| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * BlueZ - Bluetooth protocol stack for Linux |
| * |
| * Copyright (C) 2021 Intel Corporation |
| * Copyright 2023 NXP |
| */ |
| |
| #include <linux/property.h> |
| |
| #include <net/bluetooth/bluetooth.h> |
| #include <net/bluetooth/hci_core.h> |
| #include <net/bluetooth/mgmt.h> |
| |
| #include "hci_request.h" |
| #include "hci_codec.h" |
| #include "hci_debugfs.h" |
| #include "smp.h" |
| #include "eir.h" |
| #include "msft.h" |
| #include "aosp.h" |
| #include "leds.h" |
| |
| static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, |
| struct sk_buff *skb) |
| { |
| bt_dev_dbg(hdev, "result 0x%2.2x", result); |
| |
| if (hdev->req_status != HCI_REQ_PEND) |
| return; |
| |
| hdev->req_result = result; |
| hdev->req_status = HCI_REQ_DONE; |
| |
| /* Free the request command so it is not used as response */ |
| kfree_skb(hdev->req_skb); |
| hdev->req_skb = NULL; |
| |
| if (skb) { |
| struct sock *sk = hci_skb_sk(skb); |
| |
| /* Drop sk reference if set */ |
| if (sk) |
| sock_put(sk); |
| |
| hdev->req_rsp = skb_get(skb); |
| } |
| |
| wake_up_interruptible(&hdev->req_wait_q); |
| } |
| |
| static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, |
| u32 plen, const void *param, |
| struct sock *sk) |
| { |
| int len = HCI_COMMAND_HDR_SIZE + plen; |
| struct hci_command_hdr *hdr; |
| struct sk_buff *skb; |
| |
| skb = bt_skb_alloc(len, GFP_ATOMIC); |
| if (!skb) |
| return NULL; |
| |
| hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); |
| hdr->opcode = cpu_to_le16(opcode); |
| hdr->plen = plen; |
| |
| if (plen) |
| skb_put_data(skb, param, plen); |
| |
| bt_dev_dbg(hdev, "skb len %d", skb->len); |
| |
| hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; |
| hci_skb_opcode(skb) = opcode; |
| |
| /* Grab a reference if command needs to be associated with a sock (e.g. |
| * likely mgmt socket that initiated the command). |
| */ |
| if (sk) { |
| hci_skb_sk(skb) = sk; |
| sock_hold(sk); |
| } |
| |
| return skb; |
| } |
| |
| static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen, |
| const void *param, u8 event, struct sock *sk) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct sk_buff *skb; |
| |
| bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); |
| |
| /* If an error occurred during request building, there is no point in |
| * queueing the HCI command. We can simply return. |
| */ |
| if (req->err) |
| return; |
| |
| skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk); |
| if (!skb) { |
| bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", |
| opcode); |
| req->err = -ENOMEM; |
| return; |
| } |
| |
| if (skb_queue_empty(&req->cmd_q)) |
| bt_cb(skb)->hci.req_flags |= HCI_REQ_START; |
| |
| hci_skb_event(skb) = event; |
| |
| skb_queue_tail(&req->cmd_q, skb); |
| } |
| |
| static int hci_cmd_sync_run(struct hci_request *req) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct sk_buff *skb; |
| unsigned long flags; |
| |
| bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q)); |
| |
| /* If an error occurred during request building, remove all HCI |
| * commands queued on the HCI request queue. |
| */ |
| if (req->err) { |
| skb_queue_purge(&req->cmd_q); |
| return req->err; |
| } |
| |
| /* Do not allow empty requests */ |
| if (skb_queue_empty(&req->cmd_q)) |
| return -ENODATA; |
| |
| skb = skb_peek_tail(&req->cmd_q); |
| bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete; |
| bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; |
| |
| spin_lock_irqsave(&hdev->cmd_q.lock, flags); |
| skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); |
| spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); |
| |
| queue_work(hdev->workqueue, &hdev->cmd_work); |
| |
| return 0; |
| } |
| |
| /* This function requires the caller holds hdev->req_lock. */ |
| struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen, |
| const void *param, u8 event, u32 timeout, |
| struct sock *sk) |
| { |
| struct hci_request req; |
| struct sk_buff *skb; |
| int err = 0; |
| |
| bt_dev_dbg(hdev, "Opcode 0x%4.4x", opcode); |
| |
| hci_req_init(&req, hdev); |
| |
| hci_cmd_sync_add(&req, opcode, plen, param, event, sk); |
| |
| hdev->req_status = HCI_REQ_PEND; |
| |
| err = hci_cmd_sync_run(&req); |
| if (err < 0) |
| return ERR_PTR(err); |
| |
| err = wait_event_interruptible_timeout(hdev->req_wait_q, |
| hdev->req_status != HCI_REQ_PEND, |
| timeout); |
| |
| if (err == -ERESTARTSYS) |
| return ERR_PTR(-EINTR); |
| |
| switch (hdev->req_status) { |
| case HCI_REQ_DONE: |
| err = -bt_to_errno(hdev->req_result); |
| break; |
| |
| case HCI_REQ_CANCELED: |
| err = -hdev->req_result; |
| break; |
| |
| default: |
| err = -ETIMEDOUT; |
| break; |
| } |
| |
| hdev->req_status = 0; |
| hdev->req_result = 0; |
| skb = hdev->req_rsp; |
| hdev->req_rsp = NULL; |
| |
| bt_dev_dbg(hdev, "end: err %d", err); |
| |
| if (err < 0) { |
| kfree_skb(skb); |
| return ERR_PTR(err); |
| } |
| |
| return skb; |
| } |
| EXPORT_SYMBOL(__hci_cmd_sync_sk); |
| |
| /* This function requires the caller holds hdev->req_lock. */ |
| struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, |
| const void *param, u32 timeout) |
| { |
| return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL); |
| } |
| EXPORT_SYMBOL(__hci_cmd_sync); |
| |
| /* Send HCI command and wait for command complete event */ |
| struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, |
| const void *param, u32 timeout) |
| { |
| struct sk_buff *skb; |
| |
| if (!test_bit(HCI_UP, &hdev->flags)) |
| return ERR_PTR(-ENETDOWN); |
| |
| bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); |
| |
| hci_req_sync_lock(hdev); |
| skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); |
| hci_req_sync_unlock(hdev); |
| |
| return skb; |
| } |
| EXPORT_SYMBOL(hci_cmd_sync); |
| |
| /* This function requires the caller holds hdev->req_lock. */ |
| struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, |
| const void *param, u8 event, u32 timeout) |
| { |
| return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, |
| NULL); |
| } |
| EXPORT_SYMBOL(__hci_cmd_sync_ev); |
| |
| /* This function requires the caller holds hdev->req_lock. */ |
| int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen, |
| const void *param, u8 event, u32 timeout, |
| struct sock *sk) |
| { |
| struct sk_buff *skb; |
| u8 status; |
| |
| skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk); |
| if (IS_ERR(skb)) { |
| if (!event) |
| bt_dev_err(hdev, "Opcode 0x%4.4x failed: %ld", opcode, |
| PTR_ERR(skb)); |
| return PTR_ERR(skb); |
| } |
| |
| /* If command return a status event skb will be set to NULL as there are |
| * no parameters, in case of failure IS_ERR(skb) would have be set to |
| * the actual error would be found with PTR_ERR(skb). |
| */ |
| if (!skb) |
| return 0; |
| |
| status = skb->data[0]; |
| |
| kfree_skb(skb); |
| |
| return status; |
| } |
| EXPORT_SYMBOL(__hci_cmd_sync_status_sk); |
| |
| int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, |
| const void *param, u32 timeout) |
| { |
| return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout, |
| NULL); |
| } |
| EXPORT_SYMBOL(__hci_cmd_sync_status); |
| |
| static void hci_cmd_sync_work(struct work_struct *work) |
| { |
| struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work); |
| |
| bt_dev_dbg(hdev, ""); |
| |
| /* Dequeue all entries and run them */ |
| while (1) { |
| struct hci_cmd_sync_work_entry *entry; |
| |
| mutex_lock(&hdev->cmd_sync_work_lock); |
| entry = list_first_entry_or_null(&hdev->cmd_sync_work_list, |
| struct hci_cmd_sync_work_entry, |
| list); |
| if (entry) |
| list_del(&entry->list); |
| mutex_unlock(&hdev->cmd_sync_work_lock); |
| |
| if (!entry) |
| break; |
| |
| bt_dev_dbg(hdev, "entry %p", entry); |
| |
| if (entry->func) { |
| int err; |
| |
| hci_req_sync_lock(hdev); |
| err = entry->func(hdev, entry->data); |
| if (entry->destroy) |
| entry->destroy(hdev, entry->data, err); |
| hci_req_sync_unlock(hdev); |
| } |
| |
| kfree(entry); |
| } |
| } |
| |
| static void hci_cmd_sync_cancel_work(struct work_struct *work) |
| { |
| struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work); |
| |
| cancel_delayed_work_sync(&hdev->cmd_timer); |
| cancel_delayed_work_sync(&hdev->ncmd_timer); |
| atomic_set(&hdev->cmd_cnt, 1); |
| |
| wake_up_interruptible(&hdev->req_wait_q); |
| } |
| |
| static int hci_scan_disable_sync(struct hci_dev *hdev); |
| static int scan_disable_sync(struct hci_dev *hdev, void *data) |
| { |
| return hci_scan_disable_sync(hdev); |
| } |
| |
| static int hci_inquiry_sync(struct hci_dev *hdev, u8 length); |
| static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data) |
| { |
| return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN); |
| } |
| |
| static void le_scan_disable(struct work_struct *work) |
| { |
| struct hci_dev *hdev = container_of(work, struct hci_dev, |
| le_scan_disable.work); |
| int status; |
| |
| bt_dev_dbg(hdev, ""); |
| hci_dev_lock(hdev); |
| |
| if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) |
| goto _return; |
| |
| status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL); |
| if (status) { |
| bt_dev_err(hdev, "failed to disable LE scan: %d", status); |
| goto _return; |
| } |
| |
| hdev->discovery.scan_start = 0; |
| |
| /* If we were running LE only scan, change discovery state. If |
| * we were running both LE and BR/EDR inquiry simultaneously, |
| * and BR/EDR inquiry is already finished, stop discovery, |
| * otherwise BR/EDR inquiry will stop discovery when finished. |
| * If we will resolve remote device name, do not change |
| * discovery state. |
| */ |
| |
| if (hdev->discovery.type == DISCOV_TYPE_LE) |
| goto discov_stopped; |
| |
| if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED) |
| goto _return; |
| |
| if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) { |
| if (!test_bit(HCI_INQUIRY, &hdev->flags) && |
| hdev->discovery.state != DISCOVERY_RESOLVING) |
| goto discov_stopped; |
| |
| goto _return; |
| } |
| |
| status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL); |
| if (status) { |
| bt_dev_err(hdev, "inquiry failed: status %d", status); |
| goto discov_stopped; |
| } |
| |
| goto _return; |
| |
| discov_stopped: |
| hci_discovery_set_state(hdev, DISCOVERY_STOPPED); |
| |
| _return: |
| hci_dev_unlock(hdev); |
| } |
| |
| static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, |
| u8 filter_dup); |
| |
| static int reenable_adv_sync(struct hci_dev *hdev, void *data) |
| { |
| bt_dev_dbg(hdev, ""); |
| |
| if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && |
| list_empty(&hdev->adv_instances)) |
| return 0; |
| |
| if (hdev->cur_adv_instance) { |
| return hci_schedule_adv_instance_sync(hdev, |
| hdev->cur_adv_instance, |
| true); |
| } else { |
| if (ext_adv_capable(hdev)) { |
| hci_start_ext_adv_sync(hdev, 0x00); |
| } else { |
| hci_update_adv_data_sync(hdev, 0x00); |
| hci_update_scan_rsp_data_sync(hdev, 0x00); |
| hci_enable_advertising_sync(hdev); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void reenable_adv(struct work_struct *work) |
| { |
| struct hci_dev *hdev = container_of(work, struct hci_dev, |
| reenable_adv_work); |
| int status; |
| |
| bt_dev_dbg(hdev, ""); |
| |
| hci_dev_lock(hdev); |
| |
| status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL); |
| if (status) |
| bt_dev_err(hdev, "failed to reenable ADV: %d", status); |
| |
| hci_dev_unlock(hdev); |
| } |
| |
| static void cancel_adv_timeout(struct hci_dev *hdev) |
| { |
| if (hdev->adv_instance_timeout) { |
| hdev->adv_instance_timeout = 0; |
| cancel_delayed_work(&hdev->adv_instance_expire); |
| } |
| } |
| |
| /* For a single instance: |
| * - force == true: The instance will be removed even when its remaining |
| * lifetime is not zero. |
| * - force == false: the instance will be deactivated but kept stored unless |
| * the remaining lifetime is zero. |
| * |
| * For instance == 0x00: |
| * - force == true: All instances will be removed regardless of their timeout |
| * setting. |
| * - force == false: Only instances that have a timeout will be removed. |
| */ |
| int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk, |
| u8 instance, bool force) |
| { |
| struct adv_info *adv_instance, *n, *next_instance = NULL; |
| int err; |
| u8 rem_inst; |
| |
| /* Cancel any timeout concerning the removed instance(s). */ |
| if (!instance || hdev->cur_adv_instance == instance) |
| cancel_adv_timeout(hdev); |
| |
| /* Get the next instance to advertise BEFORE we remove |
| * the current one. This can be the same instance again |
| * if there is only one instance. |
| */ |
| if (instance && hdev->cur_adv_instance == instance) |
| next_instance = hci_get_next_instance(hdev, instance); |
| |
| if (instance == 0x00) { |
| list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, |
| list) { |
| if (!(force || adv_instance->timeout)) |
| continue; |
| |
| rem_inst = adv_instance->instance; |
| err = hci_remove_adv_instance(hdev, rem_inst); |
| if (!err) |
| mgmt_advertising_removed(sk, hdev, rem_inst); |
| } |
| } else { |
| adv_instance = hci_find_adv_instance(hdev, instance); |
| |
| if (force || (adv_instance && adv_instance->timeout && |
| !adv_instance->remaining_time)) { |
| /* Don't advertise a removed instance. */ |
| if (next_instance && |
| next_instance->instance == instance) |
| next_instance = NULL; |
| |
| err = hci_remove_adv_instance(hdev, instance); |
| if (!err) |
| mgmt_advertising_removed(sk, hdev, instance); |
| } |
| } |
| |
| if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) |
| return 0; |
| |
| if (next_instance && !ext_adv_capable(hdev)) |
| return hci_schedule_adv_instance_sync(hdev, |
| next_instance->instance, |
| false); |
| |
| return 0; |
| } |
| |
| static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data) |
| { |
| u8 instance = *(u8 *)data; |
| |
| kfree(data); |
| |
| hci_clear_adv_instance_sync(hdev, NULL, instance, false); |
| |
| if (list_empty(&hdev->adv_instances)) |
| return hci_disable_advertising_sync(hdev); |
| |
| return 0; |
| } |
| |
| static void adv_timeout_expire(struct work_struct *work) |
| { |
| u8 *inst_ptr; |
| struct hci_dev *hdev = container_of(work, struct hci_dev, |
| adv_instance_expire.work); |
| |
| bt_dev_dbg(hdev, ""); |
| |
| hci_dev_lock(hdev); |
| |
| hdev->adv_instance_timeout = 0; |
| |
| if (hdev->cur_adv_instance == 0x00) |
| goto unlock; |
| |
| inst_ptr = kmalloc(1, GFP_KERNEL); |
| if (!inst_ptr) |
| goto unlock; |
| |
| *inst_ptr = hdev->cur_adv_instance; |
| hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL); |
| |
| unlock: |
| hci_dev_unlock(hdev); |
| } |
| |
| void hci_cmd_sync_init(struct hci_dev *hdev) |
| { |
| INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work); |
| INIT_LIST_HEAD(&hdev->cmd_sync_work_list); |
| mutex_init(&hdev->cmd_sync_work_lock); |
| mutex_init(&hdev->unregister_lock); |
| |
| INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work); |
| INIT_WORK(&hdev->reenable_adv_work, reenable_adv); |
| INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable); |
| INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire); |
| } |
| |
| static void _hci_cmd_sync_cancel_entry(struct hci_dev *hdev, |
| struct hci_cmd_sync_work_entry *entry, |
| int err) |
| { |
| if (entry->destroy) |
| entry->destroy(hdev, entry->data, err); |
| |
| list_del(&entry->list); |
| kfree(entry); |
| } |
| |
| void hci_cmd_sync_clear(struct hci_dev *hdev) |
| { |
| struct hci_cmd_sync_work_entry *entry, *tmp; |
| |
| cancel_work_sync(&hdev->cmd_sync_work); |
| cancel_work_sync(&hdev->reenable_adv_work); |
| |
| mutex_lock(&hdev->cmd_sync_work_lock); |
| list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) |
| _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); |
| mutex_unlock(&hdev->cmd_sync_work_lock); |
| } |
| |
| void hci_cmd_sync_cancel(struct hci_dev *hdev, int err) |
| { |
| bt_dev_dbg(hdev, "err 0x%2.2x", err); |
| |
| if (hdev->req_status == HCI_REQ_PEND) { |
| hdev->req_result = err; |
| hdev->req_status = HCI_REQ_CANCELED; |
| |
| queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work); |
| } |
| } |
| EXPORT_SYMBOL(hci_cmd_sync_cancel); |
| |
| /* Cancel ongoing command request synchronously: |
| * |
| * - Set result and mark status to HCI_REQ_CANCELED |
| * - Wakeup command sync thread |
| */ |
| void hci_cmd_sync_cancel_sync(struct hci_dev *hdev, int err) |
| { |
| bt_dev_dbg(hdev, "err 0x%2.2x", err); |
| |
| if (hdev->req_status == HCI_REQ_PEND) { |
| /* req_result is __u32 so error must be positive to be properly |
| * propagated. |
| */ |
| hdev->req_result = err < 0 ? -err : err; |
| hdev->req_status = HCI_REQ_CANCELED; |
| |
| wake_up_interruptible(&hdev->req_wait_q); |
| } |
| } |
| EXPORT_SYMBOL(hci_cmd_sync_cancel_sync); |
| |
| /* Submit HCI command to be run in as cmd_sync_work: |
| * |
| * - hdev must _not_ be unregistered |
| */ |
| int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, |
| void *data, hci_cmd_sync_work_destroy_t destroy) |
| { |
| struct hci_cmd_sync_work_entry *entry; |
| int err = 0; |
| |
| mutex_lock(&hdev->unregister_lock); |
| if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { |
| err = -ENODEV; |
| goto unlock; |
| } |
| |
| entry = kmalloc(sizeof(*entry), GFP_KERNEL); |
| if (!entry) { |
| err = -ENOMEM; |
| goto unlock; |
| } |
| entry->func = func; |
| entry->data = data; |
| entry->destroy = destroy; |
| |
| mutex_lock(&hdev->cmd_sync_work_lock); |
| list_add_tail(&entry->list, &hdev->cmd_sync_work_list); |
| mutex_unlock(&hdev->cmd_sync_work_lock); |
| |
| queue_work(hdev->req_workqueue, &hdev->cmd_sync_work); |
| |
| unlock: |
| mutex_unlock(&hdev->unregister_lock); |
| return err; |
| } |
| EXPORT_SYMBOL(hci_cmd_sync_submit); |
| |
| /* Queue HCI command: |
| * |
| * - hdev must be running |
| */ |
| int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, |
| void *data, hci_cmd_sync_work_destroy_t destroy) |
| { |
| /* Only queue command if hdev is running which means it had been opened |
| * and is either on init phase or is already up. |
| */ |
| if (!test_bit(HCI_RUNNING, &hdev->flags)) |
| return -ENETDOWN; |
| |
| return hci_cmd_sync_submit(hdev, func, data, destroy); |
| } |
| EXPORT_SYMBOL(hci_cmd_sync_queue); |
| |
| static struct hci_cmd_sync_work_entry * |
| _hci_cmd_sync_lookup_entry(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, |
| void *data, hci_cmd_sync_work_destroy_t destroy) |
| { |
| struct hci_cmd_sync_work_entry *entry, *tmp; |
| |
| list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) { |
| if (func && entry->func != func) |
| continue; |
| |
| if (data && entry->data != data) |
| continue; |
| |
| if (destroy && entry->destroy != destroy) |
| continue; |
| |
| return entry; |
| } |
| |
| return NULL; |
| } |
| |
| /* Queue HCI command entry once: |
| * |
| * - Lookup if an entry already exist and only if it doesn't creates a new entry |
| * and queue it. |
| */ |
| int hci_cmd_sync_queue_once(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, |
| void *data, hci_cmd_sync_work_destroy_t destroy) |
| { |
| if (hci_cmd_sync_lookup_entry(hdev, func, data, destroy)) |
| return 0; |
| |
| return hci_cmd_sync_queue(hdev, func, data, destroy); |
| } |
| EXPORT_SYMBOL(hci_cmd_sync_queue_once); |
| |
| /* Lookup HCI command entry: |
| * |
| * - Return first entry that matches by function callback or data or |
| * destroy callback. |
| */ |
| struct hci_cmd_sync_work_entry * |
| hci_cmd_sync_lookup_entry(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, |
| void *data, hci_cmd_sync_work_destroy_t destroy) |
| { |
| struct hci_cmd_sync_work_entry *entry; |
| |
| mutex_lock(&hdev->cmd_sync_work_lock); |
| entry = _hci_cmd_sync_lookup_entry(hdev, func, data, destroy); |
| mutex_unlock(&hdev->cmd_sync_work_lock); |
| |
| return entry; |
| } |
| EXPORT_SYMBOL(hci_cmd_sync_lookup_entry); |
| |
| /* Cancel HCI command entry */ |
| void hci_cmd_sync_cancel_entry(struct hci_dev *hdev, |
| struct hci_cmd_sync_work_entry *entry) |
| { |
| mutex_lock(&hdev->cmd_sync_work_lock); |
| _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); |
| mutex_unlock(&hdev->cmd_sync_work_lock); |
| } |
| EXPORT_SYMBOL(hci_cmd_sync_cancel_entry); |
| |
| /* Dequeue one HCI command entry: |
| * |
| * - Lookup and cancel first entry that matches. |
| */ |
| bool hci_cmd_sync_dequeue_once(struct hci_dev *hdev, |
| hci_cmd_sync_work_func_t func, |
| void *data, hci_cmd_sync_work_destroy_t destroy) |
| { |
| struct hci_cmd_sync_work_entry *entry; |
| |
| entry = hci_cmd_sync_lookup_entry(hdev, func, data, destroy); |
| if (!entry) |
| return false; |
| |
| hci_cmd_sync_cancel_entry(hdev, entry); |
| |
| return true; |
| } |
| EXPORT_SYMBOL(hci_cmd_sync_dequeue_once); |
| |
| /* Dequeue HCI command entry: |
| * |
| * - Lookup and cancel any entry that matches by function callback or data or |
| * destroy callback. |
| */ |
| bool hci_cmd_sync_dequeue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, |
| void *data, hci_cmd_sync_work_destroy_t destroy) |
| { |
| struct hci_cmd_sync_work_entry *entry; |
| bool ret = false; |
| |
| mutex_lock(&hdev->cmd_sync_work_lock); |
| while ((entry = _hci_cmd_sync_lookup_entry(hdev, func, data, |
| destroy))) { |
| _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); |
| ret = true; |
| } |
| mutex_unlock(&hdev->cmd_sync_work_lock); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(hci_cmd_sync_dequeue); |
| |
| int hci_update_eir_sync(struct hci_dev *hdev) |
| { |
| struct hci_cp_write_eir cp; |
| |
| bt_dev_dbg(hdev, ""); |
| |
| if (!hdev_is_powered(hdev)) |
| return 0; |
| |
| if (!lmp_ext_inq_capable(hdev)) |
| return 0; |
| |
| if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) |
| return 0; |
| |
| if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) |
| return 0; |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| eir_create(hdev, cp.data); |
| |
| if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) |
| return 0; |
| |
| memcpy(hdev->eir, cp.data, sizeof(cp.data)); |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, |
| HCI_CMD_TIMEOUT); |
| } |
| |
| static u8 get_service_classes(struct hci_dev *hdev) |
| { |
| struct bt_uuid *uuid; |
| u8 val = 0; |
| |
| list_for_each_entry(uuid, &hdev->uuids, list) |
| val |= uuid->svc_hint; |
| |
| return val; |
| } |
| |
| int hci_update_class_sync(struct hci_dev *hdev) |
| { |
| u8 cod[3]; |
| |
| bt_dev_dbg(hdev, ""); |
| |
| if (!hdev_is_powered(hdev)) |
| return 0; |
| |
| if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) |
| return 0; |
| |
| if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) |
| return 0; |
| |
| cod[0] = hdev->minor_class; |
| cod[1] = hdev->major_class; |
| cod[2] = get_service_classes(hdev); |
| |
| if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) |
| cod[1] |= 0x20; |
| |
| if (memcmp(cod, hdev->dev_class, 3) == 0) |
| return 0; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV, |
