |
| iwe.u.data.length = sprintf(buf, |
| "Mesh Network Path Selection Protocol ID: 0x%02X", |
| cfg[0]); |
| current_ev = iwe_stream_add_point_check(info, |
| current_ev, |
| end_buf, |
| &iwe, buf); |
| if (IS_ERR(current_ev)) |
| goto unlock; |
| iwe.u.data.length = sprintf(buf, |
| "Path Selection Metric ID: 0x%02X", |
| cfg[1]); |
| current_ev = iwe_stream_add_point_check(info, |
| current_ev, |
| end_buf, |
| &iwe, buf); |
| if (IS_ERR(current_ev)) |
| goto unlock; |
| iwe.u.data.length = sprintf(buf, |
| "Congestion Control Mode ID: 0x%02X", |
| cfg[2]); |
| current_ev = iwe_stream_add_point_check(info, |
| current_ev, |
| end_buf, |
| &iwe, buf); |
| if (IS_ERR(current_ev)) |
| goto unlock; |
| iwe.u.data.length = sprintf(buf, |
| "Synchronization ID: 0x%02X", |
| cfg[3]); |
| current_ev = iwe_stream_add_point_check(info, |
| current_ev, |
| end_buf, |
| &iwe, buf); |
| if (IS_ERR(current_ev)) |
| goto unlock; |
| iwe.u.data.length = sprintf(buf, |
| "Authentication ID: 0x%02X", |
| cfg[4]); |
| current_ev = iwe_stream_add_point_check(info, |
| current_ev, |
| end_buf, |
| &iwe, buf); |
| if (IS_ERR(current_ev)) |
| goto unlock; |
| iwe.u.data.length = sprintf(buf, |
| "Formation Info: 0x%02X", |
| cfg[5]); |
| current_ev = iwe_stream_add_point_check(info, |
| current_ev, |
| end_buf, |
| &iwe, buf); |
| if (IS_ERR(current_ev)) |
| goto unlock; |
| iwe.u.data.length = sprintf(buf, |
| "Capabilities: 0x%02X", |
| cfg[6]); |
| current_ev = iwe_stream_add_point_check(info, |
| current_ev, |
| end_buf, |
| &iwe, buf); |
| if (IS_ERR(current_ev)) |
| goto unlock; |
| break; |
| case WLAN_EID_SUPP_RATES: |
| case WLAN_EID_EXT_SUPP_RATES: |
| /* display all supported rates in readable format */ |
| p = current_ev + iwe_stream_lcp_len(info); |
| |
| memset(&iwe, 0, sizeof(iwe)); |
| iwe.cmd = SIOCGIWRATE; |
| /* Those two flags are ignored... */ |
| iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0; |
| |
| for (i = 0; i < ie[1]; i++) { |
| iwe.u.bitrate.value = |
| ((ie[i + 2] & 0x7f) * 500000); |
| tmp = p; |
| p = iwe_stream_add_value(info, current_ev, p, |
| end_buf, &iwe, |
| IW_EV_PARAM_LEN); |
| if (p == tmp) { |
| current_ev = ERR_PTR(-E2BIG); |
| goto unlock; |
| } |
| } |
| current_ev = p; |
| break; |
| } |
| rem -= ie[1] + 2; |
| ie += ie[1] + 2; |
| } |
| |
| if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) || |
| ismesh) { |
| memset(&iwe, 0, sizeof(iwe)); |
| iwe.cmd = SIOCGIWMODE; |
| if (ismesh) |
| iwe.u.mode = IW_MODE_MESH; |
| else if (bss->pub.capability & WLAN_CAPABILITY_ESS) |
| iwe.u.mode = IW_MODE_MASTER; |
| else |
| iwe.u.mode = IW_MODE_ADHOC; |
| current_ev = iwe_stream_add_event_check(info, current_ev, |
| end_buf, &iwe, |
| IW_EV_UINT_LEN); |
| if (IS_ERR(current_ev)) |
| goto unlock; |
| } |
| |
| memset(&iwe, 0, sizeof(iwe)); |
| iwe.cmd = IWEVCUSTOM; |
| iwe.u.data.length = sprintf(buf, "tsf=%016llx", |
| (unsigned long long)(ies->tsf)); |
| current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, |
| &iwe, buf); |
| if (IS_ERR(current_ev)) |
| goto unlock; |
| memset(&iwe, 0, sizeof(iwe)); |
| iwe.cmd = IWEVCUSTOM; |
| iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago", |
| elapsed_jiffies_msecs(bss->ts)); |
| current_ev = iwe_stream_add_point_check(info, current_ev, |
| end_buf, &iwe, buf); |
| if (IS_ERR(current_ev)) |
| goto unlock; |
| |
| current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf); |
| |
| unlock: |
| rcu_read_unlock(); |
| return current_ev; |
| } |
| |
| |
| static int ieee80211_scan_results(struct cfg80211_registered_device *rdev, |
| struct iw_request_info *info, |
| char *buf, size_t len) |
| { |
| char *current_ev = buf; |
| char *end_buf = buf + len; |
| struct cfg80211_internal_bss *bss; |
| int err = 0; |
| |
| spin_lock_bh(&rdev->bss_lock); |
| cfg80211_bss_expire(rdev); |
| |
| list_for_each_entry(bss, &rdev->bss_list, list) { |
| if (buf + len - current_ev <= IW_EV_ADDR_LEN) { |
| err = -E2BIG; |
| break; |
| } |
| current_ev = ieee80211_bss(&rdev->wiphy, info, bss, |
| current_ev, end_buf); |
| if (IS_ERR(current_ev)) { |
| err = PTR_ERR(current_ev); |
| break; |
| } |
| } |
| spin_unlock_bh(&rdev->bss_lock); |
| |
| if (err) |
| return err; |
| return current_ev - buf; |
| } |
| |
| |
| int cfg80211_wext_giwscan(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct iw_point *data = &wrqu->data; |
| struct cfg80211_registered_device *rdev; |
| int res; |
| |
| if (!netif_running(dev)) |
| return -ENETDOWN; |
| |
| rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); |
| |
| if (IS_ERR(rdev)) |
| return PTR_ERR(rdev); |
| |
| if (rdev->scan_req || rdev->scan_msg) |
| return -EAGAIN; |
| |
| res = ieee80211_scan_results(rdev, info, extra, data->length); |
| data->length = 0; |
| if (res >= 0) { |
| data->length = res; |
| res = 0; |
| } |
| |
| return res; |
| } |
| EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan); |
| #endif |