| sizeof(cod), cod, HCI_CMD_TIMEOUT); |
| } |
| |
| static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) |
| { |
| /* If there is no connection we are OK to advertise. */ |
| if (hci_conn_num(hdev, LE_LINK) == 0) |
| return true; |
| |
| /* Check le_states if there is any connection in peripheral role. */ |
| if (hdev->conn_hash.le_num_peripheral > 0) { |
| /* Peripheral connection state and non connectable mode |
| * bit 20. |
| */ |
| if (!connectable && !(hdev->le_states[2] & 0x10)) |
| return false; |
| |
| /* Peripheral connection state and connectable mode bit 38 |
| * and scannable bit 21. |
| */ |
| if (connectable && (!(hdev->le_states[4] & 0x40) || |
| !(hdev->le_states[2] & 0x20))) |
| return false; |
| } |
| |
| /* Check le_states if there is any connection in central role. */ |
| if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) { |
| /* Central connection state and non connectable mode bit 18. */ |
| if (!connectable && !(hdev->le_states[2] & 0x02)) |
| return false; |
| |
| /* Central connection state and connectable mode bit 35 and |
| * scannable 19. |
| */ |
| if (connectable && (!(hdev->le_states[4] & 0x08) || |
| !(hdev->le_states[2] & 0x08))) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) |
| { |
| /* If privacy is not enabled don't use RPA */ |
| if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) |
| return false; |
| |
| /* If basic privacy mode is enabled use RPA */ |
| if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) |
| return true; |
| |
| /* If limited privacy mode is enabled don't use RPA if we're |
| * both discoverable and bondable. |
| */ |
| if ((flags & MGMT_ADV_FLAG_DISCOV) && |
| hci_dev_test_flag(hdev, HCI_BONDABLE)) |
| return false; |
| |
| /* We're neither bondable nor discoverable in the limited |
| * privacy mode, therefore use RPA. |
| */ |
| return true; |
| } |
| |
| static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa) |
| { |
| /* If we're advertising or initiating an LE connection we can't |
| * go ahead and change the random address at this time. This is |
| * because the eventual initiator address used for the |
| * subsequently created connection will be undefined (some |
| * controllers use the new address and others the one we had |
| * when the operation started). |
| * |
| * In this kind of scenario skip the update and let the random |
| * address be updated at the next cycle. |
| */ |
| if (hci_dev_test_flag(hdev, HCI_LE_ADV) || |
| hci_lookup_le_connect(hdev)) { |
| bt_dev_dbg(hdev, "Deferring random address update"); |
| hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); |
| return 0; |
| } |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR, |
| 6, rpa, HCI_CMD_TIMEOUT); |
| } |
| |
| int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy, |
| bool rpa, u8 *own_addr_type) |
| { |
| int err; |
| |
| /* If privacy is enabled use a resolvable private address. If |
| * current RPA has expired or there is something else than |
| * the current RPA in use, then generate a new one. |
| */ |
| if (rpa) { |
| /* If Controller supports LL Privacy use own address type is |
| * 0x03 |
| */ |
| if (use_ll_privacy(hdev)) |
| *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; |
| else |
| *own_addr_type = ADDR_LE_DEV_RANDOM; |
| |
| /* Check if RPA is valid */ |
| if (rpa_valid(hdev)) |
| return 0; |
| |
| err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); |
| if (err < 0) { |
| bt_dev_err(hdev, "failed to generate new RPA"); |
| return err; |
| } |
| |
| err = hci_set_random_addr_sync(hdev, &hdev->rpa); |
| if (err) |
| return err; |
| |
| return 0; |
| } |
| |
| /* In case of required privacy without resolvable private address, |
| * use an non-resolvable private address. This is useful for active |
| * scanning and non-connectable advertising. |
| */ |
| if (require_privacy) { |
| bdaddr_t nrpa; |
| |
| while (true) { |
| /* The non-resolvable private address is generated |
| * from random six bytes with the two most significant |
| * bits cleared. |
| */ |
| get_random_bytes(&nrpa, 6); |
| nrpa.b[5] &= 0x3f; |
| |
| /* The non-resolvable private address shall not be |
| * equal to the public address. |
| */ |
| if (bacmp(&hdev->bdaddr, &nrpa)) |
| break; |
| } |
| |
| *own_addr_type = ADDR_LE_DEV_RANDOM; |
| |
| return hci_set_random_addr_sync(hdev, &nrpa); |
| } |
| |
| /* If forcing static address is in use or there is no public |
| * address use the static address as random address (but skip |
| * the HCI command if the current random address is already the |
| * static one. |
| * |
| * In case BR/EDR has been disabled on a dual-mode controller |
| * and a static address has been configured, then use that |
| * address instead of the public BR/EDR address. |
| */ |
| if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || |
| !bacmp(&hdev->bdaddr, BDADDR_ANY) || |
| (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && |
| bacmp(&hdev->static_addr, BDADDR_ANY))) { |
| *own_addr_type = ADDR_LE_DEV_RANDOM; |
| if (bacmp(&hdev->static_addr, &hdev->random_addr)) |
| return hci_set_random_addr_sync(hdev, |
| &hdev->static_addr); |
| return 0; |
| } |
| |
| /* Neither privacy nor static address is being used so use a |
| * public address. |
| */ |
| *own_addr_type = ADDR_LE_DEV_PUBLIC; |
| |
| return 0; |
| } |
| |
| static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) |
| { |
| struct hci_cp_le_set_ext_adv_enable *cp; |
| struct hci_cp_ext_adv_set *set; |
| u8 data[sizeof(*cp) + sizeof(*set) * 1]; |
| u8 size; |
| struct adv_info *adv = NULL; |
| |
| /* If request specifies an instance that doesn't exist, fail */ |
| if (instance > 0) { |
| adv = hci_find_adv_instance(hdev, instance); |
| if (!adv) |
| return -EINVAL; |
| |
| /* If not enabled there is nothing to do */ |
| if (!adv->enabled) |
| return 0; |
| } |
| |
| memset(data, 0, sizeof(data)); |
| |
| cp = (void *)data; |
| set = (void *)cp->data; |
| |
| /* Instance 0x00 indicates all advertising instances will be disabled */ |
| cp->num_of_sets = !!instance; |
| cp->enable = 0x00; |
| |
| set->handle = adv ? adv->handle : instance; |
| |
| size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, |
| size, data, HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance, |
| bdaddr_t *random_addr) |
| { |
| struct hci_cp_le_set_adv_set_rand_addr cp; |
| int err; |
| |
| if (!instance) { |
| /* Instance 0x00 doesn't have an adv_info, instead it uses |
| * hdev->random_addr to track its address so whenever it needs |
| * to be updated this also set the random address since |
| * hdev->random_addr is shared with scan state machine. |
| */ |
| err = hci_set_random_addr_sync(hdev, random_addr); |
| if (err) |
| return err; |
| } |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| cp.handle = instance; |
| bacpy(&cp.bdaddr, random_addr); |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) |
| { |
| struct hci_cp_le_set_ext_adv_params cp; |
| bool connectable; |
| u32 flags; |
| bdaddr_t random_addr; |
| u8 own_addr_type; |
| int err; |
| struct adv_info *adv; |
| bool secondary_adv; |
| |
| if (instance > 0) { |
| adv = hci_find_adv_instance(hdev, instance); |
| if (!adv) |
| return -EINVAL; |
| } else { |
| adv = NULL; |
| } |
| |
| /* Updating parameters of an active instance will return a |
| * Command Disallowed error, so we must first disable the |
| * instance if it is active. |
| */ |
| if (adv && !adv->pending) { |
| err = hci_disable_ext_adv_instance_sync(hdev, instance); |
| if (err) |
| return err; |
| } |
| |
| flags = hci_adv_instance_flags(hdev, instance); |
| |
| /* If the "connectable" instance flag was not set, then choose between |
| * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. |
| */ |
| connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || |
| mgmt_get_connectable(hdev); |
| |
| if (!is_advertising_allowed(hdev, connectable)) |
| return -EPERM; |
| |
| /* Set require_privacy to true only when non-connectable |
| * advertising is used. In that case it is fine to use a |
| * non-resolvable private address. |
| */ |
| err = hci_get_random_address(hdev, !connectable, |
| adv_use_rpa(hdev, flags), adv, |
| &own_addr_type, &random_addr); |
| if (err < 0) |
| return err; |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| if (adv) { |
| hci_cpu_to_le24(adv->min_interval, cp.min_interval); |
| hci_cpu_to_le24(adv->max_interval, cp.max_interval); |
| cp.tx_power = adv->tx_power; |
| } else { |
| hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); |
| hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); |
| cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; |
| } |
| |
| secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); |
| |
| if (connectable) { |
| if (secondary_adv) |
| cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); |
| else |
| cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); |
| } else if (hci_adv_instance_is_scannable(hdev, instance) || |
| (flags & MGMT_ADV_PARAM_SCAN_RSP)) { |
| if (secondary_adv) |
| cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); |
| else |
| cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); |
| } else { |
| if (secondary_adv) |
| cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); |
| else |
| cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); |
| } |
| |
| /* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter |
| * contains the peer’s Identity Address and the Peer_Address_Type |
| * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01). |
| * These parameters are used to locate the corresponding local IRK in |
| * the resolving list; this IRK is used to generate their own address |
| * used in the advertisement. |
| */ |
| if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) |
| hci_copy_identity_address(hdev, &cp.peer_addr, |
| &cp.peer_addr_type); |
| |
| cp.own_addr_type = own_addr_type; |
| cp.channel_map = hdev->le_adv_channel_map; |
| cp.handle = adv ? adv->handle : instance; |
| |
| if (flags & MGMT_ADV_FLAG_SEC_2M) { |
| cp.primary_phy = HCI_ADV_PHY_1M; |
| cp.secondary_phy = HCI_ADV_PHY_2M; |
| } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { |
| cp.primary_phy = HCI_ADV_PHY_CODED; |
| cp.secondary_phy = HCI_ADV_PHY_CODED; |
| } else { |
| /* In all other cases use 1M */ |
| cp.primary_phy = HCI_ADV_PHY_1M; |
| cp.secondary_phy = HCI_ADV_PHY_1M; |
| } |
| |
| err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| if (err) |
| return err; |
| |
| if ((own_addr_type == ADDR_LE_DEV_RANDOM || |
| own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) && |
| bacmp(&random_addr, BDADDR_ANY)) { |
| /* Check if random address need to be updated */ |
| if (adv) { |
| if (!bacmp(&random_addr, &adv->random_addr)) |
| return 0; |
| } else { |
| if (!bacmp(&random_addr, &hdev->random_addr)) |
| return 0; |
| } |
| |
| return hci_set_adv_set_random_addr_sync(hdev, instance, |
| &random_addr); |
| } |
| |
| return 0; |
| } |
| |
| static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) |
| { |
| DEFINE_FLEX(struct hci_cp_le_set_ext_scan_rsp_data, pdu, data, length, |
| HCI_MAX_EXT_AD_LENGTH); |
| u8 len; |
| struct adv_info *adv = NULL; |
| int err; |
| |
| if (instance) { |
| adv = hci_find_adv_instance(hdev, instance); |
| if (!adv || !adv->scan_rsp_changed) |
| return 0; |
| } |
| |
| len = eir_create_scan_rsp(hdev, instance, pdu->data); |
| |
| pdu->handle = adv ? adv->handle : instance; |
| pdu->length = len; |
| pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE; |
| pdu->frag_pref = LE_SET_ADV_DATA_NO_FRAG; |
| |
| err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, |
| struct_size(pdu, data, len), pdu, |
| HCI_CMD_TIMEOUT); |
| if (err) |
| return err; |
| |
| if (adv) { |
| adv->scan_rsp_changed = false; |
| } else { |
| memcpy(hdev->scan_rsp_data, pdu->data, len); |
| hdev->scan_rsp_data_len = len; |
| } |
| |
| return 0; |
| } |
| |
| static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) |
| { |
| struct hci_cp_le_set_scan_rsp_data cp; |
| u8 len; |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| len = eir_create_scan_rsp(hdev, instance, cp.data); |
| |
| if (hdev->scan_rsp_data_len == len && |
| !memcmp(cp.data, hdev->scan_rsp_data, len)) |
| return 0; |
| |
| memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); |
| hdev->scan_rsp_data_len = len; |
| |
| cp.length = len; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) |
| { |
| if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) |
| return 0; |
| |
| if (ext_adv_capable(hdev)) |
| return hci_set_ext_scan_rsp_data_sync(hdev, instance); |
| |
| return __hci_set_scan_rsp_data_sync(hdev, instance); |
| } |
| |
| int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance) |
| { |
| struct hci_cp_le_set_ext_adv_enable *cp; |
| struct hci_cp_ext_adv_set *set; |
| u8 data[sizeof(*cp) + sizeof(*set) * 1]; |
| struct adv_info *adv; |
| |
| if (instance > 0) { |
| adv = hci_find_adv_instance(hdev, instance); |
| if (!adv) |
| return -EINVAL; |
| /* If already enabled there is nothing to do */ |
| if (adv->enabled) |
| return 0; |
| } else { |
| adv = NULL; |
| } |
| |
| cp = (void *)data; |
| set = (void *)cp->data; |
| |
| memset(cp, 0, sizeof(*cp)); |
| |
| cp->enable = 0x01; |
| cp->num_of_sets = 0x01; |
| |
| memset(set, 0, sizeof(*set)); |
| |
| set->handle = adv ? adv->handle : instance; |
| |
| /* Set duration per instance since controller is responsible for |
| * scheduling it. |
| */ |
| if (adv && adv->timeout) { |
| u16 duration = adv->timeout * MSEC_PER_SEC; |
| |
| /* Time = N * 10 ms */ |
| set->duration = cpu_to_le16(duration / 10); |
| } |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, |
| sizeof(*cp) + |
| sizeof(*set) * cp->num_of_sets, |
| data, HCI_CMD_TIMEOUT); |
| } |
| |
| int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance) |
| { |
| int err; |
| |
| err = hci_setup_ext_adv_instance_sync(hdev, instance); |
| if (err) |
| return err; |
| |
| err = hci_set_ext_scan_rsp_data_sync(hdev, instance); |
| if (err) |
| return err; |
| |
| return hci_enable_ext_advertising_sync(hdev, instance); |
| } |
| |
| int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance) |
| { |
| struct hci_cp_le_set_per_adv_enable cp; |
| struct adv_info *adv = NULL; |
| |
| /* If periodic advertising already disabled there is nothing to do. */ |
| adv = hci_find_adv_instance(hdev, instance); |
| if (!adv || !adv->periodic || !adv->enabled) |
| return 0; |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| cp.enable = 0x00; |
| cp.handle = instance; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance, |
| u16 min_interval, u16 max_interval) |
| { |
| struct hci_cp_le_set_per_adv_params cp; |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| if (!min_interval) |
| min_interval = DISCOV_LE_PER_ADV_INT_MIN; |
| |
| if (!max_interval) |
| max_interval = DISCOV_LE_PER_ADV_INT_MAX; |
| |
| cp.handle = instance; |
| cp.min_interval = cpu_to_le16(min_interval); |
| cp.max_interval = cpu_to_le16(max_interval); |
| cp.periodic_properties = 0x0000; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance) |
| { |
| DEFINE_FLEX(struct hci_cp_le_set_per_adv_data, pdu, data, length, |
| HCI_MAX_PER_AD_LENGTH); |
| u8 len; |
| struct adv_info *adv = NULL; |
| |
| if (instance) { |
| adv = hci_find_adv_instance(hdev, instance); |
| if (!adv || !adv->periodic) |
| return 0; |
| } |
| |
| len = eir_create_per_adv_data(hdev, instance, pdu->data); |
| |
| pdu->length = len; |
| pdu->handle = adv ? adv->handle : instance; |
| pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA, |
| struct_size(pdu, data, len), pdu, |
| HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance) |
| { |
| struct hci_cp_le_set_per_adv_enable cp; |
| struct adv_info *adv = NULL; |
| |
| /* If periodic advertising already enabled there is nothing to do. */ |
| adv = hci_find_adv_instance(hdev, instance); |
| if (adv && adv->periodic && adv->enabled) |
| return 0; |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| cp.enable = 0x01; |
| cp.handle = instance; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| /* Checks if periodic advertising data contains a Basic Announcement and if it |
| * does generates a Broadcast ID and add Broadcast Announcement. |
| */ |
| static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv) |
| { |
| u8 bid[3]; |
| u8 ad[4 + 3]; |
| |
| /* Skip if NULL adv as instance 0x00 is used for general purpose |
| * advertising so it cannot used for the likes of Broadcast Announcement |
| * as it can be overwritten at any point. |
| */ |
| if (!adv) |
| return 0; |
| |
| /* Check if PA data doesn't contains a Basic Audio Announcement then |
| * there is nothing to do. |
| */ |
| if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len, |
| 0x1851, NULL)) |
| return 0; |
| |
| /* Check if advertising data already has a Broadcast Announcement since |
| * the process may want to control the Broadcast ID directly and in that |
| * case the kernel shall no interfere. |
| */ |
| if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852, |
| NULL)) |
| return 0; |
| |
| /* Generate Broadcast ID */ |
| get_random_bytes(bid, sizeof(bid)); |
| eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid)); |
| hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL); |
| |
| return hci_update_adv_data_sync(hdev, adv->instance); |
| } |
| |
| int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len, |
| u8 *data, u32 flags, u16 min_interval, |
| u16 max_interval, u16 sync_interval) |
| { |
| struct adv_info *adv = NULL; |
| int err; |
| bool added = false; |
| |
| hci_disable_per_advertising_sync(hdev, instance); |
| |
| if (instance) { |
| adv = hci_find_adv_instance(hdev, instance); |
| /* Create an instance if that could not be found */ |
| if (!adv) { |
| adv = hci_add_per_instance(hdev, instance, flags, |
| data_len, data, |
| sync_interval, |
| sync_interval); |
| if (IS_ERR(adv)) |
| return PTR_ERR(adv); |
| adv->pending = false; |
| added = true; |
| } |
| } |
| |
| /* Start advertising */ |
| err = hci_start_ext_adv_sync(hdev, instance); |
| if (err < 0) |
| goto fail; |
| |
| err = hci_adv_bcast_annoucement(hdev, adv); |
| if (err < 0) |
| goto fail; |
| |
| err = hci_set_per_adv_params_sync(hdev, instance, min_interval, |
| max_interval); |
| if (err < 0) |
| goto fail; |
| |
| err = hci_set_per_adv_data_sync(hdev, instance); |
| if (err < 0) |
| goto fail; |
| |
| err = hci_enable_per_advertising_sync(hdev, instance); |
| if (err < 0) |
| goto fail; |
| |
| return 0; |
| |
| fail: |
| if (added) |
| hci_remove_adv_instance(hdev, instance); |
| |
| return err; |
| } |
| |
| static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance) |
| { |
| int err; |
| |
| if (ext_adv_capable(hdev)) |
| return hci_start_ext_adv_sync(hdev, instance); |
| |
| err = hci_update_adv_data_sync(hdev, instance); |
| if (err) |
| return err; |
| |
| err = hci_update_scan_rsp_data_sync(hdev, instance); |
| if (err) |
| return err; |
| |
| return hci_enable_advertising_sync(hdev); |
| } |
| |
| int hci_enable_advertising_sync(struct hci_dev *hdev) |
| { |
| struct adv_info *adv_instance; |
| struct hci_cp_le_set_adv_param cp; |
| u8 own_addr_type, enable = 0x01; |
| bool connectable; |
| u16 adv_min_interval, adv_max_interval; |
| u32 flags; |
| u8 status; |
| |
| if (ext_adv_capable(hdev)) |
| return hci_enable_ext_advertising_sync(hdev, |
| hdev->cur_adv_instance); |
| |
| flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance); |
| adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance); |
| |
| /* If the "connectable" instance flag was not set, then choose between |
| * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. |
| */ |
| connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || |
| mgmt_get_connectable(hdev); |
| |
| if (!is_advertising_allowed(hdev, connectable)) |
| return -EINVAL; |
| |
| status = hci_disable_advertising_sync(hdev); |
| if (status) |
| return status; |
| |
| /* Clear the HCI_LE_ADV bit temporarily so that the |
| * hci_update_random_address knows that it's safe to go ahead |
| * and write a new random address. The flag will be set back on |
| * as soon as the SET_ADV_ENABLE HCI command completes. |
| */ |
| hci_dev_clear_flag(hdev, HCI_LE_ADV); |
| |
| /* Set require_privacy to true only when non-connectable |
| * advertising is used. In that case it is fine to use a |
| * non-resolvable private address. |
| */ |
| status = hci_update_random_address_sync(hdev, !connectable, |
| adv_use_rpa(hdev, flags), |
| &own_addr_type); |
| if (status) |
| return status; |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| if (adv_instance) { |
| adv_min_interval = adv_instance->min_interval; |
| adv_max_interval = adv_instance->max_interval; |
| } else { |
| adv_min_interval = hdev->le_adv_min_interval; |
| adv_max_interval = hdev->le_adv_max_interval; |
| } |
| |
| if (connectable) { |
| cp.type = LE_ADV_IND; |
| } else { |
| if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance)) |
| cp.type = LE_ADV_SCAN_IND; |
| else |
| cp.type = LE_ADV_NONCONN_IND; |
| |
| if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || |
| hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { |
| adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; |
| adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; |
| } |
| } |
| |
| cp.min_interval = cpu_to_le16(adv_min_interval); |
| cp.max_interval = cpu_to_le16(adv_max_interval); |
| cp.own_address_type = own_addr_type; |
| cp.channel_map = hdev->le_adv_channel_map; |
| |
| status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| if (status) |
| return status; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, |
| sizeof(enable), &enable, HCI_CMD_TIMEOUT); |
| } |
| |
| static int enable_advertising_sync(struct hci_dev *hdev, void *data) |
| { |
| return hci_enable_advertising_sync(hdev); |
| } |
| |
| int hci_enable_advertising(struct hci_dev *hdev) |
| { |
| if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && |
| list_empty(&hdev->adv_instances)) |
| return 0; |
| |
| return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL); |
| } |
| |
| int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance, |
| struct sock *sk) |
| { |
| int err; |
| |
| if (!ext_adv_capable(hdev)) |
| return 0; |
| |
| err = hci_disable_ext_adv_instance_sync(hdev, instance); |
| if (err) |
| return err; |
| |
| /* If request specifies an instance that doesn't exist, fail */ |
| if (instance > 0 && !hci_find_adv_instance(hdev, instance)) |
| return -EINVAL; |
| |
| return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET, |
| sizeof(instance), &instance, 0, |
| HCI_CMD_TIMEOUT, sk); |
| } |
| |
| static int remove_ext_adv_sync(struct hci_dev *hdev, void *data) |
| { |
| struct adv_info *adv = data; |
| u8 instance = 0; |
| |
| if (adv) |
| instance = adv->instance; |
| |
| return hci_remove_ext_adv_instance_sync(hdev, instance, NULL); |
| } |
| |
| int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance) |
| { |
| struct adv_info *adv = NULL; |
| |
| if (instance) { |
| adv = hci_find_adv_instance(hdev, instance); |
| if (!adv) |
| return -EINVAL; |
| } |
| |
| return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL); |
| } |
| |
| int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason) |
| { |
| struct hci_cp_le_term_big cp; |
| |
| memset(&cp, 0, sizeof(cp)); |
| cp.handle = handle; |
| cp.reason = reason; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance) |
| { |
| DEFINE_FLEX(struct hci_cp_le_set_ext_adv_data, pdu, data, length, |
| HCI_MAX_EXT_AD_LENGTH); |
| u8 len; |
| struct adv_info *adv = NULL; |
| int err; |
| |
| if (instance) { |
| adv = hci_find_adv_instance(hdev, instance); |
| if (!adv || !adv->adv_data_changed) |
| return 0; |
| } |
| |
| len = eir_create_adv_data(hdev, instance, pdu->data); |
| |
| pdu->length = len; |
| pdu->handle = adv ? adv->handle : instance; |
| pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE; |
| pdu->frag_pref = LE_SET_ADV_DATA_NO_FRAG; |
| |
| err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA, |
| struct_size(pdu, data, len), pdu, |
| HCI_CMD_TIMEOUT); |
| if (err) |
| return err; |
| |
| /* Update data if the command succeed */ |
| if (adv) { |
| adv->adv_data_changed = false; |
| } else { |
| memcpy(hdev->adv_data, pdu->data, len); |
| hdev->adv_data_len = len; |
| } |
| |
| return 0; |
| } |
| |
| static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance) |
| { |
| struct hci_cp_le_set_adv_data cp; |
| u8 len; |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| len = eir_create_adv_data(hdev, instance, cp.data); |
| |
| /* There's nothing to do if the data hasn't changed */ |
| if (hdev->adv_data_len == len && |
| memcmp(cp.data, hdev->adv_data, len) == 0) |
| return 0; |
| |
| memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); |
| hdev->adv_data_len = len; |
| |
| cp.length = len; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance) |
| { |
| if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) |
| return 0; |
| |
| if (ext_adv_capable(hdev)) |
| return hci_set_ext_adv_data_sync(hdev, instance); |
| |
| return hci_set_adv_data_sync(hdev, instance); |
| } |
| |
| int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance, |
| bool force) |
| { |
| struct adv_info *adv = NULL; |
| u16 timeout; |
| |
| if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev)) |
| return -EPERM; |
| |
| if (hdev->adv_instance_timeout) |
| return -EBUSY; |
| |
| adv = hci_find_adv_instance(hdev, instance); |
| if (!adv) |
| return -ENOENT; |
| |
| /* A zero timeout means unlimited advertising. As long as there is |
| * only one instance, duration should be ignored. We still set a timeout |
| * in case further instances are being added later on. |
| * |
| * If the remaining lifetime of the instance is more than the duration |
| * then the timeout corresponds to the duration, otherwise it will be |
| * reduced to the remaining instance lifetime. |
| */ |
| if (adv->timeout == 0 || adv->duration <= adv->remaining_time) |
| timeout = adv->duration; |
| else |
| timeout = adv->remaining_time; |
| |
| /* The remaining time is being reduced unless the instance is being |
| * advertised without time limit. |
| */ |
| if (adv->timeout) |
| adv->remaining_time = adv->remaining_time - timeout; |
| |
| /* Only use work for scheduling instances with legacy advertising */ |
| if (!ext_adv_capable(hdev)) { |
| hdev->adv_instance_timeout = timeout; |
| queue_delayed_work(hdev->req_workqueue, |
| &hdev->adv_instance_expire, |
| msecs_to_jiffies(timeout * 1000)); |
| } |
| |
| /* If we're just re-scheduling the same instance again then do not |
| * execute any HCI commands. This happens when a single instance is |
| * being advertised. |
| */ |
| if (!force && hdev->cur_adv_instance == instance && |
| hci_dev_test_flag(hdev, HCI_LE_ADV)) |
| return 0; |
| |
| hdev->cur_adv_instance = instance; |
| |
| return hci_start_adv_sync(hdev, instance); |
| } |
| |
| static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk) |
| { |
| int err; |
| |
| if (!ext_adv_capable(hdev)) |
| return 0; |
| |
| /* Disable instance 0x00 to disable all instances */ |
| err = hci_disable_ext_adv_instance_sync(hdev, 0x00); |
| if (err) |
| return err; |
| |
| return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS, |
| 0, NULL, 0, HCI_CMD_TIMEOUT, sk); |
| } |
| |
| static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force) |
| { |
| struct adv_info *adv, *n; |
| int err = 0; |
| |
| if (ext_adv_capable(hdev)) |
| /* Remove all existing sets */ |
| err = hci_clear_adv_sets_sync(hdev, sk); |
| if (ext_adv_capable(hdev)) |
| return err; |
| |
| /* This is safe as long as there is no command send while the lock is |
| * held. |
| */ |
| hci_dev_lock(hdev); |
| |
| /* Cleanup non-ext instances */ |
| list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { |
| u8 instance = adv->instance; |
| int err; |
| |
| if (!(force || adv->timeout)) |
| continue; |
| |
| err = hci_remove_adv_instance(hdev, instance); |
| if (!err) |
| mgmt_advertising_removed(sk, hdev, instance); |
| } |
| |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance, |
| struct sock *sk) |
| { |
| int err = 0; |
| |
| /* If we use extended advertising, instance has to be removed first. */ |
| if (ext_adv_capable(hdev)) |
| err = hci_remove_ext_adv_instance_sync(hdev, instance, sk); |
| if (ext_adv_capable(hdev)) |
| return err; |
| |
| /* This is safe as long as there is no command send while the lock is |
| * held. |
| */ |
| hci_dev_lock(hdev); |
| |
| err = hci_remove_adv_instance(hdev, instance); |
| if (!err) |
| mgmt_advertising_removed(sk, hdev, instance); |
| |
| hci_dev_unlock(hdev); |
| |
| return err; |
| } |
| |
| /* For a single instance: |
| * - force == true: The instance will be removed even when its remaining |
| * lifetime is not zero. |
| * - force == false: the instance will be deactivated but kept stored unless |
| * the remaining lifetime is zero. |
| * |
| * For instance == 0x00: |
| * - force == true: All instances will be removed regardless of their timeout |
| * setting. |
| * - force == false: Only instances that have a timeout will be removed. |
| */ |
| int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk, |
| u8 instance, bool force) |
| { |
| struct adv_info *next = NULL; |
| int err; |
| |
| /* Cancel any timeout concerning the removed instance(s). */ |
| if (!instance || hdev->cur_adv_instance == instance) |
| cancel_adv_timeout(hdev); |
| |
| /* Get the next instance to advertise BEFORE we remove |
| * the current one. This can be the same instance again |
| * if there is only one instance. |
| */ |
| if (hdev->cur_adv_instance == instance) |
| next = hci_get_next_instance(hdev, instance); |
| |
| if (!instance) { |
| err = hci_clear_adv_sync(hdev, sk, force); |
| if (err) |
| return err; |
| } else { |
| struct adv_info *adv = hci_find_adv_instance(hdev, instance); |
| |
| if (force || (adv && adv->timeout && !adv->remaining_time)) { |
| /* Don't advertise a removed instance. */ |
| if (next && next->instance == instance) |
| next = NULL; |
| |
| err = hci_remove_adv_sync(hdev, instance, sk); |
| if (err) |
| return err; |
| } |
| } |
| |
| if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) |
| return 0; |
| |
| if (next && !ext_adv_capable(hdev)) |
| hci_schedule_adv_instance_sync(hdev, next->instance, false); |
| |
| return 0; |
| } |
| |
| int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle) |
| { |
| struct hci_cp_read_rssi cp; |
| |
| cp.handle = handle; |
| return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp) |
| { |
| return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK, |
| sizeof(*cp), cp, HCI_CMD_TIMEOUT); |
| } |
| |
| int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type) |
| { |
| struct hci_cp_read_tx_power cp; |
| |
| cp.handle = handle; |
| cp.type = type; |
| return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| int hci_disable_advertising_sync(struct hci_dev *hdev) |
| { |
| u8 enable = 0x00; |
| int err = 0; |
| |
| /* If controller is not advertising we are done. */ |
| if (!hci_dev_test_flag(hdev, HCI_LE_ADV)) |
| return 0; |
| |
| if (ext_adv_capable(hdev)) |
| err = hci_disable_ext_adv_instance_sync(hdev, 0x00); |
| if (ext_adv_capable(hdev)) |
| return err; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, |
| sizeof(enable), &enable, HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val, |
| u8 filter_dup) |
| { |
| struct hci_cp_le_set_ext_scan_enable cp; |
| |
| memset(&cp, 0, sizeof(cp)); |
| cp.enable = val; |
| |
| if (hci_dev_test_flag(hdev, HCI_MESH)) |
| cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; |
| else |
| cp.filter_dup = filter_dup; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, |
| u8 filter_dup) |
| { |
| struct hci_cp_le_set_scan_enable cp; |
| |
| if (use_ext_scan(hdev)) |
| return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup); |
| |
| memset(&cp, 0, sizeof(cp)); |
| cp.enable = val; |
| |
| if (val && hci_dev_test_flag(hdev, HCI_MESH)) |
| cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; |
| else |
| cp.filter_dup = filter_dup; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val) |
| { |
| if (!use_ll_privacy(hdev)) |
| return 0; |
| |
| /* If controller is not/already resolving we are done. */ |
| if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) |
| return 0; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, |
| sizeof(val), &val, HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_scan_disable_sync(struct hci_dev *hdev) |
| { |
| int err; |
| |
| /* If controller is not scanning we are done. */ |
| if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) |
| return 0; |
| |
| if (hdev->scanning_paused) { |
| bt_dev_dbg(hdev, "Scanning is paused for suspend"); |
| return 0; |
| } |
| |
| err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); |
| if (err) { |
| bt_dev_err(hdev, "Unable to disable scanning: %d", err); |
| return err; |
| } |
| |
| return err; |
| } |
| |
| static bool scan_use_rpa(struct hci_dev *hdev) |
| { |
| return hci_dev_test_flag(hdev, HCI_PRIVACY); |
| } |
| |
| static void hci_start_interleave_scan(struct hci_dev *hdev) |
| { |
| hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; |
| queue_delayed_work(hdev->req_workqueue, |
| &hdev->interleave_scan, 0); |
| } |
| |
| static bool is_interleave_scanning(struct hci_dev *hdev) |
| { |
| return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE; |
| } |
| |
| static void cancel_interleave_scan(struct hci_dev *hdev) |
| { |
| bt_dev_dbg(hdev, "cancelling interleave scan"); |
| |
| cancel_delayed_work_sync(&hdev->interleave_scan); |
| |
| hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE; |
| } |
| |
| /* Return true if interleave_scan wasn't started until exiting this function, |
| * otherwise, return false |
| */ |
| static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev) |
| { |
| /* Do interleaved scan only if all of the following are true: |
| * - There is at least one ADV monitor |
| * - At least one pending LE connection or one device to be scanned for |
| * - Monitor offloading is not supported |
| * If so, we should alternate between allowlist scan and one without |
| * any filters to save power. |
| */ |
| bool use_interleaving = hci_is_adv_monitoring(hdev) && |
| !(list_empty(&hdev->pend_le_conns) && |
| list_empty(&hdev->pend_le_reports)) && |
| hci_get_adv_monitor_offload_ext(hdev) == |
| HCI_ADV_MONITOR_EXT_NONE; |
| bool is_interleaving = is_interleave_scanning(hdev); |
| |
| if (use_interleaving && !is_interleaving) { |
| hci_start_interleave_scan(hdev); |
| bt_dev_dbg(hdev, "starting interleave scan"); |
| return true; |
| } |
| |
| if (!use_interleaving && is_interleaving) |
| cancel_interleave_scan(hdev); |
| |
| return false; |
| } |
| |
| /* Removes connection to resolve list if needed.*/ |
| static int hci_le_del_resolve_list_sync(struct hci_dev *hdev, |
| bdaddr_t *bdaddr, u8 bdaddr_type) |
| { |
| struct hci_cp_le_del_from_resolv_list cp; |
| struct bdaddr_list_with_irk *entry; |
| |
| if (!use_ll_privacy(hdev)) |
| return 0; |
| |
| /* Check if the IRK has been programmed */ |
| entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr, |
| bdaddr_type); |
| if (!entry) |
| return 0; |
| |
| cp.bdaddr_type = bdaddr_type; |
| bacpy(&cp.bdaddr, bdaddr); |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_le_del_accept_list_sync(struct hci_dev *hdev, |
| bdaddr_t *bdaddr, u8 bdaddr_type) |
| { |
| struct hci_cp_le_del_from_accept_list cp; |
| int err; |
| |
| /* Check if device is on accept list before removing it */ |
| if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type)) |
| return 0; |
| |
| cp.bdaddr_type = bdaddr_type; |
| bacpy(&cp.bdaddr, bdaddr); |
| |
| /* Ignore errors when removing from resolving list as that is likely |
| * that the device was never added. |
| */ |
| hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); |
| |
| err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| if (err) { |
| bt_dev_err(hdev, "Unable to remove from allow list: %d", err); |
| return err; |
| } |
| |
| bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr, |
| cp.bdaddr_type); |
| |
| return 0; |
| } |
| |
| struct conn_params { |
| bdaddr_t addr; |
| u8 addr_type; |
| hci_conn_flags_t flags; |
| u8 privacy_mode; |
| }; |
| |
| /* Adds connection to resolve list if needed. |
| * Setting params to NULL programs local hdev->irk |
| */ |
| static int hci_le_add_resolve_list_sync(struct hci_dev *hdev, |
| struct conn_params *params) |
| { |
| struct hci_cp_le_add_to_resolv_list cp; |
| struct smp_irk *irk; |
| struct bdaddr_list_with_irk *entry; |
| struct hci_conn_params *p; |
| |
| if (!use_ll_privacy(hdev)) |
| return 0; |
| |
| /* Attempt to program local identity address, type and irk if params is |
| * NULL. |
| */ |
| if (!params) { |
| if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) |
| return 0; |
| |
| hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type); |
| memcpy(cp.peer_irk, hdev->irk, 16); |
| goto done; |
| } |
| |
| irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); |
| if (!irk) |
| return 0; |
| |
| /* Check if the IK has _not_ been programmed yet. */ |
| entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, |
| ¶ms->addr, |
| params->addr_type); |
| if (entry) |
| return 0; |
| |
| cp.bdaddr_type = params->addr_type; |
| bacpy(&cp.bdaddr, ¶ms->addr); |
| memcpy(cp.peer_irk, irk->val, 16); |
| |
| /* Default privacy mode is always Network */ |
| params->privacy_mode = HCI_NETWORK_PRIVACY; |
| |
| rcu_read_lock(); |
| p = hci_pend_le_action_lookup(&hdev->pend_le_conns, |
| ¶ms->addr, params->addr_type); |
| if (!p) |
| p = hci_pend_le_action_lookup(&hdev->pend_le_reports, |
| ¶ms->addr, params->addr_type); |
| if (p) |
| WRITE_ONCE(p->privacy_mode, HCI_NETWORK_PRIVACY); |
| rcu_read_unlock(); |
| |
| done: |
| if (hci_dev_test_flag(hdev, HCI_PRIVACY)) |
| memcpy(cp.local_irk, hdev->irk, 16); |
| else |
| memset(cp.local_irk, 0, 16); |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| /* Set Device Privacy Mode. */ |
| static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev, |
| struct conn_params *params) |
| { |
| struct hci_cp_le_set_privacy_mode cp; |
| struct smp_irk *irk; |
| |
| /* If device privacy mode has already been set there is nothing to do */ |
| if (params->privacy_mode == HCI_DEVICE_PRIVACY) |
| return 0; |
| |
| /* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also |
| * indicates that LL Privacy has been enabled and |
| * HCI_OP_LE_SET_PRIVACY_MODE is supported. |
| */ |
| if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY)) |
| return 0; |
| |
| irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); |
| if (!irk) |
| return 0; |
| |
| memset(&cp, 0, sizeof(cp)); |
| cp.bdaddr_type = irk->addr_type; |
| bacpy(&cp.bdaddr, &irk->bdaddr); |
| cp.mode = HCI_DEVICE_PRIVACY; |
| |
| /* Note: params->privacy_mode is not updated since it is a copy */ |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| /* Adds connection to allow list if needed, if the device uses RPA (has IRK) |
| * this attempts to program the device in the resolving list as well and |
| * properly set the privacy mode. |
| */ |
| static int hci_le_add_accept_list_sync(struct hci_dev *hdev, |
| struct conn_params *params, |
| u8 *num_entries) |
| { |
| struct hci_cp_le_add_to_accept_list cp; |
| int err; |
| |
| /* During suspend, only wakeable devices can be in acceptlist */ |
| if (hdev->suspended && |
| !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) { |
| hci_le_del_accept_list_sync(hdev, ¶ms->addr, |
| params->addr_type); |
| return 0; |
| } |
| |
| /* Select filter policy to accept all advertising */ |
| if (*num_entries >= hdev->le_accept_list_size) |
| return -ENOSPC; |
| |
| /* Accept list can not be used with RPAs */ |
| if (!use_ll_privacy(hdev) && |
| hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) |
| return -EINVAL; |
| |
| /* Attempt to program the device in the resolving list first to avoid |
| * having to rollback in case it fails since the resolving list is |
| * dynamic it can probably be smaller than the accept list. |
| */ |
| err = hci_le_add_resolve_list_sync(hdev, params); |
| if (err) { |
| bt_dev_err(hdev, "Unable to add to resolve list: %d", err); |
| return err; |
| } |
| |
| /* Set Privacy Mode */ |
| err = hci_le_set_privacy_mode_sync(hdev, params); |
| if (err) { |
| bt_dev_err(hdev, "Unable to set privacy mode: %d", err); |
| return err; |
| } |
| |
| /* Check if already in accept list */ |
| if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr, |
| params->addr_type)) |
| return 0; |
| |
| *num_entries += 1; |
| cp.bdaddr_type = params->addr_type; |
| bacpy(&cp.bdaddr, ¶ms->addr); |
| |
| err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| if (err) { |
| bt_dev_err(hdev, "Unable to add to allow list: %d", err); |
| /* Rollback the device from the resolving list */ |
| hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); |
| return err; |
| } |
| |
| bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr, |
| cp.bdaddr_type); |
| |
| return 0; |
| } |
| |
| /* This function disables/pause all advertising instances */ |
| static int hci_pause_advertising_sync(struct hci_dev *hdev) |
| { |
| int err; |
| int old_state; |
| |
| /* If already been paused there is nothing to do. */ |
| if (hdev->advertising_paused) |
| return 0; |
| |
| bt_dev_dbg(hdev, "Pausing directed advertising"); |
| |
| /* Stop directed advertising */ |
| old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING); |
| if (old_state) { |
| /* When discoverable timeout triggers, then just make sure |
| * the limited discoverable flag is cleared. Even in the case |
| * of a timeout triggered from general discoverable, it is |
| * safe to unconditionally clear the flag. |
| */ |
| hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); |
| hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); |
| hdev->discov_timeout = 0; |
| } |
| |
| bt_dev_dbg(hdev, "Pausing advertising instances"); |
| |
| /* Call to disable any advertisements active on the controller. |
| * This will succeed even if no advertisements are configured. |
| */ |
| err = hci_disable_advertising_sync(hdev); |
| if (err) |
| return err; |
| |
| /* If we are using software rotation, pause the loop */ |
| if (!ext_adv_capable(hdev)) |
| cancel_adv_timeout(hdev); |
| |
| hdev->advertising_paused = true; |
| hdev->advertising_old_state = old_state; |
| |
| return 0; |
| } |
| |
| /* This function enables all user advertising instances */ |
| static int hci_resume_advertising_sync(struct hci_dev *hdev) |
| { |
| struct adv_info *adv, *tmp; |
| int err; |
| |
| /* If advertising has not been paused there is nothing to do. */ |
| if (!hdev->advertising_paused) |
| return 0; |
| |
| /* Resume directed advertising */ |
| hdev->advertising_paused = false; |
| if (hdev->advertising_old_state) { |
| hci_dev_set_flag(hdev, HCI_ADVERTISING); |
| hdev->advertising_old_state = 0; |
| } |
| |
| bt_dev_dbg(hdev, "Resuming advertising instances"); |
| |
| if (ext_adv_capable(hdev)) { |
| /* Call for each tracked instance to be re-enabled */ |
| list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) { |
| err = hci_enable_ext_advertising_sync(hdev, |
| adv->instance); |
| if (!err) |
| continue; |
| |
| /* If the instance cannot be resumed remove it */ |
| hci_remove_ext_adv_instance_sync(hdev, adv->instance, |
| NULL); |
| } |
| } else { |
| /* Schedule for most recent instance to be restarted and begin |
| * the software rotation loop |
| */ |
| err = hci_schedule_adv_instance_sync(hdev, |
| hdev->cur_adv_instance, |
| true); |
| } |
| |
| hdev->advertising_paused = false; |
| |
| return err; |
| } |
| |
| static int hci_pause_addr_resolution(struct hci_dev *hdev) |
| { |
| int err; |
| |
| if (!use_ll_privacy(hdev)) |
| return 0; |
| |
| if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) |
| return 0; |
| |
| /* Cannot disable addr resolution if scanning is enabled or |
| * when initiating an LE connection. |
| */ |
| if (hci_dev_test_flag(hdev, HCI_LE_SCAN) || |
| hci_lookup_le_connect(hdev)) { |
| bt_dev_err(hdev, "Command not allowed when scan/LE connect"); |
| return -EPERM; |
| } |
| |
| /* Cannot disable addr resolution if advertising is enabled. */ |
| err = hci_pause_advertising_sync(hdev); |
| if (err) { |
| bt_dev_err(hdev, "Pause advertising failed: %d", err); |
| return err; |
| } |
| |
| err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); |
| if (err) |
| bt_dev_err(hdev, "Unable to disable Address Resolution: %d", |
| err); |
| |
| /* Return if address resolution is disabled and RPA is not used. */ |
| if (!err && scan_use_rpa(hdev)) |
| return 0; |
| |
| hci_resume_advertising_sync(hdev); |
| return err; |
| } |
| |
| struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev, |
| bool extended, struct sock *sk) |
| { |
| u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA : |
| HCI_OP_READ_LOCAL_OOB_DATA; |
| |
| return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk); |
| } |
| |
| static struct conn_params *conn_params_copy(struct list_head *list, size_t *n) |
| { |
| struct hci_conn_params *params; |
| struct conn_params *p; |
| size_t i; |
| |
| rcu_read_lock(); |
| |
| i = 0; |
| list_for_each_entry_rcu(params, list, action) |
| ++i; |
| *n = i; |
| |
| rcu_read_unlock(); |
| |
| p = kvcalloc(*n, sizeof(struct conn_params), GFP_KERNEL); |
| if (!p) |
| return NULL; |
| |
| rcu_read_lock(); |
| |
| i = 0; |
| list_for_each_entry_rcu(params, list, action) { |
| /* Racing adds are handled in next scan update */ |
| if (i >= *n) |
| break; |
| |
| /* No hdev->lock, but: addr, addr_type are immutable. |
| * privacy_mode is only written by us or in |
| * hci_cc_le_set_privacy_mode that we wait for. |
| * We should be idempotent so MGMT updating flags |
| * while we are processing is OK. |
| */ |
| bacpy(&p[i].addr, ¶ms->addr); |
| p[i].addr_type = params->addr_type; |
| p[i].flags = READ_ONCE(params->flags); |
| p[i].privacy_mode = READ_ONCE(params->privacy_mode); |
| ++i; |
| } |
| |
| rcu_read_unlock(); |
| |
| *n = i; |
| return p; |
| } |
| |
| /* Clear LE Accept List */ |
| static int hci_le_clear_accept_list_sync(struct hci_dev *hdev) |
| { |
| if (!(hdev->commands[26] & 0x80)) |
| return 0; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL, |
| HCI_CMD_TIMEOUT); |
| } |
| |
| /* Device must not be scanning when updating the accept list. |
| * |
| * Update is done using the following sequence: |
| * |
| * use_ll_privacy((Disable Advertising) -> Disable Resolving List) -> |
| * Remove Devices From Accept List -> |
| * (has IRK && use_ll_privacy(Remove Devices From Resolving List))-> |
| * Add Devices to Accept List -> |
| * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) -> |
| * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) -> |
| * Enable Scanning |
| * |
| * In case of failure advertising shall be restored to its original state and |
| * return would disable accept list since either accept or resolving list could |
| * not be programmed. |
| * |
| */ |
| static u8 hci_update_accept_list_sync(struct hci_dev *hdev) |
| { |
| struct conn_params *params; |
| struct bdaddr_list *b, *t; |
| u8 num_entries = 0; |
| bool pend_conn, pend_report; |
| u8 filter_policy; |
| size_t i, n; |
| int err; |
| |
| /* Pause advertising if resolving list can be used as controllers |
| * cannot accept resolving list modifications while advertising. |
| */ |
| if (use_ll_privacy(hdev)) { |
| err = hci_pause_advertising_sync(hdev); |
| if (err) { |
| bt_dev_err(hdev, "pause advertising failed: %d", err); |
| return 0x00; |
| } |
| } |
| |
| /* Disable address resolution while reprogramming accept list since |
| * devices that do have an IRK will be programmed in the resolving list |
| * when LL Privacy is enabled. |
| */ |
| err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); |
| if (err) { |
| bt_dev_err(hdev, "Unable to disable LL privacy: %d", err); |
| goto done; |
| } |
| |
| /* Force address filtering if PA Sync is in progress */ |
| if (hci_dev_test_flag(hdev, HCI_PA_SYNC)) { |
| struct hci_cp_le_pa_create_sync *sent; |
| |
| sent = hci_sent_cmd_data(hdev, HCI_OP_LE_PA_CREATE_SYNC); |
| if (sent) { |
| struct conn_params pa; |
| |
| memset(&pa, 0, sizeof(pa)); |
| |
| bacpy(&pa.addr, &sent->addr); |
| pa.addr_type = sent->addr_type; |
| |
| /* Clear first since there could be addresses left |
| * behind. |
| */ |
| hci_le_clear_accept_list_sync(hdev); |
| |
| num_entries = 1; |
| err = hci_le_add_accept_list_sync(hdev, &pa, |
| &num_entries); |
| goto done; |
| } |
| } |
| |
| /* Go through the current accept list programmed into the |
| * controller one by one and check if that address is connected or is |
| * still in the list of pending connections or list of devices to |
| * report. If not present in either list, then remove it from |
| * the controller. |
| */ |
| list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) { |
| if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type)) |
| continue; |
| |
| /* Pointers not dereferenced, no locks needed */ |
| pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, |
| &b->bdaddr, |
| b->bdaddr_type); |
| pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, |
| &b->bdaddr, |
| b->bdaddr_type); |
| |
| /* If the device is not likely to connect or report, |
| * remove it from the acceptlist. |
| */ |
| if (!pend_conn && !pend_report) { |
| hci_le_del_accept_list_sync(hdev, &b->bdaddr, |
| b->bdaddr_type); |
| continue; |
| } |
| |
| num_entries++; |
| } |
| |
| /* Since all no longer valid accept list entries have been |
| * removed, walk through the list of pending connections |
| * and ensure that any new device gets programmed into |
| * the controller. |
| * |
| * If the list of the devices is larger than the list of |
| * available accept list entries in the controller, then |
| * just abort and return filer policy value to not use the |
| * accept list. |
| * |
| * The list and params may be mutated while we wait for events, |
| * so make a copy and iterate it. |
| */ |
| |
| params = conn_params_copy(&hdev->pend_le_conns, &n); |
| if (!params) { |
| err = -ENOMEM; |
| goto done; |
| } |
| |
| for (i = 0; i < n; ++i) { |
| err = hci_le_add_accept_list_sync(hdev, ¶ms[i], |
| &num_entries); |
| if (err) { |
| kvfree(params); |
| goto done; |
| } |
| } |
| |
| kvfree(params); |
| |
| /* After adding all new pending connections, walk through |
| * the list of pending reports and also add these to the |
| * accept list if there is still space. Abort if space runs out. |
| */ |
| |
| params = conn_params_copy(&hdev->pend_le_reports, &n); |
| if (!params) { |
| err = -ENOMEM; |
| goto done; |
| } |
| |
| for (i = 0; i < n; ++i) { |
| err = hci_le_add_accept_list_sync(hdev, ¶ms[i], |
| &num_entries); |
| if (err) { |
| kvfree(params); |
| goto done; |
| } |
| } |
| |
| kvfree(params); |
| |
| /* Use the allowlist unless the following conditions are all true: |
| * - We are not currently suspending |
| * - There are 1 or more ADV monitors registered and it's not offloaded |
| * - Interleaved scanning is not currently using the allowlist |
| */ |
| if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended && |
| hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE && |
| hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST) |
| err = -EINVAL; |
| |
| done: |
| filter_policy = err ? 0x00 : 0x01; |
| |
| /* Enable address resolution when LL Privacy is enabled. */ |
| err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01); |
| if (err) |
| bt_dev_err(hdev, "Unable to enable LL privacy: %d", err); |
| |
| /* Resume advertising if it was paused */ |
| if (use_ll_privacy(hdev)) |
| hci_resume_advertising_sync(hdev); |
| |
| /* Select filter policy to use accept list */ |
| return filter_policy; |
| } |
| |
| static void hci_le_scan_phy_params(struct hci_cp_le_scan_phy_params *cp, |
| u8 type, u16 interval, u16 window) |
| { |
| cp->type = type; |
| cp->interval = cpu_to_le16(interval); |
| cp->window = cpu_to_le16(window); |
| } |
| |
| static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type, |
| u16 interval, u16 window, |
| u8 own_addr_type, u8 filter_policy) |
| { |
| struct hci_cp_le_set_ext_scan_params *cp; |
| struct hci_cp_le_scan_phy_params *phy; |
| u8 data[sizeof(*cp) + sizeof(*phy) * 2]; |
| u8 num_phy = 0x00; |
| |
| cp = (void *)data; |
| phy = (void *)cp->data; |
| |
| memset(data, 0, sizeof(data)); |
| |
| cp->own_addr_type = own_addr_type; |
| cp->filter_policy = filter_policy; |
| |
| /* Check if PA Sync is in progress then select the PHY based on the |
| * hci_conn.iso_qos. |
| */ |
| if (hci_dev_test_flag(hdev, HCI_PA_SYNC)) { |
| struct hci_cp_le_add_to_accept_list *sent; |
| |
| sent = hci_sent_cmd_data(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST); |
| if (sent) { |
| struct hci_conn *conn; |
| |
| conn = hci_conn_hash_lookup_ba(hdev, ISO_LINK, |
| &sent->bdaddr); |
| if (conn) { |
| struct bt_iso_qos *qos = &conn->iso_qos; |
| |
| if (qos->bcast.in.phy & BT_ISO_PHY_1M || |
| qos->bcast.in.phy & BT_ISO_PHY_2M) { |
| cp->scanning_phys |= LE_SCAN_PHY_1M; |
| hci_le_scan_phy_params(phy, type, |
| interval, |
| window); |
| num_phy++; |
| phy++; |
| } |
| |
| if (qos->bcast.in.phy & BT_ISO_PHY_CODED) { |
| cp->scanning_phys |= LE_SCAN_PHY_CODED; |
| hci_le_scan_phy_params(phy, type, |
| interval * 3, |
| window * 3); |
| num_phy++; |
| phy++; |
| } |
| |
| if (num_phy) |
| goto done; |
| } |
| } |
| } |
| |
| if (scan_1m(hdev) || scan_2m(hdev)) { |
| cp->scanning_phys |= LE_SCAN_PHY_1M; |
| hci_le_scan_phy_params(phy, type, interval, window); |
| num_phy++; |
| phy++; |
| } |
| |
| if (scan_coded(hdev)) { |
| cp->scanning_phys |= LE_SCAN_PHY_CODED; |
| hci_le_scan_phy_params(phy, type, interval * 3, window * 3); |
| num_phy++; |
| phy++; |
| } |
| |
| done: |
| if (!num_phy) |
| return -EINVAL; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS, |
| sizeof(*cp) + sizeof(*phy) * num_phy, |
| data, HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type, |
| u16 interval, u16 window, |
| u8 own_addr_type, u8 filter_policy) |
| { |
| struct hci_cp_le_set_scan_param cp; |
| |
| if (use_ext_scan(hdev)) |
| return hci_le_set_ext_scan_param_sync(hdev, type, interval, |
| window, own_addr_type, |
| filter_policy); |
| |
| memset(&cp, 0, sizeof(cp)); |
| cp.type = type; |
| cp.interval = cpu_to_le16(interval); |
| cp.window = cpu_to_le16(window); |
| cp.own_address_type = own_addr_type; |
| cp.filter_policy = filter_policy; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval, |
| u16 window, u8 own_addr_type, u8 filter_policy, |
| u8 filter_dup) |
| { |
| int err; |
| |
| if (hdev->scanning_paused) { |
| bt_dev_dbg(hdev, "Scanning is paused for suspend"); |
| return 0; |
| } |
| |
| err = hci_le_set_scan_param_sync(hdev, type, interval, window, |
| own_addr_type, filter_policy); |
| if (err) |
| return err; |
| |
| return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup); |
| } |
| |
| static int hci_passive_scan_sync(struct hci_dev *hdev) |
| { |
| u8 own_addr_type; |
| u8 filter_policy; |
| u16 window, interval; |
| u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE; |
| int err; |
| |
| if (hdev->scanning_paused) { |
| bt_dev_dbg(hdev, "Scanning is paused for suspend"); |
| return 0; |
| } |
| |
| err = hci_scan_disable_sync(hdev); |
| if (err) { |
| bt_dev_err(hdev, "disable scanning failed: %d", err); |
| return err; |
| } |
| |
| /* Set require_privacy to false since no SCAN_REQ are send |
| * during passive scanning. Not using an non-resolvable address |
| * here is important so that peer devices using direct |
| * advertising with our address will be correctly reported |
| * by the controller. |
| */ |
| if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev), |
| &own_addr_type)) |
| return 0; |
| |
| if (hdev->enable_advmon_interleave_scan && |
| hci_update_interleaved_scan_sync(hdev)) |
| return 0; |
| |
| bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state); |
| |
| /* Adding or removing entries from the accept list must |
| * happen before enabling scanning. The controller does |
| * not allow accept list modification while scanning. |
| */ |
| filter_policy = hci_update_accept_list_sync(hdev); |
| |
| /* When the controller is using random resolvable addresses and |
| * with that having LE privacy enabled, then controllers with |
| * Extended Scanner Filter Policies support can now enable support |
| * for handling directed advertising. |
| * |
| * So instead of using filter polices 0x00 (no acceptlist) |
| * and 0x01 (acceptlist enabled) use the new filter policies |
| * 0x02 (no acceptlist) and 0x03 (acceptlist enabled). |
| */ |
| if (hci_dev_test_flag(hdev, HCI_PRIVACY) && |
| (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) |
| filter_policy |= 0x02; |
| |
| if (hdev->suspended) { |
| window = hdev->le_scan_window_suspend; |
| interval = hdev->le_scan_int_suspend; |
| } else if (hci_is_le_conn_scanning(hdev)) { |
| window = hdev->le_scan_window_connect; |
| interval = hdev->le_scan_int_connect; |
| } else if (hci_is_adv_monitoring(hdev)) { |
| window = hdev->le_scan_window_adv_monitor; |
| interval = hdev->le_scan_int_adv_monitor; |
| } else { |
| window = hdev->le_scan_window; |
| interval = hdev->le_scan_interval; |
| } |
| |
| /* Disable all filtering for Mesh */ |
| if (hci_dev_test_flag(hdev, HCI_MESH)) { |
| filter_policy = 0; |
| filter_dups = LE_SCAN_FILTER_DUP_DISABLE; |
| } |
| |
| bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy); |
| |
| return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window, |
| own_addr_type, filter_policy, filter_dups); |
| } |
| |
| /* This function controls the passive scanning based on hdev->pend_le_conns |
| * list. If there are pending LE connection we start the background scanning, |
| * otherwise we stop it in the following sequence: |
| * |
| * If there are devices to scan: |
| * |
| * Disable Scanning -> Update Accept List -> |
| * use_ll_privacy((Disable Advertising) -> Disable Resolving List -> |
| * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) -> |
| * Enable Scanning |
| * |
| * Otherwise: |
| * |
| * Disable Scanning |
| */ |
| int hci_update_passive_scan_sync(struct hci_dev *hdev) |
| { |
| int err; |
| |
| if (!test_bit(HCI_UP, &hdev->flags) || |
| test_bit(HCI_INIT, &hdev->flags) || |
| hci_dev_test_flag(hdev, HCI_SETUP) || |
| hci_dev_test_flag(hdev, HCI_CONFIG) || |
| hci_dev_test_flag(hdev, HCI_AUTO_OFF) || |
| hci_dev_test_flag(hdev, HCI_UNREGISTER)) |
| return 0; |
| |
| /* No point in doing scanning if LE support hasn't been enabled */ |
| if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) |
| return 0; |
| |
| /* If discovery is active don't interfere with it */ |
| if (hdev->discovery.state != DISCOVERY_STOPPED) |
| return 0; |
| |
| /* Reset RSSI and UUID filters when starting background scanning |
| * since these filters are meant for service discovery only. |
| * |
| * The Start Discovery and Start Service Discovery operations |
| * ensure to set proper values for RSSI threshold and UUID |
| * filter list. So it is safe to just reset them here. |
| */ |
| hci_discovery_filter_clear(hdev); |
| |
| bt_dev_dbg(hdev, "ADV monitoring is %s", |
| hci_is_adv_monitoring(hdev) ? "on" : "off"); |
| |
| if (!hci_dev_test_flag(hdev, HCI_MESH) && |
| list_empty(&hdev->pend_le_conns) && |
| list_empty(&hdev->pend_le_reports) && |
| !hci_is_adv_monitoring(hdev) && |
| !hci_dev_test_flag(hdev, HCI_PA_SYNC)) { |
| /* If there is no pending LE connections or devices |
| * to be scanned for or no ADV monitors, we should stop the |
| * background scanning. |
| */ |
| |
| bt_dev_dbg(hdev, "stopping background scanning"); |
| |
| err = hci_scan_disable_sync(hdev); |
| if (err) |
| bt_dev_err(hdev, "stop background scanning failed: %d", |
| err); |
| } else { |
| /* If there is at least one pending LE connection, we should |
| * keep the background scan running. |
| */ |
| |
| /* If controller is connecting, we should not start scanning |
| * since some controllers are not able to scan and connect at |
| * the same time. |
| */ |
| if (hci_lookup_le_connect(hdev)) |
| return 0; |
| |
| bt_dev_dbg(hdev, "start background scanning"); |
| |
| err = hci_passive_scan_sync(hdev); |
| if (err) |
| bt_dev_err(hdev, "start background scanning failed: %d", |
| err); |
| } |
| |
| return err; |
| } |
| |
| static int update_scan_sync(struct hci_dev *hdev, void *data) |
| { |
| return hci_update_scan_sync(hdev); |
| } |
| |
| int hci_update_scan(struct hci_dev *hdev) |
| { |
| return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL); |
| } |
| |
| static int update_passive_scan_sync(struct hci_dev *hdev, void *data) |
| { |
| return hci_update_passive_scan_sync(hdev); |
| } |
| |
| int hci_update_passive_scan(struct hci_dev *hdev) |
| { |
| /* Only queue if it would have any effect */ |
| if (!test_bit(HCI_UP, &hdev->flags) || |
| test_bit(HCI_INIT, &hdev->flags) || |
| hci_dev_test_flag(hdev, HCI_SETUP) || |
| hci_dev_test_flag(hdev, HCI_CONFIG) || |
| hci_dev_test_flag(hdev, HCI_AUTO_OFF) || |
| hci_dev_test_flag(hdev, HCI_UNREGISTER)) |
| return 0; |
| |
| return hci_cmd_sync_queue_once(hdev, update_passive_scan_sync, NULL, |
| NULL); |
| } |
| |
| int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val) |
| { |
| int err; |
| |
| if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev)) |
| return 0; |
| |
| err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, |
| sizeof(val), &val, HCI_CMD_TIMEOUT); |
| |
| if (!err) { |
| if (val) { |
| hdev->features[1][0] |= LMP_HOST_SC; |
| hci_dev_set_flag(hdev, HCI_SC_ENABLED); |
| } else { |
| hdev->features[1][0] &= ~LMP_HOST_SC; |
| hci_dev_clear_flag(hdev, HCI_SC_ENABLED); |
| } |
| } |
| |
| return err; |
| } |
| |
| int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode) |
| { |
| int err; |
| |
| if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || |
| lmp_host_ssp_capable(hdev)) |
| return 0; |
| |
| if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) { |
| __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, |
| sizeof(mode), &mode, HCI_CMD_TIMEOUT); |
| } |
| |
| err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, |
| sizeof(mode), &mode, HCI_CMD_TIMEOUT); |
| if (err) |
| return err; |
| |
| return hci_write_sc_support_sync(hdev, 0x01); |
| } |
| |
| int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul) |
| { |
| struct hci_cp_write_le_host_supported cp; |
| |
| if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) || |
| !lmp_bredr_capable(hdev)) |
| return 0; |
| |
| /* Check first if we already have the right host state |
| * (host features set) |
| */ |
| if (le == lmp_host_le_capable(hdev) && |
| simul == lmp_host_le_br_capable(hdev)) |
| return 0; |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| cp.le = le; |
| cp.simul = simul; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_powered_update_adv_sync(struct hci_dev *hdev) |
| { |
| struct adv_info *adv, *tmp; |
| int err; |
| |
| if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) |
| return 0; |
| |
| /* If RPA Resolution has not been enable yet it means the |
| * resolving list is empty and we should attempt to program the |
| * local IRK in order to support using own_addr_type |
| * ADDR_LE_DEV_RANDOM_RESOLVED (0x03). |
| */ |
| if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) { |
| hci_le_add_resolve_list_sync(hdev, NULL); |
| hci_le_set_addr_resolution_enable_sync(hdev, 0x01); |
| } |
| |
| /* Make sure the controller has a good default for |
| * advertising data. This also applies to the case |
| * where BR/EDR was toggled during the AUTO_OFF phase. |
| */ |
| if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || |
| list_empty(&hdev->adv_instances)) { |
| if (ext_adv_capable(hdev)) { |
| err = hci_setup_ext_adv_instance_sync(hdev, 0x00); |
| if (!err) |
| hci_update_scan_rsp_data_sync(hdev, 0x00); |
| } else { |
| err = hci_update_adv_data_sync(hdev, 0x00); |
| if (!err) |
| hci_update_scan_rsp_data_sync(hdev, 0x00); |
| } |
| |
| if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) |
| hci_enable_advertising_sync(hdev); |
| } |
| |
| /* Call for each tracked instance to be scheduled */ |
| list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) |
| hci_schedule_adv_instance_sync(hdev, adv->instance, true); |
| |
| return 0; |
| } |
| |
| static int hci_write_auth_enable_sync(struct hci_dev *hdev) |
| { |
| u8 link_sec; |
| |
| link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); |
| if (link_sec == test_bit(HCI_AUTH, &hdev->flags)) |
| return 0; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE, |
| sizeof(link_sec), &link_sec, |
| HCI_CMD_TIMEOUT); |
| } |
| |
| int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable) |
| { |
| struct hci_cp_write_page_scan_activity cp; |
| u8 type; |
| int err = 0; |
| |
| if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) |
| return 0; |
| |
| if (hdev->hci_ver < BLUETOOTH_VER_1_2) |
| return 0; |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| if (enable) { |
| type = PAGE_SCAN_TYPE_INTERLACED; |
| |
| /* 160 msec page scan interval */ |
| cp.interval = cpu_to_le16(0x0100); |
| } else { |
| type = hdev->def_page_scan_type; |
| cp.interval = cpu_to_le16(hdev->def_page_scan_int); |
| } |
| |
| cp.window = cpu_to_le16(hdev->def_page_scan_window); |
| |
| if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval || |
| __cpu_to_le16(hdev->page_scan_window) != cp.window) { |
| err = __hci_cmd_sync_status(hdev, |
| HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| if (err) |
| return err; |
| } |
| |
| if (hdev->page_scan_type != type) |
| err = __hci_cmd_sync_status(hdev, |
| HCI_OP_WRITE_PAGE_SCAN_TYPE, |
| sizeof(type), &type, |
| HCI_CMD_TIMEOUT); |
| |
| return err; |
| } |
| |
| static bool disconnected_accept_list_entries(struct hci_dev *hdev) |
| { |
| struct bdaddr_list *b; |
| |
| list_for_each_entry(b, &hdev->accept_list, list) { |
| struct hci_conn *conn; |
| |
| conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); |
| if (!conn) |
| return true; |
| |
| if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val) |
| { |
| return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE, |
| sizeof(val), &val, |
| HCI_CMD_TIMEOUT); |
| } |
| |
| int hci_update_scan_sync(struct hci_dev *hdev) |
| { |
| u8 scan; |
| |
| if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) |
| return 0; |
| |
| if (!hdev_is_powered(hdev)) |
| return 0; |
| |
| if (mgmt_powering_down(hdev)) |
| return 0; |
| |
| if (hdev->scanning_paused) |
| return 0; |
| |
| if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || |
| disconnected_accept_list_entries(hdev)) |
| scan = SCAN_PAGE; |
| else |
| scan = SCAN_DISABLED; |
| |
| if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) |
| scan |= SCAN_INQUIRY; |
| |
| if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && |
| test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) |
| return 0; |
| |
| return hci_write_scan_enable_sync(hdev, scan); |
| } |
| |
| int hci_update_name_sync(struct hci_dev *hdev) |
| { |
| struct hci_cp_write_local_name cp; |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME, |
| sizeof(cp), &cp, |
| HCI_CMD_TIMEOUT); |
| } |
| |
| /* This function perform powered update HCI command sequence after the HCI init |
| * sequence which end up resetting all states, the sequence is as follows: |
| * |
| * HCI_SSP_ENABLED(Enable SSP) |
| * HCI_LE_ENABLED(Enable LE) |
| * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) -> |
| * Update adv data) |
| * Enable Authentication |
| * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class -> |
| * Set Name -> Set EIR) |
| * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address) |
| */ |
| int hci_powered_update_sync(struct hci_dev *hdev) |
| { |
| int err; |
| |
| /* Register the available SMP channels (BR/EDR and LE) only when |
| * successfully powering on the controller. This late |
| * registration is required so that LE SMP can clearly decide if |
| * the public address or static address is used. |
| */ |
| smp_register(hdev); |
| |
| err = hci_write_ssp_mode_sync(hdev, 0x01); |
| if (err) |
| return err; |
| |
| err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00); |
| if (err) |
| return err; |
| |
| err = hci_powered_update_adv_sync(hdev); |
| if (err) |
| return err; |
| |
| err = hci_write_auth_enable_sync(hdev); |
| if (err) |
| return err; |
| |
| if (lmp_bredr_capable(hdev)) { |
| if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) |
| hci_write_fast_connectable_sync(hdev, true); |
| else |
| hci_write_fast_connectable_sync(hdev, false); |
| hci_update_scan_sync(hdev); |
| hci_update_class_sync(hdev); |
| hci_update_name_sync(hdev); |
| hci_update_eir_sync(hdev); |
| } |
| |
| /* If forcing static address is in use or there is no public |
| * address use the static address as random address (but skip |
| * the HCI command if the current random address is already the |
| * static one. |
| * |
| * In case BR/EDR has been disabled on a dual-mode controller |
| * and a static address has been configured, then use that |
| * address instead of the public BR/EDR address. |
| */ |
| if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || |
| (!bacmp(&hdev->bdaddr, BDADDR_ANY) && |
| !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) { |
| if (bacmp(&hdev->static_addr, BDADDR_ANY)) |
| return hci_set_random_addr_sync(hdev, |
| &hdev->static_addr); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address |
| * (BD_ADDR) for a HCI device from |
| * a firmware node property. |
| * @hdev: The HCI device |
| * |
| * Search the firmware node for 'local-bd-address'. |
| * |
| * All-zero BD addresses are rejected, because those could be properties |
| * that exist in the firmware tables, but were not updated by the firmware. For |
| * example, the DTS could define 'local-bd-address', with zero BD addresses. |
| */ |
| static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) |
| { |
| struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); |
| bdaddr_t ba; |
| int ret; |
| |
| ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", |
| (u8 *)&ba, sizeof(ba)); |
| if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) |
| return; |
| |
| if (test_bit(HCI_QUIRK_BDADDR_PROPERTY_BROKEN, &hdev->quirks)) |
| baswap(&hdev->public_addr, &ba); |
| else |
| bacpy(&hdev->public_addr, &ba); |
| } |
| |
| struct hci_init_stage { |
| int (*func)(struct hci_dev *hdev); |
| }; |
| |
| /* Run init stage NULL terminated function table */ |
| static int hci_init_stage_sync(struct hci_dev *hdev, |
| const struct hci_init_stage *stage) |
| { |
| size_t i; |
| |
| for (i = 0; stage[i].func; i++) { |
| int err; |
| |
| err = stage[i].func(hdev); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /* Read Local Version */ |
| static int hci_read_local_version_sync(struct hci_dev *hdev) |
| { |
| return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION, |
| 0, NULL, HCI_CMD_TIMEOUT); |
| } |
| |
| /* Read BD Address */ |
| static int hci_read_bd_addr_sync(struct hci_dev *hdev) |
| { |
| return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR, |
| 0, NULL, HCI_CMD_TIMEOUT); |
| } |
| |
| #define HCI_INIT(_func) \ |
| { \ |
| .func = _func, \ |
| } |
| |
| static const struct hci_init_stage hci_init0[] = { |
| /* HCI_OP_READ_LOCAL_VERSION */ |
| HCI_INIT(hci_read_local_version_sync), |
| /* HCI_OP_READ_BD_ADDR */ |
| HCI_INIT(hci_read_bd_addr_sync), |
| {} |
| }; |
| |
| int hci_reset_sync(struct hci_dev *hdev) |
| { |
| int err; |
| |
| set_bit(HCI_RESET, &hdev->flags); |
| |
| err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL, |
| HCI_CMD_TIMEOUT); |
| if (err) |
| return err; |
| |
| return 0; |
| } |
| |
| static int hci_init0_sync(struct hci_dev *hdev) |
| { |
| int err; |
| |
| bt_dev_dbg(hdev, ""); |
| |
| /* Reset */ |
| if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { |
| err = hci_reset_sync(hdev); |
| if (err) |
| return err; |
| } |
| |
| return hci_init_stage_sync(hdev, hci_init0); |
| } |
| |
| static int hci_unconf_init_sync(struct hci_dev *hdev) |
| { |
| int err; |
| |
| if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) |
| return 0; |
| |
| err = hci_init0_sync(hdev); |
| if (err < 0) |
| return err; |
| |
| if (hci_dev_test_flag(hdev, HCI_SETUP)) |
| hci_debugfs_create_basic(hdev); |
| |
| return 0; |
| } |
| |
| /* Read Local Supported Features. */ |
| static int hci_read_local_features_sync(struct hci_dev *hdev) |
| { |
| return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES, |
| 0, NULL, HCI_CMD_TIMEOUT); |
| } |
| |
| /* BR Controller init stage 1 command sequence */ |
| static const struct hci_init_stage br_init1[] = { |
| /* HCI_OP_READ_LOCAL_FEATURES */ |
| HCI_INIT(hci_read_local_features_sync), |
| /* HCI_OP_READ_LOCAL_VERSION */ |
| HCI_INIT(hci_read_local_version_sync), |
| /* HCI_OP_READ_BD_ADDR */ |
| HCI_INIT(hci_read_bd_addr_sync), |
| {} |
| }; |
| |
| /* Read Local Commands */ |
| static int hci_read_local_cmds_sync(struct hci_dev *hdev) |
| { |
| /* All Bluetooth 1.2 and later controllers should support the |
| * HCI command for reading the local supported commands. |
| * |
| * Unfortunately some controllers indicate Bluetooth 1.2 support, |
| * but do not have support for this command. If that is the case, |
| * the driver can quirk the behavior and skip reading the local |
| * supported commands. |
| */ |
| if (hdev->hci_ver > BLUETOOTH_VER_1_1 && |
| !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) |
| return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS, |
| 0, NULL, HCI_CMD_TIMEOUT); |
| |
| return 0; |
| } |
| |
| static int hci_init1_sync(struct hci_dev *hdev) |
| { |
| int err; |
| |
| bt_dev_dbg(hdev, ""); |
| |
| /* Reset */ |
| if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { |
| err = hci_reset_sync(hdev); |
| if (err) |
| return err; |
| } |
| |
| return hci_init_stage_sync(hdev, br_init1); |
| } |
| |
| /* Read Buffer Size (ACL mtu, max pkt, etc.) */ |
| static int hci_read_buffer_size_sync(struct hci_dev *hdev) |
| { |
| return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE, |
| 0, NULL, HCI_CMD_TIMEOUT); |
| } |
| |
| /* Read Class of Device */ |
| static int hci_read_dev_class_sync(struct hci_dev *hdev) |
| { |
| return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV, |
| 0, NULL, HCI_CMD_TIMEOUT); |
| } |
| |
| /* Read Local Name */ |
| static int hci_read_local_name_sync(struct hci_dev *hdev) |
| { |
| return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME, |
| 0, NULL, HCI_CMD_TIMEOUT); |
| } |
| |
| /* Read Voice Setting */ |
| static int hci_read_voice_setting_sync(struct hci_dev *hdev) |
| { |
| return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING, |
| 0, NULL, HCI_CMD_TIMEOUT); |
| } |
| |
| /* Read Number of Supported IAC */ |
| static int hci_read_num_supported_iac_sync(struct hci_dev *hdev) |
| { |
| return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC, |
| 0, NULL, HCI_CMD_TIMEOUT); |
| } |
| |
| /* Read Current IAC LAP */ |
| static int hci_read_current_iac_lap_sync(struct hci_dev *hdev) |
| { |
| return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP, |
| 0, NULL, HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type, |
| u8 cond_type, bdaddr_t *bdaddr, |
| u8 auto_accept) |
| { |
| struct hci_cp_set_event_filter cp; |
| |
| if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) |
| return 0; |
| |
| if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) |
| return 0; |
| |
| memset(&cp, 0, sizeof(cp)); |
| cp.flt_type = flt_type; |
| |
| if (flt_type != HCI_FLT_CLEAR_ALL) { |
| cp.cond_type = cond_type; |
| bacpy(&cp.addr_conn_flt.bdaddr, bdaddr); |
| cp.addr_conn_flt.auto_accept = auto_accept; |
| } |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT, |
| flt_type == HCI_FLT_CLEAR_ALL ? |
| sizeof(cp.flt_type) : sizeof(cp), &cp, |
| HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_clear_event_filter_sync(struct hci_dev *hdev) |
| { |
| if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED)) |
| return 0; |
| |
| /* In theory the state machine should not reach here unless |
| * a hci_set_event_filter_sync() call succeeds, but we do |
| * the check both for parity and as a future reminder. |
| */ |
| if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) |
| return 0; |
| |
| return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00, |
| BDADDR_ANY, 0x00); |
| } |
| |
| /* Connection accept timeout ~20 secs */ |
| static int hci_write_ca_timeout_sync(struct hci_dev *hdev) |
| { |
| __le16 param = cpu_to_le16(0x7d00); |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT, |
| sizeof(param), ¶m, HCI_CMD_TIMEOUT); |
| } |
| |
| /* BR Controller init stage 2 command sequence */ |
| static const struct hci_init_stage br_init2[] = { |
| /* HCI_OP_READ_BUFFER_SIZE */ |
| HCI_INIT(hci_read_buffer_size_sync), |
| /* HCI_OP_READ_CLASS_OF_DEV */ |
| HCI_INIT(hci_read_dev_class_sync), |
| /* HCI_OP_READ_LOCAL_NAME */ |
| HCI_INIT(hci_read_local_name_sync), |
| /* HCI_OP_READ_VOICE_SETTING */ |
| HCI_INIT(hci_read_voice_setting_sync), |
| /* HCI_OP_READ_NUM_SUPPORTED_IAC */ |
| HCI_INIT(hci_read_num_supported_iac_sync), |
| /* HCI_OP_READ_CURRENT_IAC_LAP */ |
| HCI_INIT(hci_read_current_iac_lap_sync), |
| /* HCI_OP_SET_EVENT_FLT */ |
| HCI_INIT(hci_clear_event_filter_sync), |
| /* HCI_OP_WRITE_CA_TIMEOUT */ |
| HCI_INIT(hci_write_ca_timeout_sync), |
| {} |
| }; |
| |
| static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev) |
| { |
| u8 mode = 0x01; |
| |
| if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) |
| return 0; |
| |
| /* When SSP is available, then the host features page |
| * should also be available as well. However some |
| * controllers list the max_page as 0 as long as SSP |
| * has not been enabled. To achieve proper debugging |
| * output, force the minimum max_page to 1 at least. |
| */ |
| hdev->max_page = 0x01; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, |
| sizeof(mode), &mode, HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_write_eir_sync(struct hci_dev *hdev) |
| { |
| struct hci_cp_write_eir cp; |
| |
| if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) |
| return 0; |
| |
| memset(hdev->eir, 0, sizeof(hdev->eir)); |
| memset(&cp, 0, sizeof(cp)); |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, |
| HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_write_inquiry_mode_sync(struct hci_dev *hdev) |
| { |
| u8 mode; |
| |
| if (!lmp_inq_rssi_capable(hdev) && |
| !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) |
| return 0; |
| |
| /* If Extended Inquiry Result events are supported, then |
| * they are clearly preferred over Inquiry Result with RSSI |
| * events. |
| */ |
| mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE, |
| sizeof(mode), &mode, HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev) |
| { |
| if (!lmp_inq_tx_pwr_capable(hdev)) |
| return 0; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER, |
| 0, NULL, HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page) |
| { |
| struct hci_cp_read_local_ext_features cp; |
| |
| if (!lmp_ext_feat_capable(hdev)) |
| return 0; |
| |
| memset(&cp, 0, sizeof(cp)); |
| cp.page = page; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev) |
| { |
| return hci_read_local_ext_features_sync(hdev, 0x01); |
| } |
| |
| /* HCI Controller init stage 2 command sequence */ |
| static const struct hci_init_stage hci_init2[] = { |
| /* HCI_OP_READ_LOCAL_COMMANDS */ |
| HCI_INIT(hci_read_local_cmds_sync), |
| /* HCI_OP_WRITE_SSP_MODE */ |
| HCI_INIT(hci_write_ssp_mode_1_sync), |
| /* HCI_OP_WRITE_EIR */ |
| HCI_INIT(hci_write_eir_sync), |
| /* HCI_OP_WRITE_INQUIRY_MODE */ |
| HCI_INIT(hci_write_inquiry_mode_sync), |
| /* HCI_OP_READ_INQ_RSP_TX_POWER */ |
| HCI_INIT(hci_read_inq_rsp_tx_power_sync), |
| /* HCI_OP_READ_LOCAL_EXT_FEATURES */ |
| HCI_INIT(hci_read_local_ext_features_1_sync), |
| /* HCI_OP_WRITE_AUTH_ENABLE */ |
| HCI_INIT(hci_write_auth_enable_sync), |
| {} |
| }; |
| |
| /* Read LE Buffer Size */ |
| static int hci_le_read_buffer_size_sync(struct hci_dev *hdev) |
| { |
| /* Use Read LE Buffer Size V2 if supported */ |
| if (iso_capable(hdev) && hdev->commands[41] & 0x20) |
| return __hci_cmd_sync_status(hdev, |
| HCI_OP_LE_READ_BUFFER_SIZE_V2, |
| 0, NULL, HCI_CMD_TIMEOUT); |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE, |
| 0, NULL, HCI_CMD_TIMEOUT); |
| } |
| |
| /* Read LE Local Supported Features */ |
| static int hci_le_read_local_features_sync(struct hci_dev *hdev) |
| { |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES, |
| 0, NULL, HCI_CMD_TIMEOUT); |
| } |
| |
| /* Read LE Supported States */ |
| static int hci_le_read_supported_states_sync(struct hci_dev *hdev) |
| { |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES, |
| 0, NULL, HCI_CMD_TIMEOUT); |
| } |
| |
| /* LE Controller init stage 2 command sequence */ |
| static const struct hci_init_stage le_init2[] = { |
| /* HCI_OP_LE_READ_LOCAL_FEATURES */ |
| HCI_INIT(hci_le_read_local_features_sync), |
| /* HCI_OP_LE_READ_BUFFER_SIZE */ |
| HCI_INIT(hci_le_read_buffer_size_sync), |
| /* HCI_OP_LE_READ_SUPPORTED_STATES */ |
| HCI_INIT(hci_le_read_supported_states_sync), |
| {} |
| }; |
| |
| static int hci_init2_sync(struct hci_dev *hdev) |
| { |
| int err; |
| |
| bt_dev_dbg(hdev, ""); |
| |
| err = hci_init_stage_sync(hdev, hci_init2); |
| if (err) |
| return err; |
| |
| if (lmp_bredr_capable(hdev)) { |
| err = hci_init_stage_sync(hdev, br_init2); |
| if (err) |
| return err; |
| } else { |
| hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); |
| } |
| |
| if (lmp_le_capable(hdev)) { |
| err = hci_init_stage_sync(hdev, le_init2); |
| if (err) |
| return err; |
| /* LE-only controllers have LE implicitly enabled */ |
| if (!lmp_bredr_capable(hdev)) |
| hci_dev_set_flag(hdev, HCI_LE_ENABLED); |
| } |
| |
| return 0; |
| } |
| |
| static int hci_set_event_mask_sync(struct hci_dev *hdev) |
| { |
| /* The second byte is 0xff instead of 0x9f (two reserved bits |
| * disabled) since a Broadcom 1.2 dongle doesn't respond to the |
| * command otherwise. |
| */ |
| u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; |
| |
| /* CSR 1.1 dongles does not accept any bitfield so don't try to set |
| * any event mask for pre 1.2 devices. |
| */ |
| if (hdev->hci_ver < BLUETOOTH_VER_1_2) |
| return 0; |
| |
| if (lmp_bredr_capable(hdev)) { |
| events[4] |= 0x01; /* Flow Specification Complete */ |
| |
| /* Don't set Disconnect Complete and mode change when |
| * suspended as that would wakeup the host when disconnecting |
| * due to suspend. |
| */ |
| if (hdev->suspended) { |
| events[0] &= 0xef; |
| events[2] &= 0xf7; |
| } |
| } else { |
| /* Use a different default for LE-only devices */ |
| memset(events, 0, sizeof(events)); |
| events[1] |= 0x20; /* Command Complete */ |
| events[1] |= 0x40; /* Command Status */ |
| events[1] |= 0x80; /* Hardware Error */ |
| |
| /* If the controller supports the Disconnect command, enable |
| * the corresponding event. In addition enable packet flow |
| * control related events. |
| */ |
| if (hdev->commands[0] & 0x20) { |
| /* Don't set Disconnect Complete when suspended as that |
| * would wakeup the host when disconnecting due to |
| * suspend. |
| */ |
| if (!hdev->suspended) |
| events[0] |= 0x10; /* Disconnection Complete */ |
| events[2] |= 0x04; /* Number of Completed Packets */ |
| events[3] |= 0x02; /* Data Buffer Overflow */ |
| } |
| |
| /* If the controller supports the Read Remote Version |
| * Information command, enable the corresponding event. |
| */ |
| if (hdev->commands[2] & 0x80) |
| events[1] |= 0x08; /* Read Remote Version Information |
| * Complete |
| */ |
| |
| if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { |
| events[0] |= 0x80; /* Encryption Change */ |
| events[5] |= 0x80; /* Encryption Key Refresh Complete */ |
| } |
| } |
| |
| if (lmp_inq_rssi_capable(hdev) || |
| test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) |
| events[4] |= 0x02; /* Inquiry Result with RSSI */ |
| |
| if (lmp_ext_feat_capable(hdev)) |
| events[4] |= 0x04; /* Read Remote Extended Features Complete */ |
| |
| if (lmp_esco_capable(hdev)) { |
| events[5] |= 0x08; /* Synchronous Connection Complete */ |
| events[5] |= 0x10; /* Synchronous Connection Changed */ |
| } |
| |
| if (lmp_sniffsubr_capable(hdev)) |
| events[5] |= 0x20; /* Sniff Subrating */ |
| |
| if (lmp_pause_enc_capable(hdev)) |
| events[5] |= 0x80; /* Encryption Key Refresh Complete */ |
| |
| if (lmp_ext_inq_capable(hdev)) |
| events[5] |= 0x40; /* Extended Inquiry Result */ |
| |
| if (lmp_no_flush_capable(hdev)) |
| events[7] |= 0x01; /* Enhanced Flush Complete */ |
| |
| if (lmp_lsto_capable(hdev)) |
| events[6] |= 0x80; /* Link Supervision Timeout Changed */ |
| |
| if (lmp_ssp_capable(hdev)) { |
| events[6] |= 0x01; /* IO Capability Request */ |
| events[6] |= 0x02; /* IO Capability Response */ |
| events[6] |= 0x04; /* User Confirmation Request */ |
| events[6] |= 0x08; /* User Passkey Request */ |
| events[6] |= 0x10; /* Remote OOB Data Request */ |
| events[6] |= 0x20; /* Simple Pairing Complete */ |
| events[7] |= 0x04; /* User Passkey Notification */ |
| events[7] |= 0x08; /* Keypress Notification */ |
| events[7] |= 0x10; /* Remote Host Supported |
| * Features Notification |
| */ |
| } |
| |
| if (lmp_le_capable(hdev)) |
| events[7] |= 0x20; /* LE Meta-Event */ |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK, |
| sizeof(events), events, HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_read_stored_link_key_sync(struct hci_dev *hdev) |
| { |
| struct hci_cp_read_stored_link_key cp; |
| |
| if (!(hdev->commands[6] & 0x20) || |
| test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) |
| return 0; |
| |
| memset(&cp, 0, sizeof(cp)); |
| bacpy(&cp.bdaddr, BDADDR_ANY); |
| cp.read_all = 0x01; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_setup_link_policy_sync(struct hci_dev *hdev) |
| { |
| struct hci_cp_write_def_link_policy cp; |
| u16 link_policy = 0; |
| |
| if (!(hdev->commands[5] & 0x10)) |
| return 0; |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| if (lmp_rswitch_capable(hdev)) |
| link_policy |= HCI_LP_RSWITCH; |
| if (lmp_hold_capable(hdev)) |
| link_policy |= HCI_LP_HOLD; |
| if (lmp_sniff_capable(hdev)) |
| link_policy |= HCI_LP_SNIFF; |
| if (lmp_park_capable(hdev)) |
| link_policy |= HCI_LP_PARK; |
| |
| cp.policy = cpu_to_le16(link_policy); |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_read_page_scan_activity_sync(struct hci_dev *hdev) |
| { |
| if (!(hdev->commands[8] & 0x01)) |
| return 0; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY, |
| 0, NULL, HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev) |
| { |
| if (!(hdev->commands[18] & 0x04) || |
| !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || |
| test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) |
| return 0; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING, |
| 0, NULL, HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_read_page_scan_type_sync(struct hci_dev *hdev) |
| { |
| /* Some older Broadcom based Bluetooth 1.2 controllers do not |
| * support the Read Page Scan Type command. Check support for |
| * this command in the bit mask of supported commands. |
| */ |
| if (!(hdev->commands[13] & 0x01)) |
| return 0; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE, |
| 0, NULL, HCI_CMD_TIMEOUT); |
| } |
| |
| /* Read features beyond page 1 if available */ |
| static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev) |
| { |
| u8 page; |
| int err; |
| |
| if (!lmp_ext_feat_capable(hdev)) |
| return 0; |
| |
| for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page; |
| page++) { |
| err = hci_read_local_ext_features_sync(hdev, page); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /* HCI Controller init stage 3 command sequence */ |
| static const struct hci_init_stage hci_init3[] = { |
| /* HCI_OP_SET_EVENT_MASK */ |
| HCI_INIT(hci_set_event_mask_sync), |
| /* HCI_OP_READ_STORED_LINK_KEY */ |
| HCI_INIT(hci_read_stored_link_key_sync), |
| /* HCI_OP_WRITE_DEF_LINK_POLICY */ |
| HCI_INIT(hci_setup_link_policy_sync), |
| /* HCI_OP_READ_PAGE_SCAN_ACTIVITY */ |
| HCI_INIT(hci_read_page_scan_activity_sync), |
| /* HCI_OP_READ_DEF_ERR_DATA_REPORTING */ |
| HCI_INIT(hci_read_def_err_data_reporting_sync), |
| /* HCI_OP_READ_PAGE_SCAN_TYPE */ |
| HCI_INIT(hci_read_page_scan_type_sync), |
| /* HCI_OP_READ_LOCAL_EXT_FEATURES */ |
| HCI_INIT(hci_read_local_ext_features_all_sync), |
| {} |
| }; |
| |
| static int hci_le_set_event_mask_sync(struct hci_dev *hdev) |
| { |
| u8 events[8]; |
| |
| if (!lmp_le_capable(hdev)) |
| return 0; |
| |
| memset(events, 0, sizeof(events)); |
| |
| if (hdev->le_features[0] & HCI_LE_ENCRYPTION) |
| events[0] |= 0x10; /* LE Long Term Key Request */ |
| |
| /* If controller supports the Connection Parameters Request |
| * Link Layer Procedure, enable the corresponding event. |
| */ |
| if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) |
| /* LE Remote Connection Parameter Request */ |
| events[0] |= 0x20; |
| |
| /* If the controller supports the Data Length Extension |
| * feature, enable the corresponding event. |
| */ |
| if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) |
| events[0] |= 0x40; /* LE Data Length Change */ |
| |
| /* If the controller supports LL Privacy feature or LE Extended Adv, |
| * enable the corresponding event. |
| */ |
| if (use_enhanced_conn_complete(hdev)) |
| events[1] |= 0x02; /* LE Enhanced Connection Complete */ |
| |
| /* If the controller supports Extended Scanner Filter |
| * Policies, enable the corresponding event. |
| */ |
| if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) |
| events[1] |= 0x04; /* LE Direct Advertising Report */ |
| |
| /* If the controller supports Channel Selection Algorithm #2 |
| * feature, enable the corresponding event. |
| */ |
| if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) |
| events[2] |= 0x08; /* LE Channel Selection Algorithm */ |
| |
| /* If the controller supports the LE Set Scan Enable command, |
| * enable the corresponding advertising report event. |
| */ |
| if (hdev->commands[26] & 0x08) |
| events[0] |= 0x02; /* LE Advertising Report */ |
| |
| /* If the controller supports the LE Create Connection |
| * command, enable the corresponding event. |
| */ |
| if (hdev->commands[26] & 0x10) |
| events[0] |= 0x01; /* LE Connection Complete */ |
| |
| /* If the controller supports the LE Connection Update |
| * command, enable the corresponding event. |
| */ |
| if (hdev->commands[27] & 0x04) |
| events[0] |= 0x04; /* LE Connection Update Complete */ |
| |
| /* If the controller supports the LE Read Remote Used Features |
| * command, enable the corresponding event. |
| */ |
| if (hdev->commands[27] & 0x20) |
| /* LE Read Remote Used Features Complete */ |
| events[0] |= 0x08; |
| |
| /* If the controller supports the LE Read Local P-256 |
| * Public Key command, enable the corresponding event. |
| */ |
| if (hdev->commands[34] & 0x02) |
| /* LE Read Local P-256 Public Key Complete */ |
| events[0] |= 0x80; |
| |
| /* If the controller supports the LE Generate DHKey |
| * command, enable the corresponding event. |
| */ |
| if (hdev->commands[34] & 0x04) |
| events[1] |= 0x01; /* LE Generate DHKey Complete */ |
| |
| /* If the controller supports the LE Set Default PHY or |
| * LE Set PHY commands, enable the corresponding event. |
| */ |
| if (hdev->commands[35] & (0x20 | 0x40)) |
| events[1] |= 0x08; /* LE PHY Update Complete */ |
| |
| /* If the controller supports LE Set Extended Scan Parameters |
| * and LE Set Extended Scan Enable commands, enable the |
| * corresponding event. |
| */ |
| if (use_ext_scan(hdev)) |
| events[1] |= 0x10; /* LE Extended Advertising Report */ |
| |
| /* If the controller supports the LE Extended Advertising |
| * command, enable the corresponding event. |
| */ |
| if (ext_adv_capable(hdev)) |
| events[2] |= 0x02; /* LE Advertising Set Terminated */ |
| |
| if (cis_capable(hdev)) { |
| events[3] |= 0x01; /* LE CIS Established */ |
| if (cis_peripheral_capable(hdev)) |
| events[3] |= 0x02; /* LE CIS Request */ |
| } |
| |
| if (bis_capable(hdev)) { |
| events[1] |= 0x20; /* LE PA Report */ |
| events[1] |= 0x40; /* LE PA Sync Established */ |
| events[3] |= 0x04; /* LE Create BIG Complete */ |
| events[3] |= 0x08; /* LE Terminate BIG Complete */ |
| events[3] |= 0x10; /* LE BIG Sync Established */ |
| events[3] |= 0x20; /* LE BIG Sync Loss */ |
| events[4] |= 0x02; /* LE BIG Info Advertising Report */ |
| } |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK, |
| sizeof(events), events, HCI_CMD_TIMEOUT); |
| } |
| |
| /* Read LE Advertising Channel TX Power */ |
| static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev) |
| { |
| if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { |
| /* HCI TS spec forbids mixing of legacy and extended |
| * advertising commands wherein READ_ADV_TX_POWER is |
| * also included. So do not call it if extended adv |
| * is supported otherwise controller will return |
| * COMMAND_DISALLOWED for extended commands. |
| */ |
| return __hci_cmd_sync_status(hdev, |
| HCI_OP_LE_READ_ADV_TX_POWER, |
| 0, NULL, HCI_CMD_TIMEOUT); |
| } |
| |
| return 0; |
| } |
| |
| /* Read LE Min/Max Tx Power*/ |
| static int hci_le_read_tx_power_sync(struct hci_dev *hdev) |
| { |
| if (!(hdev->commands[38] & 0x80) || |
| test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks)) |
| return 0; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER, |
| 0, NULL, HCI_CMD_TIMEOUT); |
| } |
| |
| /* Read LE Accept List Size */ |
| static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev) |
| { |
| if (!(hdev->commands[26] & 0x40)) |
| return 0; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE, |
| 0, NULL, HCI_CMD_TIMEOUT); |
| } |
| |
| /* Read LE Resolving List Size */ |
| static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev) |
| { |
| if (!(hdev->commands[34] & 0x40)) |
| return 0; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE, |
| 0, NULL, HCI_CMD_TIMEOUT); |
| } |
| |
| /* Clear LE Resolving List */ |
| static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev) |
| { |
| if (!(hdev->commands[34] & 0x20)) |
| return 0; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL, |
| HCI_CMD_TIMEOUT); |
| } |
| |
| /* Set RPA timeout */ |
| static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev) |
| { |
| __le16 timeout = cpu_to_le16(hdev->rpa_timeout); |
| |
| if (!(hdev->commands[35] & 0x04) || |
| test_bit(HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT, &hdev->quirks)) |
| return 0; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT, |
| sizeof(timeout), &timeout, |
| HCI_CMD_TIMEOUT); |
| } |
| |
| /* Read LE Maximum Data Length */ |
| static int hci_le_read_max_data_len_sync(struct hci_dev *hdev) |
| { |
| if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) |
| return 0; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL, |
| HCI_CMD_TIMEOUT); |
| } |
| |
| /* Read LE Suggested Default Data Length */ |
| static int hci_le_read_def_data_len_sync(struct hci_dev *hdev) |
| { |
| if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) |
| return 0; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL, |
| HCI_CMD_TIMEOUT); |
| } |
| |
| /* Read LE Number of Supported Advertising Sets */ |
| static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev) |
| { |
| if (!ext_adv_capable(hdev)) |
| return 0; |
| |
| return __hci_cmd_sync_status(hdev, |
| HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, |
| 0, NULL, HCI_CMD_TIMEOUT); |
| } |
| |
| /* Write LE Host Supported */ |
| static int hci_set_le_support_sync(struct hci_dev *hdev) |
| { |
| struct hci_cp_write_le_host_supported cp; |
| |
| /* LE-only devices do not support explicit enablement */ |
| if (!lmp_bredr_capable(hdev)) |
| return 0; |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { |
| cp.le = 0x01; |
| cp.simul = 0x00; |
| } |
| |
| if (cp.le == lmp_host_le_capable(hdev)) |
| return 0; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| /* LE Set Host Feature */ |
| static int hci_le_set_host_feature_sync(struct hci_dev *hdev) |
| { |
| struct hci_cp_le_set_host_feature cp; |
| |
| if (!cis_capable(hdev)) |
| return 0; |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| /* Connected Isochronous Channels (Host Support) */ |
| cp.bit_number = 32; |
| cp.bit_value = 1; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| /* LE Controller init stage 3 command sequence */ |
| static const struct hci_init_stage le_init3[] = { |
| /* HCI_OP_LE_SET_EVENT_MASK */ |
| HCI_INIT(hci_le_set_event_mask_sync), |
| /* HCI_OP_LE_READ_ADV_TX_POWER */ |
| HCI_INIT(hci_le_read_adv_tx_power_sync), |
| /* HCI_OP_LE_READ_TRANSMIT_POWER */ |
| HCI_INIT(hci_le_read_tx_power_sync), |
| /* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */ |
| HCI_INIT(hci_le_read_accept_list_size_sync), |
| /* HCI_OP_LE_CLEAR_ACCEPT_LIST */ |
| HCI_INIT(hci_le_clear_accept_list_sync), |
| /* HCI_OP_LE_READ_RESOLV_LIST_SIZE */ |
| HCI_INIT(hci_le_read_resolv_list_size_sync), |
| /* HCI_OP_LE_CLEAR_RESOLV_LIST */ |
| HCI_INIT(hci_le_clear_resolv_list_sync), |
| /* HCI_OP_LE_SET_RPA_TIMEOUT */ |
| HCI_INIT(hci_le_set_rpa_timeout_sync), |
| /* HCI_OP_LE_READ_MAX_DATA_LEN */ |
| HCI_INIT(hci_le_read_max_data_len_sync), |
| /* HCI_OP_LE_READ_DEF_DATA_LEN */ |
| HCI_INIT(hci_le_read_def_data_len_sync), |
| /* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */ |
| HCI_INIT(hci_le_read_num_support_adv_sets_sync), |
| /* HCI_OP_WRITE_LE_HOST_SUPPORTED */ |
| HCI_INIT(hci_set_le_support_sync), |
| /* HCI_OP_LE_SET_HOST_FEATURE */ |
| HCI_INIT(hci_le_set_host_feature_sync), |
| {} |
| }; |
| |
| static int hci_init3_sync(struct hci_dev *hdev) |
| { |
| int err; |
| |
| bt_dev_dbg(hdev, ""); |
| |
| err = hci_init_stage_sync(hdev, hci_init3); |
| if (err) |
| return err; |
| |
| if (lmp_le_capable(hdev)) |
| return hci_init_stage_sync(hdev, le_init3); |
| |
| return 0; |
| } |
| |
| static int hci_delete_stored_link_key_sync(struct hci_dev *hdev) |
| { |
| struct hci_cp_delete_stored_link_key cp; |
| |
| /* Some Broadcom based Bluetooth controllers do not support the |
| * Delete Stored Link Key command. They are clearly indicating its |
| * absence in the bit mask of supported commands. |
| * |
| * Check the supported commands and only if the command is marked |
| * as supported send it. If not supported assume that the controller |
| * does not have actual support for stored link keys which makes this |
| * command redundant anyway. |
| * |
| * Some controllers indicate that they support handling deleting |
| * stored link keys, but they don't. The quirk lets a driver |
| * just disable this command. |
| */ |
| if (!(hdev->commands[6] & 0x80) || |
| test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) |
| return 0; |
| |
| memset(&cp, 0, sizeof(cp)); |
| bacpy(&cp.bdaddr, BDADDR_ANY); |
| cp.delete_all = 0x01; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev) |
| { |
| u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; |
| bool changed = false; |
| |
| /* Set event mask page 2 if the HCI command for it is supported */ |
| if (!(hdev->commands[22] & 0x04)) |
| return 0; |
| |
| /* If Connectionless Peripheral Broadcast central role is supported |
| * enable all necessary events for it. |
| */ |
| if (lmp_cpb_central_capable(hdev)) { |
| events[1] |= 0x40; /* Triggered Clock Capture */ |
| events[1] |= 0x80; /* Synchronization Train Complete */ |
| events[2] |= 0x08; /* Truncated Page Complete */ |
| events[2] |= 0x20; /* CPB Channel Map Change */ |
| changed = true; |
| } |
| |
| /* If Connectionless Peripheral Broadcast peripheral role is supported |
| * enable all necessary events for it. |
| */ |
| if (lmp_cpb_peripheral_capable(hdev)) { |
| events[2] |= 0x01; /* Synchronization Train Received */ |
| events[2] |= 0x02; /* CPB Receive */ |
| events[2] |= 0x04; /* CPB Timeout */ |
| events[2] |= 0x10; /* Peripheral Page Response Timeout */ |
| changed = true; |
| } |
| |
| /* Enable Authenticated Payload Timeout Expired event if supported */ |
| if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { |
| events[2] |= 0x80; |
| changed = true; |
| } |
| |
| /* Some Broadcom based controllers indicate support for Set Event |
| * Mask Page 2 command, but then actually do not support it. Since |
| * the default value is all bits set to zero, the command is only |
| * required if the event mask has to be changed. In case no change |
| * to the event mask is needed, skip this command. |
| */ |
| if (!changed) |
| return 0; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2, |
| sizeof(events), events, HCI_CMD_TIMEOUT); |
| } |
| |
| /* Read local codec list if the HCI command is supported */ |
| static int hci_read_local_codecs_sync(struct hci_dev *hdev) |
| { |
| if (hdev->commands[45] & 0x04) |
| hci_read_supported_codecs_v2(hdev); |
| else if (hdev->commands[29] & 0x20) |
| hci_read_supported_codecs(hdev); |
| |
| return 0; |
| } |
| |
| /* Read local pairing options if the HCI command is supported */ |
| static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev) |
| { |
| if (!(hdev->commands[41] & 0x08)) |
| return 0; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS, |
| 0, NULL, HCI_CMD_TIMEOUT); |
| } |
| |
| /* Get MWS transport configuration if the HCI command is supported */ |
| static int hci_get_mws_transport_config_sync(struct hci_dev *hdev) |
| { |
| if (!mws_transport_config_capable(hdev)) |
| return 0; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG, |
| 0, NULL, HCI_CMD_TIMEOUT); |
| } |
| |
| /* Check for Synchronization Train support */ |
| static int hci_read_sync_train_params_sync(struct hci_dev *hdev) |
| { |
| if (!lmp_sync_train_capable(hdev)) |
| return 0; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS, |
| 0, NULL, HCI_CMD_TIMEOUT); |
| } |
| |
| /* Enable Secure Connections if supported and configured */ |
| static int hci_write_sc_support_1_sync(struct hci_dev *hdev) |
| { |
| u8 support = 0x01; |
| |
| if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || |
| !bredr_sc_enabled(hdev)) |
| return 0; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, |
| sizeof(support), &support, |
| HCI_CMD_TIMEOUT); |
| } |
| |
| /* Set erroneous data reporting if supported to the wideband speech |
| * setting value |
| */ |
| static int hci_set_err_data_report_sync(struct hci_dev *hdev) |
| { |
| struct hci_cp_write_def_err_data_reporting cp; |
| bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); |
| |
| if (!(hdev->commands[18] & 0x08) || |
| !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || |
| test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) |
| return 0; |
| |
| if (enabled == hdev->err_data_reporting) |
| return 0; |
| |
| memset(&cp, 0, sizeof(cp)); |
| cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED : |
| ERR_DATA_REPORTING_DISABLED; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| static const struct hci_init_stage hci_init4[] = { |
| /* HCI_OP_DELETE_STORED_LINK_KEY */ |
| HCI_INIT(hci_delete_stored_link_key_sync), |
| /* HCI_OP_SET_EVENT_MASK_PAGE_2 */ |
| HCI_INIT(hci_set_event_mask_page_2_sync), |
| /* HCI_OP_READ_LOCAL_CODECS */ |
| HCI_INIT(hci_read_local_codecs_sync), |
| /* HCI_OP_READ_LOCAL_PAIRING_OPTS */ |
| HCI_INIT(hci_read_local_pairing_opts_sync), |
| /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */ |
| HCI_INIT(hci_get_mws_transport_config_sync), |
| /* HCI_OP_READ_SYNC_TRAIN_PARAMS */ |
| HCI_INIT(hci_read_sync_train_params_sync), |
| /* HCI_OP_WRITE_SC_SUPPORT */ |
| HCI_INIT(hci_write_sc_support_1_sync), |
| /* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */ |
| HCI_INIT(hci_set_err_data_report_sync), |
| {} |
| }; |
| |
| /* Set Suggested Default Data Length to maximum if supported */ |
| static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev) |
| { |
| struct hci_cp_le_write_def_data_len cp; |
| |
| if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) |
| return 0; |
| |
| memset(&cp, 0, sizeof(cp)); |
| cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); |
| cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| /* Set Default PHY parameters if command is supported, enables all supported |
| * PHYs according to the LE Features bits. |
| */ |
| static int hci_le_set_default_phy_sync(struct hci_dev *hdev) |
| { |
| struct hci_cp_le_set_default_phy cp; |
| |
| if (!(hdev->commands[35] & 0x20)) { |
| /* If the command is not supported it means only 1M PHY is |
| * supported. |
| */ |
| hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; |
| hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; |
| return 0; |
| } |
| |
| memset(&cp, 0, sizeof(cp)); |
| cp.all_phys = 0x00; |
| cp.tx_phys = HCI_LE_SET_PHY_1M; |
| cp.rx_phys = HCI_LE_SET_PHY_1M; |
| |
| /* Enables 2M PHY if supported */ |
| if (le_2m_capable(hdev)) { |
| cp.tx_phys |= HCI_LE_SET_PHY_2M; |
| cp.rx_phys |= HCI_LE_SET_PHY_2M; |
| } |
| |
| /* Enables Coded PHY if supported */ |
| if (le_coded_capable(hdev)) { |
| cp.tx_phys |= HCI_LE_SET_PHY_CODED; |
| cp.rx_phys |= HCI_LE_SET_PHY_CODED; |
| } |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| static const struct hci_init_stage le_init4[] = { |
| /* HCI_OP_LE_WRITE_DEF_DATA_LEN */ |
| HCI_INIT(hci_le_set_write_def_data_len_sync), |
| /* HCI_OP_LE_SET_DEFAULT_PHY */ |
| HCI_INIT(hci_le_set_default_phy_sync), |
| {} |
| }; |
| |
| static int hci_init4_sync(struct hci_dev *hdev) |
| { |
| int err; |
| |
| bt_dev_dbg(hdev, ""); |
| |
| err = hci_init_stage_sync(hdev, hci_init4); |
| if (err) |
| return err; |
| |
| if (lmp_le_capable(hdev)) |
| return hci_init_stage_sync(hdev, le_init4); |
| |
| return 0; |
| } |
| |
| static int hci_init_sync(struct hci_dev *hdev) |
| { |
| int err; |
| |
| err = hci_init1_sync(hdev); |
| if (err < 0) |
| return err; |
| |
| if (hci_dev_test_flag(hdev, HCI_SETUP)) |
| hci_debugfs_create_basic(hdev); |
| |
| err = hci_init2_sync(hdev); |
| if (err < 0) |
| return err; |
| |
| err = hci_init3_sync(hdev); |
| if (err < 0) |
| return err; |
| |
| err = hci_init4_sync(hdev); |
| if (err < 0) |
| return err; |
| |
| /* This function is only called when the controller is actually in |
| * configured state. When the controller is marked as unconfigured, |
| * this initialization procedure is not run. |
| * |
| * It means that it is possible that a controller runs through its |
| * setup phase and then discovers missing settings. If that is the |
| * case, then this function will not be called. It then will only |
| * be called during the config phase. |
| * |
| * So only when in setup phase or config phase, create the debugfs |
| * entries and register the SMP channels. |
| */ |
| if (!hci_dev_test_flag(hdev, HCI_SETUP) && |
| !hci_dev_test_flag(hdev, HCI_CONFIG)) |
| return 0; |
| |
| if (hci_dev_test_and_set_flag(hdev, HCI_DEBUGFS_CREATED)) |
| return 0; |
| |
| hci_debugfs_create_common(hdev); |
| |
| if (lmp_bredr_capable(hdev)) |
| hci_debugfs_create_bredr(hdev); |
| |
| if (lmp_le_capable(hdev)) |
| hci_debugfs_create_le(hdev); |
| |
| return 0; |
| } |
| |
| #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc } |
| |
| static const struct { |
| unsigned long quirk; |
| const char *desc; |
| } hci_broken_table[] = { |
| HCI_QUIRK_BROKEN(LOCAL_COMMANDS, |
| "HCI Read Local Supported Commands not supported"), |
| HCI_QUIRK_BROKEN(STORED_LINK_KEY, |
| "HCI Delete Stored Link Key command is advertised, " |
| "but not supported."), |
| HCI_QUIRK_BROKEN(ERR_DATA_REPORTING, |
| "HCI Read Default Erroneous Data Reporting command is " |
| "advertised, but not supported."), |
| HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER, |
| "HCI Read Transmit Power Level command is advertised, " |
| "but not supported."), |
| HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL, |
| "HCI Set Event Filter command not supported."), |
| HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN, |
| "HCI Enhanced Setup Synchronous Connection command is " |
| "advertised, but not supported."), |
| HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT, |
| "HCI LE Set Random Private Address Timeout command is " |
| "advertised, but not supported."), |
| HCI_QUIRK_BROKEN(LE_CODED, |
| "HCI LE Coded PHY feature bit is set, " |
| "but its usage is not supported.") |
| }; |
| |
| /* This function handles hdev setup stage: |
| * |
| * Calls hdev->setup |
| * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set. |
| */ |
| static int hci_dev_setup_sync(struct hci_dev *hdev) |
| { |
| int ret = 0; |
| bool invalid_bdaddr; |
| size_t i; |
| |
| if (!hci_dev_test_flag(hdev, HCI_SETUP) && |
| !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) |
| return 0; |
| |
| bt_dev_dbg(hdev, ""); |
| |
| hci_sock_dev_event(hdev, HCI_DEV_SETUP); |
| |
| if (hdev->setup) |
| ret = hdev->setup(hdev); |
| |
| for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) { |
| if (test_bit(hci_broken_table[i].quirk, &hdev->quirks)) |
| bt_dev_warn(hdev, "%s", hci_broken_table[i].desc); |
| } |
| |
| /* The transport driver can set the quirk to mark the |
| * BD_ADDR invalid before creating the HCI device or in |
| * its setup callback. |
| */ |
| invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks) || |
| test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks); |
| if (!ret) { |
| if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks) && |
| !bacmp(&hdev->public_addr, BDADDR_ANY)) |
| hci_dev_get_bd_addr_from_property(hdev); |
| |
| if (invalid_bdaddr && bacmp(&hdev->public_addr, BDADDR_ANY) && |
| hdev->set_bdaddr) { |
| ret = hdev->set_bdaddr(hdev, &hdev->public_addr); |
| if (!ret) |
| invalid_bdaddr = false; |
| } |
| } |
| |
| /* The transport driver can set these quirks before |
| * creating the HCI device or in its setup callback. |
| * |
| * For the invalid BD_ADDR quirk it is possible that |
| * it becomes a valid address if the bootloader does |
| * provide it (see above). |
| * |
| * In case any of them is set, the controller has to |
| * start up as unconfigured. |
| */ |
| if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || |
| invalid_bdaddr) |
| hci_dev_set_flag(hdev, HCI_UNCONFIGURED); |
| |
| /* For an unconfigured controller it is required to |
| * read at least the version information provided by |
| * the Read Local Version Information command. |
| * |
| * If the set_bdaddr driver callback is provided, then |
| * also the original Bluetooth public device address |
| * will be read using the Read BD Address command. |
| */ |
| if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) |
| return hci_unconf_init_sync(hdev); |
| |
| return ret; |
| } |
| |
| /* This function handles hdev init stage: |
| * |
| * Calls hci_dev_setup_sync to perform setup stage |
| * Calls hci_init_sync to perform HCI command init sequence |
| */ |
| static int hci_dev_init_sync(struct hci_dev *hdev) |
| { |
| int ret; |
| |
| bt_dev_dbg(hdev, ""); |
| |
| atomic_set(&hdev->cmd_cnt, 1); |
| set_bit(HCI_INIT, &hdev->flags); |
| |
| ret = hci_dev_setup_sync(hdev); |
| |
| if (hci_dev_test_flag(hdev, HCI_CONFIG)) { |
| /* If public address change is configured, ensure that |
| * the address gets programmed. If the driver does not |
| * support changing the public address, fail the power |
| * on procedure. |
| */ |
| if (bacmp(&hdev->public_addr, BDADDR_ANY) && |
| hdev->set_bdaddr) |
| ret = hdev->set_bdaddr(hdev, &hdev->public_addr); |
| else |
| ret = -EADDRNOTAVAIL; |
| } |
| |
| if (!ret) { |
| if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && |
| !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { |
| ret = hci_init_sync(hdev); |
| if (!ret && hdev->post_init) |
| ret = hdev->post_init(hdev); |
| } |
| } |
| |
| /* If the HCI Reset command is clearing all diagnostic settings, |
| * then they need to be reprogrammed after the init procedure |
| * completed. |
| */ |
| if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && |
| !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && |
| hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) |
| ret = hdev->set_diag(hdev, true); |
| |
| if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { |
| msft_do_open(hdev); |
| aosp_do_open(hdev); |
| } |
| |
| clear_bit(HCI_INIT, &hdev->flags); |
| |
| return ret; |
| } |
| |
| int hci_dev_open_sync(struct hci_dev *hdev) |
| { |
| int ret; |
| |
| bt_dev_dbg(hdev, ""); |
| |
| if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { |
| ret = -ENODEV; |
| goto done; |
| } |
| |
| if (!hci_dev_test_flag(hdev, HCI_SETUP) && |
| !hci_dev_test_flag(hdev, HCI_CONFIG)) { |
| /* Check for rfkill but allow the HCI setup stage to |
| * proceed (which in itself doesn't cause any RF activity). |
| */ |
| if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { |
| ret = -ERFKILL; |
| goto done; |
| } |
| |
| /* Check for valid public address or a configured static |
| * random address, but let the HCI setup proceed to |
| * be able to determine if there is a public address |
| * or not. |
| * |
| * In case of user channel usage, it is not important |
| * if a public address or static random address is |
| * available. |
| */ |
| if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && |
| !bacmp(&hdev->bdaddr, BDADDR_ANY) && |
| !bacmp(&hdev->static_addr, BDADDR_ANY)) { |
| ret = -EADDRNOTAVAIL; |
| goto done; |
| } |
| } |
| |
| if (test_bit(HCI_UP, &hdev->flags)) { |
| ret = -EALREADY; |
| goto done; |
| } |
| |
| if (hdev->open(hdev)) { |
| ret = -EIO; |
| goto done; |
| } |
| |
| hci_devcd_reset(hdev); |
| |
| set_bit(HCI_RUNNING, &hdev->flags); |
| hci_sock_dev_event(hdev, HCI_DEV_OPEN); |
| |
| ret = hci_dev_init_sync(hdev); |
| if (!ret) { |
| hci_dev_hold(hdev); |
| hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); |
| hci_adv_instances_set_rpa_expired(hdev, true); |
| set_bit(HCI_UP, &hdev->flags); |
| hci_sock_dev_event(hdev, HCI_DEV_UP); |
| hci_leds_update_powered(hdev, true); |
| if (!hci_dev_test_flag(hdev, HCI_SETUP) && |
| !hci_dev_test_flag(hdev, HCI_CONFIG) && |
| !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && |
| !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && |
| hci_dev_test_flag(hdev, HCI_MGMT)) { |
| ret = hci_powered_update_sync(hdev); |
| mgmt_power_on(hdev, ret); |
| } |
| } else { |
| /* Init failed, cleanup */ |
| flush_work(&hdev->tx_work); |
| |
| /* Since hci_rx_work() is possible to awake new cmd_work |
| * it should be flushed first to avoid unexpected call of |
| * hci_cmd_work() |
| */ |
| flush_work(&hdev->rx_work); |
| flush_work(&hdev->cmd_work); |
| |
| skb_queue_purge(&hdev->cmd_q); |
| skb_queue_purge(&hdev->rx_q); |
| |
| if (hdev->flush) |
| hdev->flush(hdev); |
| |
| if (hdev->sent_cmd) { |
| cancel_delayed_work_sync(&hdev->cmd_timer); |
| kfree_skb(hdev->sent_cmd); |
| hdev->sent_cmd = NULL; |
| } |
| |
| if (hdev->req_skb) { |
| kfree_skb(hdev->req_skb); |
| hdev->req_skb = NULL; |
| } |
| |
| clear_bit(HCI_RUNNING, &hdev->flags); |
| hci_sock_dev_event(hdev, HCI_DEV_CLOSE); |
| |
| hdev->close(hdev); |
| hdev->flags &= BIT(HCI_RAW); |
| } |
| |
| done: |
| return ret; |
| } |
| |
| /* This function requires the caller holds hdev->lock */ |
| static void hci_pend_le_actions_clear(struct hci_dev *hdev) |
| { |
| struct hci_conn_params *p; |
| |
| list_for_each_entry(p, &hdev->le_conn_params, list) { |
| hci_pend_le_list_del_init(p); |
| if (p->conn) { |
| hci_conn_drop(p->conn); |
| hci_conn_put(p->conn); |
| p->conn = NULL; |
| } |
| } |
| |
| BT_DBG("All LE pending actions cleared"); |
| } |
| |
| static int hci_dev_shutdown(struct hci_dev *hdev) |
| { |
| int err = 0; |
| /* Similar to how we first do setup and then set the exclusive access |
| * bit for userspace, we must first unset userchannel and then clean up. |
| * Otherwise, the kernel can't properly use the hci channel to clean up |
| * the controller (some shutdown routines require sending additional |
| * commands to the controller for example). |
| */ |
| bool was_userchannel = |
| hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL); |
| |
| if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && |
| test_bit(HCI_UP, &hdev->flags)) { |
| /* Execute vendor specific shutdown routine */ |
| if (hdev->shutdown) |
| err = hdev->shutdown(hdev); |
| } |
| |
| if (was_userchannel) |
| hci_dev_set_flag(hdev, HCI_USER_CHANNEL); |
| |
| return err; |
| } |
| |
| int hci_dev_close_sync(struct hci_dev *hdev) |
| { |
| bool auto_off; |
| int err = 0; |
| |
| bt_dev_dbg(hdev, ""); |
| |
| cancel_delayed_work(&hdev->power_off); |
| cancel_delayed_work(&hdev->ncmd_timer); |
| cancel_delayed_work(&hdev->le_scan_disable); |
| |
| hci_request_cancel_all(hdev); |
| |
| if (hdev->adv_instance_timeout) { |
| cancel_delayed_work_sync(&hdev->adv_instance_expire); |
| hdev->adv_instance_timeout = 0; |
| } |
| |
| err = hci_dev_shutdown(hdev); |
| |
| if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { |
| cancel_delayed_work_sync(&hdev->cmd_timer); |
| return err; |
| } |
| |
| hci_leds_update_powered(hdev, false); |
| |
| /* Flush RX and TX works */ |
| flush_work(&hdev->tx_work); |
| flush_work(&hdev->rx_work); |
| |
| if (hdev->discov_timeout > 0) { |
| hdev->discov_timeout = 0; |
| hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); |
| hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); |
| } |
| |
| if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) |
| cancel_delayed_work(&hdev->service_cache); |
| |
| if (hci_dev_test_flag(hdev, HCI_MGMT)) { |
| struct adv_info *adv_instance; |
| |
| cancel_delayed_work_sync(&hdev->rpa_expired); |
| |
| list_for_each_entry(adv_instance, &hdev->adv_instances, list) |
| cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); |
| } |
| |
| /* Avoid potential lockdep warnings from the *_flush() calls by |
| * ensuring the workqueue is empty up front. |
| */ |
| drain_workqueue(hdev->workqueue); |
| |
| hci_dev_lock(hdev); |
| |
| hci_discovery_set_state(hdev, DISCOVERY_STOPPED); |
| |
| auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); |
| |
| if (!auto_off && !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && |
| hci_dev_test_flag(hdev, HCI_MGMT)) |
| __mgmt_power_off(hdev); |
| |
| hci_inquiry_cache_flush(hdev); |
| hci_pend_le_actions_clear(hdev); |
| hci_conn_hash_flush(hdev); |
| /* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */ |
| smp_unregister(hdev); |
| hci_dev_unlock(hdev); |
| |
| hci_sock_dev_event(hdev, HCI_DEV_DOWN); |
| |
| if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { |
| aosp_do_close(hdev); |
| msft_do_close(hdev); |
| } |
| |
| if (hdev->flush) |
| hdev->flush(hdev); |
| |
| /* Reset device */ |
| skb_queue_purge(&hdev->cmd_q); |
| atomic_set(&hdev->cmd_cnt, 1); |
| if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && |
| !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { |
| set_bit(HCI_INIT, &hdev->flags); |
| hci_reset_sync(hdev); |
| clear_bit(HCI_INIT, &hdev->flags); |
| } |
| |
| /* flush cmd work */ |
| flush_work(&hdev->cmd_work); |
| |
| /* Drop queues */ |
| skb_queue_purge(&hdev->rx_q); |
| skb_queue_purge(&hdev->cmd_q); |
| skb_queue_purge(&hdev->raw_q); |
| |
| /* Drop last sent command */ |
| if (hdev->sent_cmd) { |
| cancel_delayed_work_sync(&hdev->cmd_timer); |
| kfree_skb(hdev->sent_cmd); |
| hdev->sent_cmd = NULL; |
| } |
| |
| /* Drop last request */ |
| if (hdev->req_skb) { |
| kfree_skb(hdev->req_skb); |
| hdev->req_skb = NULL; |
| } |
| |
| clear_bit(HCI_RUNNING, &hdev->flags); |
| hci_sock_dev_event(hdev, HCI_DEV_CLOSE); |
| |
| /* After this point our queues are empty and no tasks are scheduled. */ |
| hdev->close(hdev); |
| |
| /* Clear flags */ |
| hdev->flags &= BIT(HCI_RAW); |
| hci_dev_clear_volatile_flags(hdev); |
| |
| memset(hdev->eir, 0, sizeof(hdev->eir)); |
| memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); |
| bacpy(&hdev->random_addr, BDADDR_ANY); |
| hci_codec_list_clear(&hdev->local_codecs); |
| |
| hci_dev_put(hdev); |
| return err; |
| } |
| |
| /* This function perform power on HCI command sequence as follows: |
| * |
| * If controller is already up (HCI_UP) performs hci_powered_update_sync |
| * sequence otherwise run hci_dev_open_sync which will follow with |
| * hci_powered_update_sync after the init sequence is completed. |
| */ |
| static int hci_power_on_sync(struct hci_dev *hdev) |
| { |
| int err; |
| |
| if (test_bit(HCI_UP, &hdev->flags) && |
| hci_dev_test_flag(hdev, HCI_MGMT) && |
| hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { |
| cancel_delayed_work(&hdev->power_off); |
| return hci_powered_update_sync(hdev); |
| } |
| |
| err = hci_dev_open_sync(hdev); |
| if (err < 0) |
| return err; |
| |
| /* During the HCI setup phase, a few error conditions are |
| * ignored and they need to be checked now. If they are still |
| * valid, it is important to return the device back off. |
| */ |
| if (hci_dev_test_flag(hdev, HCI_RFKILLED) || |
| hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || |
| (!bacmp(&hdev->bdaddr, BDADDR_ANY) && |
| !bacmp(&hdev->static_addr, BDADDR_ANY))) { |
| hci_dev_clear_flag(hdev, HCI_AUTO_OFF); |
| hci_dev_close_sync(hdev); |
| } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { |
| queue_delayed_work(hdev->req_workqueue, &hdev->power_off, |
| HCI_AUTO_OFF_TIMEOUT); |
| } |
| |
| if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { |
| /* For unconfigured devices, set the HCI_RAW flag |
| * so that userspace can easily identify them. |
| */ |
| if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) |
| set_bit(HCI_RAW, &hdev->flags); |
| |
| /* For fully configured devices, this will send |
| * the Index Added event. For unconfigured devices, |
| * it will send Unconfigued Index Added event. |
| * |
| * Devices with HCI_QUIRK_RAW_DEVICE are ignored |
| * and no event will be send. |
| */ |
| mgmt_index_added(hdev); |
| } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { |
| /* When the controller is now configured, then it |
| * is important to clear the HCI_RAW flag. |
| */ |
| if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) |
| clear_bit(HCI_RAW, &hdev->flags); |
| |
| /* Powering on the controller with HCI_CONFIG set only |
| * happens with the transition from unconfigured to |
| * configured. This will send the Index Added event. |
| */ |
| mgmt_index_added(hdev); |
| } |
| |
| return 0; |
| } |
| |
| static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr) |
| { |
| struct hci_cp_remote_name_req_cancel cp; |
| |
| memset(&cp, 0, sizeof(cp)); |
| bacpy(&cp.bdaddr, addr); |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| int hci_stop_discovery_sync(struct hci_dev *hdev) |
| { |
| struct discovery_state *d = &hdev->discovery; |
| struct inquiry_entry *e; |
| int err; |
| |
| bt_dev_dbg(hdev, "state %u", hdev->discovery.state); |
| |
| if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { |
| if (test_bit(HCI_INQUIRY, &hdev->flags)) { |
| err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, |
| 0, NULL, HCI_CMD_TIMEOUT); |
| if (err) |
| return err; |
| } |
| |
| if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { |
| cancel_delayed_work(&hdev->le_scan_disable); |
| |
| err = hci_scan_disable_sync(hdev); |
| if (err) |
| return err; |
| } |
| |
| } else { |
| err = hci_scan_disable_sync(hdev); |
| if (err) |
| return err; |
| } |
| |
| /* Resume advertising if it was paused */ |
| if (use_ll_privacy(hdev)) |
| hci_resume_advertising_sync(hdev); |
| |
| /* No further actions needed for LE-only discovery */ |
| if (d->type == DISCOV_TYPE_LE) |
| return 0; |
| |
| if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { |
| e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, |
| NAME_PENDING); |
| if (!e) |
| return 0; |
| |
| return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr); |
| } |
| |
| return 0; |
| } |
| |
| static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn, |
| u8 reason) |
| { |
| struct hci_cp_disconnect cp; |
| |
| if (test_bit(HCI_CONN_BIG_CREATED, &conn->flags)) { |
| /* This is a BIS connection, hci_conn_del will |
| * do the necessary cleanup. |
| */ |
| hci_dev_lock(hdev); |
| hci_conn_failed(conn, reason); |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| memset(&cp, 0, sizeof(cp)); |
| cp.handle = cpu_to_le16(conn->handle); |
| cp.reason = reason; |
| |
| /* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the |
| * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is |
| * used when suspending or powering off, where we don't want to wait |
| * for the peer's response. |
| */ |
| if (reason != HCI_ERROR_REMOTE_POWER_OFF) |
| return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT, |
| sizeof(cp), &cp, |
| HCI_EV_DISCONN_COMPLETE, |
| HCI_CMD_TIMEOUT, NULL); |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp, |
| HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_le_connect_cancel_sync(struct hci_dev *hdev, |
| struct hci_conn *conn, u8 reason) |
| { |
| /* Return reason if scanning since the connection shall probably be |
| * cleanup directly. |
| */ |
| if (test_bit(HCI_CONN_SCANNING, &conn->flags)) |
| return reason; |
| |
| if (conn->role == HCI_ROLE_SLAVE || |
| test_and_set_bit(HCI_CONN_CANCEL, &conn->flags)) |
| return 0; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL, |
| 0, NULL, HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn, |
| u8 reason) |
| { |
| if (conn->type == LE_LINK) |
| return hci_le_connect_cancel_sync(hdev, conn, reason); |
| |
| if (conn->type == ISO_LINK) { |
| /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E |
| * page 1857: |
| * |
| * If this command is issued for a CIS on the Central and the |
| * CIS is successfully terminated before being established, |
| * then an HCI_LE_CIS_Established event shall also be sent for |
| * this CIS with the Status Operation Cancelled by Host (0x44). |
| */ |
| if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) |
| return hci_disconnect_sync(hdev, conn, reason); |
| |
| /* CIS with no Create CIS sent have nothing to cancel */ |
| if (bacmp(&conn->dst, BDADDR_ANY)) |
| return HCI_ERROR_LOCAL_HOST_TERM; |
| |
| /* There is no way to cancel a BIS without terminating the BIG |
| * which is done later on connection cleanup. |
| */ |
| return 0; |
| } |
| |
| if (hdev->hci_ver < BLUETOOTH_VER_1_2) |
| return 0; |
| |
| /* Wait for HCI_EV_CONN_COMPLETE, not HCI_EV_CMD_STATUS, when the |
| * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is |
| * used when suspending or powering off, where we don't want to wait |
| * for the peer's response. |
| */ |
| if (reason != HCI_ERROR_REMOTE_POWER_OFF) |
| return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN_CANCEL, |
| 6, &conn->dst, |
| HCI_EV_CONN_COMPLETE, |
| HCI_CMD_TIMEOUT, NULL); |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL, |
| 6, &conn->dst, HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn, |
| u8 reason) |
| { |
| struct hci_cp_reject_sync_conn_req cp; |
| |
| memset(&cp, 0, sizeof(cp)); |
| bacpy(&cp.bdaddr, &conn->dst); |
| cp.reason = reason; |
| |
| /* SCO rejection has its own limited set of |
| * allowed error values (0x0D-0x0F). |
| */ |
| if (reason < 0x0d || reason > 0x0f) |
| cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_le_reject_cis_sync(struct hci_dev *hdev, struct hci_conn *conn, |
| u8 reason) |
| { |
| struct hci_cp_le_reject_cis cp; |
| |
| memset(&cp, 0, sizeof(cp)); |
| cp.handle = cpu_to_le16(conn->handle); |
| cp.reason = reason; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_REJECT_CIS, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, |
| u8 reason) |
| { |
| struct hci_cp_reject_conn_req cp; |
| |
| if (conn->type == ISO_LINK) |
| return hci_le_reject_cis_sync(hdev, conn, reason); |
| |
| if (conn->type == SCO_LINK || conn->type == ESCO_LINK) |
| return hci_reject_sco_sync(hdev, conn, reason); |
| |
| memset(&cp, 0, sizeof(cp)); |
| bacpy(&cp.bdaddr, &conn->dst); |
| cp.reason = reason; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason) |
| { |
| int err = 0; |
| u16 handle = conn->handle; |
| bool disconnect = false; |
| struct hci_conn *c; |
| |
| switch (conn->state) { |
| case BT_CONNECTED: |
| case BT_CONFIG: |
| err = hci_disconnect_sync(hdev, conn, reason); |
| break; |
| case BT_CONNECT: |
| err = hci_connect_cancel_sync(hdev, conn, reason); |
| break; |
| case BT_CONNECT2: |
| err = hci_reject_conn_sync(hdev, conn, reason); |
| break; |
| case BT_OPEN: |
| case BT_BOUND: |
| break; |
| default: |
| disconnect = true; |
| break; |
| } |
| |
| hci_dev_lock(hdev); |
| |
| /* Check if the connection has been cleaned up concurrently */ |
| c = hci_conn_hash_lookup_handle(hdev, handle); |
| if (!c || c != conn) { |
| err = 0; |
| goto unlock; |
| } |
| |
| /* Cleanup hci_conn object if it cannot be cancelled as it |
| * likelly means the controller and host stack are out of sync |
| * or in case of LE it was still scanning so it can be cleanup |
| * safely. |
| */ |
| if (disconnect) { |
| conn->state = BT_CLOSED; |
| hci_disconn_cfm(conn, reason); |
| hci_conn_del(conn); |
| } else { |
| hci_conn_failed(conn, reason); |
| } |
| |
| unlock: |
| hci_dev_unlock(hdev); |
| return err; |
| } |
| |
| static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason) |
| { |
| struct list_head *head = &hdev->conn_hash.list; |
| struct hci_conn *conn; |
| |
| rcu_read_lock(); |
| while ((conn = list_first_or_null_rcu(head, struct hci_conn, list))) { |
| /* Make sure the connection is not freed while unlocking */ |
| conn = hci_conn_get(conn); |
| rcu_read_unlock(); |
| /* Disregard possible errors since hci_conn_del shall have been |
| * called even in case of errors had occurred since it would |
| * then cause hci_conn_failed to be called which calls |
| * hci_conn_del internally. |
| */ |
| hci_abort_conn_sync(hdev, conn, reason); |
| hci_conn_put(conn); |
| rcu_read_lock(); |
| } |
| rcu_read_unlock(); |
| |
| return 0; |
| } |
| |
| /* This function perform power off HCI command sequence as follows: |
| * |
| * Clear Advertising |
| * Stop Discovery |
| * Disconnect all connections |
| * hci_dev_close_sync |
| */ |
| static int hci_power_off_sync(struct hci_dev *hdev) |
| { |
| int err; |
| |
| /* If controller is already down there is nothing to do */ |
| if (!test_bit(HCI_UP, &hdev->flags)) |
| return 0; |
| |
| hci_dev_set_flag(hdev, HCI_POWERING_DOWN); |
| |
| if (test_bit(HCI_ISCAN, &hdev->flags) || |
| test_bit(HCI_PSCAN, &hdev->flags)) { |
| err = hci_write_scan_enable_sync(hdev, 0x00); |
| if (err) |
| goto out; |
| } |
| |
| err = hci_clear_adv_sync(hdev, NULL, false); |
| if (err) |
| goto out; |
| |
| err = hci_stop_discovery_sync(hdev); |
| if (err) |
| goto out; |
| |
| /* Terminated due to Power Off */ |
| err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); |
| if (err) |
| goto out; |
| |
| err = hci_dev_close_sync(hdev); |
| |
| out: |
| hci_dev_clear_flag(hdev, HCI_POWERING_DOWN); |
| return err; |
| } |
| |
| int hci_set_powered_sync(struct hci_dev *hdev, u8 val) |
| { |
| if (val) |
| return hci_power_on_sync(hdev); |
| |
| return hci_power_off_sync(hdev); |
| } |
| |
| static int hci_write_iac_sync(struct hci_dev *hdev) |
| { |
| struct hci_cp_write_current_iac_lap cp; |
| |
| if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) |
| return 0; |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { |
| /* Limited discoverable mode */ |
| cp.num_iac = min_t(u8, hdev->num_iac, 2); |
| cp.iac_lap[0] = 0x00; /* LIAC */ |
| cp.iac_lap[1] = 0x8b; |
| cp.iac_lap[2] = 0x9e; |
| cp.iac_lap[3] = 0x33; /* GIAC */ |
| cp.iac_lap[4] = 0x8b; |
| cp.iac_lap[5] = 0x9e; |
| } else { |
| /* General discoverable mode */ |
| cp.num_iac = 1; |
| cp.iac_lap[0] = 0x33; /* GIAC */ |
| cp.iac_lap[1] = 0x8b; |
| cp.iac_lap[2] = 0x9e; |
| } |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP, |
| (cp.num_iac * 3) + 1, &cp, |
| HCI_CMD_TIMEOUT); |
| } |
| |
| int hci_update_discoverable_sync(struct hci_dev *hdev) |
| { |
| int err = 0; |
| |
| if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { |
| err = hci_write_iac_sync(hdev); |
| if (err) |
| return err; |
| |
| err = hci_update_scan_sync(hdev); |
| if (err) |
| return err; |
| |
| err = hci_update_class_sync(hdev); |
| if (err) |
| return err; |
| } |
| |
| /* Advertising instances don't use the global discoverable setting, so |
| * only update AD if advertising was enabled using Set Advertising. |
| */ |
| if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { |
| err = hci_update_adv_data_sync(hdev, 0x00); |
| if (err) |
| return err; |
| |
| /* Discoverable mode affects the local advertising |
| * address in limited privacy mode. |
| */ |
| if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { |
| if (ext_adv_capable(hdev)) |
| err = hci_start_ext_adv_sync(hdev, 0x00); |
| else |
| err = hci_enable_advertising_sync(hdev); |
| } |
| } |
| |
| return err; |
| } |
| |
| static int update_discoverable_sync(struct hci_dev *hdev, void *data) |
| { |
| return hci_update_discoverable_sync(hdev); |
| } |
| |
| int hci_update_discoverable(struct hci_dev *hdev) |
| { |
| /* Only queue if it would have any effect */ |
| if (hdev_is_powered(hdev) && |
| hci_dev_test_flag(hdev, HCI_ADVERTISING) && |
| hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && |
| hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) |
| return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL, |
| NULL); |
| |
| return 0; |
| } |
| |
| int hci_update_connectable_sync(struct hci_dev *hdev) |
| { |
| int err; |
| |
| err = hci_update_scan_sync(hdev); |
| if (err) |
| return err; |
| |
| /* If BR/EDR is not enabled and we disable advertising as a |
| * by-product of disabling connectable, we need to update the |
| * advertising flags. |
| */ |
| if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) |
| err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance); |
| |
| /* Update the advertising parameters if necessary */ |
| if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || |
| !list_empty(&hdev->adv_instances)) { |
| if (ext_adv_capable(hdev)) |
| err = hci_start_ext_adv_sync(hdev, |
| hdev->cur_adv_instance); |
| else |
| err = hci_enable_advertising_sync(hdev); |
| |
| if (err) |
| return err; |
| } |
| |
| return hci_update_passive_scan_sync(hdev); |
| } |
| |
| static int hci_inquiry_sync(struct hci_dev *hdev, u8 length) |
| { |
| const u8 giac[3] = { 0x33, 0x8b, 0x9e }; |
| const u8 liac[3] = { 0x00, 0x8b, 0x9e }; |
| struct hci_cp_inquiry cp; |
| |
| bt_dev_dbg(hdev, ""); |
| |
| if (test_bit(HCI_INQUIRY, &hdev->flags)) |
| return 0; |
| |
| hci_dev_lock(hdev); |
| hci_inquiry_cache_flush(hdev); |
| hci_dev_unlock(hdev); |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| if (hdev->discovery.limited) |
| memcpy(&cp.lap, liac, sizeof(cp.lap)); |
| else |
| memcpy(&cp.lap, giac, sizeof(cp.lap)); |
| |
| cp.length = length; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval) |
| { |
| u8 own_addr_type; |
| /* Accept list is not used for discovery */ |
| u8 filter_policy = 0x00; |
| /* Default is to enable duplicates filter */ |
| u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; |
| int err; |
| |
| bt_dev_dbg(hdev, ""); |
| |
| /* If controller is scanning, it means the passive scanning is |
| * running. Thus, we should temporarily stop it in order to set the |
| * discovery scanning parameters. |
| */ |
| err = hci_scan_disable_sync(hdev); |
| if (err) { |
| bt_dev_err(hdev, "Unable to disable scanning: %d", err); |
| return err; |
| } |
| |
| cancel_interleave_scan(hdev); |
| |
| /* Pause address resolution for active scan and stop advertising if |
| * privacy is enabled. |
| */ |
| err = hci_pause_addr_resolution(hdev); |
| if (err) |
| goto failed; |
| |
| /* All active scans will be done with either a resolvable private |
| * address (when privacy feature has been enabled) or non-resolvable |
| * private address. |
| */ |
| err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev), |
| &own_addr_type); |
| if (err < 0) |
| own_addr_type = ADDR_LE_DEV_PUBLIC; |
| |
| if (hci_is_adv_monitoring(hdev) || |
| (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && |
| hdev->discovery.result_filtering)) { |
| /* Duplicate filter should be disabled when some advertisement |
| * monitor is activated, otherwise AdvMon can only receive one |
| * advertisement for one peer(*) during active scanning, and |
| * might report loss to these peers. |
| * |
| * If controller does strict duplicate filtering and the |
| * discovery requires result filtering disables controller based |
| * filtering since that can cause reports that would match the |
| * host filter to not be reported. |
| */ |
| filter_dup = LE_SCAN_FILTER_DUP_DISABLE; |
| } |
| |
| err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval, |
| hdev->le_scan_window_discovery, |
| own_addr_type, filter_policy, filter_dup); |
| if (!err) |
| return err; |
| |
| failed: |
| /* Resume advertising if it was paused */ |
| if (use_ll_privacy(hdev)) |
| hci_resume_advertising_sync(hdev); |
| |
| /* Resume passive scanning */ |
| hci_update_passive_scan_sync(hdev); |
| return err; |
| } |
| |
| static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev) |
| { |
| int err; |
| |
| bt_dev_dbg(hdev, ""); |
| |
| err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2); |
| if (err) |
| return err; |
| |
| return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); |
| } |
| |
| int hci_start_discovery_sync(struct hci_dev *hdev) |
| { |
| unsigned long timeout; |
| int err; |
| |
| bt_dev_dbg(hdev, "type %u", hdev->discovery.type); |
| |
| switch (hdev->discovery.type) { |
| case DISCOV_TYPE_BREDR: |
| return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); |
| case DISCOV_TYPE_INTERLEAVED: |
| /* When running simultaneous discovery, the LE scanning time |
| * should occupy the whole discovery time sine BR/EDR inquiry |
| * and LE scanning are scheduled by the controller. |
| * |
| * For interleaving discovery in comparison, BR/EDR inquiry |
| * and LE scanning are done sequentially with separate |
| * timeouts. |
| */ |
| if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, |
| &hdev->quirks)) { |
| timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); |
| /* During simultaneous discovery, we double LE scan |
| * interval. We must leave some time for the controller |
| * to do BR/EDR inquiry. |
| */ |
| err = hci_start_interleaved_discovery_sync(hdev); |
| break; |
| } |
| |
| timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); |
| err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); |
| break; |
| case DISCOV_TYPE_LE: |
| timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); |
| err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| if (err) |
| return err; |
| |
| bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout)); |
| |
| queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, |
| timeout); |
| return 0; |
| } |
| |
| static void hci_suspend_monitor_sync(struct hci_dev *hdev) |
| { |
| switch (hci_get_adv_monitor_offload_ext(hdev)) { |
| case HCI_ADV_MONITOR_EXT_MSFT: |
| msft_suspend_sync(hdev); |
| break; |
| default: |
| return; |
| } |
| } |
| |
| /* This function disables discovery and mark it as paused */ |
| static int hci_pause_discovery_sync(struct hci_dev *hdev) |
| { |
| int old_state = hdev->discovery.state; |
| int err; |
| |
| /* If discovery already stopped/stopping/paused there nothing to do */ |
| if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING || |
| hdev->discovery_paused) |
| return 0; |
| |
| hci_discovery_set_state(hdev, DISCOVERY_STOPPING); |
| err = hci_stop_discovery_sync(hdev); |
| if (err) |
| return err; |
| |
| hdev->discovery_paused = true; |
| hdev->discovery_old_state = old_state; |
| hci_discovery_set_state(hdev, DISCOVERY_STOPPED); |
| |
| return 0; |
| } |
| |
| static int hci_update_event_filter_sync(struct hci_dev *hdev) |
| { |
| struct bdaddr_list_with_flags *b; |
| u8 scan = SCAN_DISABLED; |
| bool scanning = test_bit(HCI_PSCAN, &hdev->flags); |
| int err; |
| |
| if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) |
| return 0; |
| |
| /* Some fake CSR controllers lock up after setting this type of |
| * filter, so avoid sending the request altogether. |
| */ |
| if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) |
| return 0; |
| |
| /* Always clear event filter when starting */ |
| hci_clear_event_filter_sync(hdev); |
| |
| list_for_each_entry(b, &hdev->accept_list, list) { |
| if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) |
| continue; |
| |
| bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr); |
| |
| err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP, |
| HCI_CONN_SETUP_ALLOW_BDADDR, |
| &b->bdaddr, |
| HCI_CONN_SETUP_AUTO_ON); |
| if (err) |
| bt_dev_dbg(hdev, "Failed to set event filter for %pMR", |
| &b->bdaddr); |
| else |
| scan = SCAN_PAGE; |
| } |
| |
| if (scan && !scanning) |
| hci_write_scan_enable_sync(hdev, scan); |
| else if (!scan && scanning) |
| hci_write_scan_enable_sync(hdev, scan); |
| |
| return 0; |
| } |
| |
| /* This function disables scan (BR and LE) and mark it as paused */ |
| static int hci_pause_scan_sync(struct hci_dev *hdev) |
| { |
| if (hdev->scanning_paused) |
| return 0; |
| |
| /* Disable page scan if enabled */ |
| if (test_bit(HCI_PSCAN, &hdev->flags)) |
| hci_write_scan_enable_sync(hdev, SCAN_DISABLED); |
| |
| hci_scan_disable_sync(hdev); |
| |
| hdev->scanning_paused = true; |
| |
| return 0; |
| } |
| |
| /* This function performs the HCI suspend procedures in the follow order: |
| * |
| * Pause discovery (active scanning/inquiry) |
| * Pause Directed Advertising/Advertising |
| * Pause Scanning (passive scanning in case discovery was not active) |
| * Disconnect all connections |
| * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup |
| * otherwise: |
| * Update event mask (only set events that are allowed to wake up the host) |
| * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP) |
| * Update passive scanning (lower duty cycle) |
| * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE |
| */ |
| int hci_suspend_sync(struct hci_dev *hdev) |
| { |
| int err; |
| |
| /* If marked as suspended there nothing to do */ |
| if (hdev->suspended) |
| return 0; |
| |
| /* Mark device as suspended */ |
| hdev->suspended = true; |
| |
| /* Pause discovery if not already stopped */ |
| hci_pause_discovery_sync(hdev); |
| |
| /* Pause other advertisements */ |
| hci_pause_advertising_sync(hdev); |
| |
| /* Suspend monitor filters */ |
| hci_suspend_monitor_sync(hdev); |
| |
| /* Prevent disconnects from causing scanning to be re-enabled */ |
| hci_pause_scan_sync(hdev); |
| |
| if (hci_conn_count(hdev)) { |
| /* Soft disconnect everything (power off) */ |
| err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); |
| if (err) { |
| /* Set state to BT_RUNNING so resume doesn't notify */ |
| hdev->suspend_state = BT_RUNNING; |
| hci_resume_sync(hdev); |
| return err; |
| } |
| |
| /* Update event mask so only the allowed event can wakeup the |
| * host. |
| */ |
| hci_set_event_mask_sync(hdev); |
| } |
| |
| /* Only configure accept list if disconnect succeeded and wake |
| * isn't being prevented. |
| */ |
| if (!hdev->wakeup || !hdev->wakeup(hdev)) { |
| hdev->suspend_state = BT_SUSPEND_DISCONNECT; |
| return 0; |
| } |
| |
| /* Unpause to take care of updating scanning params */ |
| hdev->scanning_paused = false; |
| |
| /* Enable event filter for paired devices */ |
| hci_update_event_filter_sync(hdev); |
| |
| /* Update LE passive scan if enabled */ |
| hci_update_passive_scan_sync(hdev); |
| |
| /* Pause scan changes again. */ |
| hdev->scanning_paused = true; |
| |
| hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE; |
| |
| return 0; |
| } |
| |
| /* This function resumes discovery */ |
| static int hci_resume_discovery_sync(struct hci_dev *hdev) |
| { |
| int err; |
| |
| /* If discovery not paused there nothing to do */ |
| if (!hdev->discovery_paused) |
| return 0; |
| |
| hdev->discovery_paused = false; |
| |
| hci_discovery_set_state(hdev, DISCOVERY_STARTING); |
| |
| err = hci_start_discovery_sync(hdev); |
| |
| hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED : |
| DISCOVERY_FINDING); |
| |
| return err; |
| } |
| |
| static void hci_resume_monitor_sync(struct hci_dev *hdev) |
| { |
| switch (hci_get_adv_monitor_offload_ext(hdev)) { |
| case HCI_ADV_MONITOR_EXT_MSFT: |
| msft_resume_sync(hdev); |
| break; |
| default: |
| return; |
| } |
| } |
| |
| /* This function resume scan and reset paused flag */ |
| static int hci_resume_scan_sync(struct hci_dev *hdev) |
| { |
| if (!hdev->scanning_paused) |
| return 0; |
| |
| hdev->scanning_paused = false; |
| |
| hci_update_scan_sync(hdev); |
| |
| /* Reset passive scanning to normal */ |
| hci_update_passive_scan_sync(hdev); |
| |
| return 0; |
| } |
| |
| /* This function performs the HCI suspend procedures in the follow order: |
| * |
| * Restore event mask |
| * Clear event filter |
| * Update passive scanning (normal duty cycle) |
| * Resume Directed Advertising/Advertising |
| * Resume discovery (active scanning/inquiry) |
| */ |
| int hci_resume_sync(struct hci_dev *hdev) |
| { |
| /* If not marked as suspended there nothing to do */ |
| if (!hdev->suspended) |
| return 0; |
| |
| hdev->suspended = false; |
| |
| /* Restore event mask */ |
| hci_set_event_mask_sync(hdev); |
| |
| /* Clear any event filters and restore scan state */ |
| hci_clear_event_filter_sync(hdev); |
| |
| /* Resume scanning */ |
| hci_resume_scan_sync(hdev); |
| |
| /* Resume monitor filters */ |
| hci_resume_monitor_sync(hdev); |
| |
| /* Resume other advertisements */ |
| hci_resume_advertising_sync(hdev); |
| |
| /* Resume discovery */ |
| hci_resume_discovery_sync(hdev); |
| |
| return 0; |
| } |
| |
| static bool conn_use_rpa(struct hci_conn *conn) |
| { |
| struct hci_dev *hdev = conn->hdev; |
| |
| return hci_dev_test_flag(hdev, HCI_PRIVACY); |
| } |
| |
| static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev, |
| struct hci_conn *conn) |
| { |
| struct hci_cp_le_set_ext_adv_params cp; |
| int err; |
| bdaddr_t random_addr; |
| u8 own_addr_type; |
| |
| err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), |
| &own_addr_type); |
| if (err) |
| return err; |
| |
| /* Set require_privacy to false so that the remote device has a |
| * chance of identifying us. |
| */ |
| err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, |
| &own_addr_type, &random_addr); |
| if (err) |
| return err; |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); |
| cp.channel_map = hdev->le_adv_channel_map; |
| cp.tx_power = HCI_TX_POWER_INVALID; |
| cp.primary_phy = HCI_ADV_PHY_1M; |
| cp.secondary_phy = HCI_ADV_PHY_1M; |
| cp.handle = 0x00; /* Use instance 0 for directed adv */ |
| cp.own_addr_type = own_addr_type; |
| cp.peer_addr_type = conn->dst_type; |
| bacpy(&cp.peer_addr, &conn->dst); |
| |
| /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for |
| * advertising_event_property LE_LEGACY_ADV_DIRECT_IND |
| * does not supports advertising data when the advertising set already |
| * contains some, the controller shall return erroc code 'Invalid |
| * HCI Command Parameters(0x12). |
| * So it is required to remove adv set for handle 0x00. since we use |
| * instance 0 for directed adv. |
| */ |
| err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL); |
| if (err) |
| return err; |
| |
| err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| if (err) |
| return err; |
| |
| /* Check if random address need to be updated */ |
| if (own_addr_type == ADDR_LE_DEV_RANDOM && |
| bacmp(&random_addr, BDADDR_ANY) && |
| bacmp(&random_addr, &hdev->random_addr)) { |
| err = hci_set_adv_set_random_addr_sync(hdev, 0x00, |
| &random_addr); |
| if (err) |
| return err; |
| } |
| |
| return hci_enable_ext_advertising_sync(hdev, 0x00); |
| } |
| |
| static int hci_le_directed_advertising_sync(struct hci_dev *hdev, |
| struct hci_conn *conn) |
| { |
| struct hci_cp_le_set_adv_param cp; |
| u8 status; |
| u8 own_addr_type; |
| u8 enable; |
| |
| if (ext_adv_capable(hdev)) |
| return hci_le_ext_directed_advertising_sync(hdev, conn); |
| |
| /* Clear the HCI_LE_ADV bit temporarily so that the |
| * hci_update_random_address knows that it's safe to go ahead |
| * and write a new random address. The flag will be set back on |
| * as soon as the SET_ADV_ENABLE HCI command completes. |
| */ |
| hci_dev_clear_flag(hdev, HCI_LE_ADV); |
| |
| /* Set require_privacy to false so that the remote device has a |
| * chance of identifying us. |
| */ |
| status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), |
| &own_addr_type); |
| if (status) |
| return status; |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| /* Some controllers might reject command if intervals are not |
| * within range for undirected advertising. |
| * BCM20702A0 is known to be affected by this. |
| */ |
| cp.min_interval = cpu_to_le16(0x0020); |
| cp.max_interval = cpu_to_le16(0x0020); |
| |
| cp.type = LE_ADV_DIRECT_IND; |
| cp.own_address_type = own_addr_type; |
| cp.direct_addr_type = conn->dst_type; |
| bacpy(&cp.direct_addr, &conn->dst); |
| cp.channel_map = hdev->le_adv_channel_map; |
| |
| status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| if (status) |
| return status; |
| |
| enable = 0x01; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, |
| sizeof(enable), &enable, HCI_CMD_TIMEOUT); |
| } |
| |
| static void set_ext_conn_params(struct hci_conn *conn, |
| struct hci_cp_le_ext_conn_param *p) |
| { |
| struct hci_dev *hdev = conn->hdev; |
| |
| memset(p, 0, sizeof(*p)); |
| |
| p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect); |
| p->scan_window = cpu_to_le16(hdev->le_scan_window_connect); |
| p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); |
| p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); |
| p->conn_latency = cpu_to_le16(conn->le_conn_latency); |
| p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); |
| p->min_ce_len = cpu_to_le16(0x0000); |
| p->max_ce_len = cpu_to_le16(0x0000); |
| } |
| |
| static int hci_le_ext_create_conn_sync(struct hci_dev *hdev, |
| struct hci_conn *conn, u8 own_addr_type) |
| { |
| struct hci_cp_le_ext_create_conn *cp; |
| struct hci_cp_le_ext_conn_param *p; |
| u8 data[sizeof(*cp) + sizeof(*p) * 3]; |
| u32 plen; |
| |
| cp = (void *)data; |
| p = (void *)cp->data; |
| |
| memset(cp, 0, sizeof(*cp)); |
| |
| bacpy(&cp->peer_addr, &conn->dst); |
| cp->peer_addr_type = conn->dst_type; |
| cp->own_addr_type = own_addr_type; |
| |
| plen = sizeof(*cp); |
| |
| if (scan_1m(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_1M || |
| conn->le_adv_sec_phy == HCI_ADV_PHY_1M)) { |
| cp->phys |= LE_SCAN_PHY_1M; |
| set_ext_conn_params(conn, p); |
| |
| p++; |
| plen += sizeof(*p); |
| } |
| |
| if (scan_2m(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_2M || |
| conn->le_adv_sec_phy == HCI_ADV_PHY_2M)) { |
| cp->phys |= LE_SCAN_PHY_2M; |
| set_ext_conn_params(conn, p); |
| |
| p++; |
| plen += sizeof(*p); |
| } |
| |
| if (scan_coded(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_CODED || |
| conn->le_adv_sec_phy == HCI_ADV_PHY_CODED)) { |
| cp->phys |= LE_SCAN_PHY_CODED; |
| set_ext_conn_params(conn, p); |
| |
| plen += sizeof(*p); |
| } |
| |
| return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN, |
| plen, data, |
| HCI_EV_LE_ENHANCED_CONN_COMPLETE, |
| conn->conn_timeout, NULL); |
| } |
| |
| static int hci_le_create_conn_sync(struct hci_dev *hdev, void *data) |
| { |
| struct hci_cp_le_create_conn cp; |
| struct hci_conn_params *params; |
| u8 own_addr_type; |
| int err; |
| struct hci_conn *conn = data; |
| |
| if (!hci_conn_valid(hdev, conn)) |
| return -ECANCELED; |
| |
| bt_dev_dbg(hdev, "conn %p", conn); |
| |
| clear_bit(HCI_CONN_SCANNING, &conn->flags); |
| conn->state = BT_CONNECT; |
| |
| /* If requested to connect as peripheral use directed advertising */ |
| if (conn->role == HCI_ROLE_SLAVE) { |
| /* If we're active scanning and simultaneous roles is not |
| * enabled simply reject the attempt. |
| */ |
| if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && |
| hdev->le_scan_type == LE_SCAN_ACTIVE && |
| !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) { |
| hci_conn_del(conn); |
| return -EBUSY; |
| } |
| |
| /* Pause advertising while doing directed advertising. */ |
| hci_pause_advertising_sync(hdev); |
| |
| err = hci_le_directed_advertising_sync(hdev, conn); |
| goto done; |
| } |
| |
| /* Disable advertising if simultaneous roles is not in use. */ |
| if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) |
| hci_pause_advertising_sync(hdev); |
| |
| params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); |
| if (params) { |
| conn->le_conn_min_interval = params->conn_min_interval; |
| conn->le_conn_max_interval = params->conn_max_interval; |
| conn->le_conn_latency = params->conn_latency; |
| conn->le_supv_timeout = params->supervision_timeout; |
| } else { |
| conn->le_conn_min_interval = hdev->le_conn_min_interval; |
| conn->le_conn_max_interval = hdev->le_conn_max_interval; |
| conn->le_conn_latency = hdev->le_conn_latency; |
| conn->le_supv_timeout = hdev->le_supv_timeout; |
| } |
| |
| /* If controller is scanning, we stop it since some controllers are |
| * not able to scan and connect at the same time. Also set the |
| * HCI_LE_SCAN_INTERRUPTED flag so that the command complete |
| * handler for scan disabling knows to set the correct discovery |
| * state. |
| */ |
| if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { |
| hci_scan_disable_sync(hdev); |
| hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); |
| } |
| |
| /* Update random address, but set require_privacy to false so |
| * that we never connect with an non-resolvable address. |
| */ |
| err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), |
| &own_addr_type); |
| if (err) |
| goto done; |
| |
| if (use_ext_conn(hdev)) { |
| err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type); |
| goto done; |
| } |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect); |
| cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect); |
| |
| bacpy(&cp.peer_addr, &conn->dst); |
| cp.peer_addr_type = conn->dst_type; |
| cp.own_address_type = own_addr_type; |
| cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); |
| cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); |
| cp.conn_latency = cpu_to_le16(conn->le_conn_latency); |
| cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); |
| cp.min_ce_len = cpu_to_le16(0x0000); |
| cp.max_ce_len = cpu_to_le16(0x0000); |
| |
| /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261: |
| * |
| * If this event is unmasked and the HCI_LE_Connection_Complete event |
| * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is |
| * sent when a new connection has been created. |
| */ |
| err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN, |
| sizeof(cp), &cp, |
| use_enhanced_conn_complete(hdev) ? |
| HCI_EV_LE_ENHANCED_CONN_COMPLETE : |
| HCI_EV_LE_CONN_COMPLETE, |
| conn->conn_timeout, NULL); |
| |
| done: |
| if (err == -ETIMEDOUT) |
| hci_le_connect_cancel_sync(hdev, conn, 0x00); |
| |
| /* Re-enable advertising after the connection attempt is finished. */ |
| hci_resume_advertising_sync(hdev); |
| return err; |
| } |
| |
| int hci_le_create_cis_sync(struct hci_dev *hdev) |
| { |
| DEFINE_FLEX(struct hci_cp_le_create_cis, cmd, cis, num_cis, 0x1f); |
| size_t aux_num_cis = 0; |
| struct hci_conn *conn; |
| u8 cig = BT_ISO_QOS_CIG_UNSET; |
| |
| /* The spec allows only one pending LE Create CIS command at a time. If |
| * the command is pending now, don't do anything. We check for pending |
| * connections after each CIS Established event. |
| * |
| * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E |
| * page 2566: |
| * |
| * If the Host issues this command before all the |
| * HCI_LE_CIS_Established events from the previous use of the |
| * command have been generated, the Controller shall return the |
| * error code Command Disallowed (0x0C). |
| * |
| * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E |
| * page 2567: |
| * |
| * When the Controller receives the HCI_LE_Create_CIS command, the |
| * Controller sends the HCI_Command_Status event to the Host. An |
| * HCI_LE_CIS_Established event will be generated for each CIS when it |
| * is established or if it is disconnected or considered lost before |
| * being established; until all the events are generated, the command |
| * remains pending. |
| */ |
| |
| hci_dev_lock(hdev); |
| |
| rcu_read_lock(); |
| |
| /* Wait until previous Create CIS has completed */ |
| list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { |
| if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) |
| goto done; |
| } |
| |
| /* Find CIG with all CIS ready */ |
| list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { |
| struct hci_conn *link; |
| |
| if (hci_conn_check_create_cis(conn)) |
| continue; |
| |
| cig = conn->iso_qos.ucast.cig; |
| |
| list_for_each_entry_rcu(link, &hdev->conn_hash.list, list) { |
| if (hci_conn_check_create_cis(link) > 0 && |
| link->iso_qos.ucast.cig == cig && |
| link->state != BT_CONNECTED) { |
| cig = BT_ISO_QOS_CIG_UNSET; |
| break; |
| } |
| } |
| |
| if (cig != BT_ISO_QOS_CIG_UNSET) |
| break; |
| } |
| |
| if (cig == BT_ISO_QOS_CIG_UNSET) |
| goto done; |
| |
| list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { |
| struct hci_cis *cis = &cmd->cis[aux_num_cis]; |
| |
| if (hci_conn_check_create_cis(conn) || |
| conn->iso_qos.ucast.cig != cig) |
| continue; |
| |
| set_bit(HCI_CONN_CREATE_CIS, &conn->flags); |
| cis->acl_handle = cpu_to_le16(conn->parent->handle); |
| cis->cis_handle = cpu_to_le16(conn->handle); |
| aux_num_cis++; |
| |
| if (aux_num_cis >= cmd->num_cis) |
| break; |
| } |
| cmd->num_cis = aux_num_cis; |
| |
| done: |
| rcu_read_unlock(); |
| |
| hci_dev_unlock(hdev); |
| |
| if (!aux_num_cis) |
| return 0; |
| |
| /* Wait for HCI_LE_CIS_Established */ |
| return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS, |
| struct_size(cmd, cis, cmd->num_cis), |
| cmd, HCI_EVT_LE_CIS_ESTABLISHED, |
| conn->conn_timeout, NULL); |
| } |
| |
| int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle) |
| { |
| struct hci_cp_le_remove_cig cp; |
| |
| memset(&cp, 0, sizeof(cp)); |
| cp.cig_id = handle; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp), |
| &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle) |
| { |
| struct hci_cp_le_big_term_sync cp; |
| |
| memset(&cp, 0, sizeof(cp)); |
| cp.handle = handle; |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle) |
| { |
| struct hci_cp_le_pa_term_sync cp; |
| |
| memset(&cp, 0, sizeof(cp)); |
| cp.handle = cpu_to_le16(handle); |
| |
| return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC, |
| sizeof(cp), &cp, HCI_CMD_TIMEOUT); |
| } |
| |
| int hci_get_random_address(struct hci_dev *hdev, bool require_privacy, |
| bool use_rpa, struct adv_info *adv_instance, |
| u8 *own_addr_type, bdaddr_t *rand_addr) |
| { |
| int err; |
| |
| bacpy(rand_addr, BDADDR_ANY); |
| |
| /* If privacy is enabled use a resolvable private address. If |
| * current RPA has expired then generate a new one. |
| */ |
| if (use_rpa) { |
| /* If Controller supports LL Privacy use own address type is |
| * 0x03 |
| */ |
| if (use_ll_privacy(hdev)) |
| *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; |
| else |
| *own_addr_type = ADDR_LE_DEV_RANDOM; |
| |
| if (adv_instance) { |
| if (adv_rpa_valid(adv_instance)) |
| return 0; |
| } else { |
| if (rpa_valid(hdev)) |
| return 0; |
| } |
| |
| err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); |
| if (err < 0) { |
| bt_dev_err(hdev, "failed to generate new RPA"); |
| return err; |
| } |
| |
| bacpy(rand_addr, &hdev->rpa); |
| |
| return 0; |
| } |
| |
| /* In case of required privacy without resolvable private address, |
| * use an non-resolvable private address. This is useful for |
| * non-connectable advertising. |
| */ |
| if (require_privacy) { |
| bdaddr_t nrpa; |
| |
| while (true) { |
| /* The non-resolvable private address is generated |
| * from random six bytes with the two most significant |
| * bits cleared. |
| */ |
| get_random_bytes(&nrpa, 6); |
| nrpa.b[5] &= 0x3f; |
| |
| /* The non-resolvable private address shall not be |
| * equal to the public address. |
| */ |
| if (bacmp(&hdev->bdaddr, &nrpa)) |
| break; |
| } |
| |
| *own_addr_type = ADDR_LE_DEV_RANDOM; |
| bacpy(rand_addr, &nrpa); |
| |
| return 0; |
| } |
| |
| /* No privacy so use a public address. */ |
| *own_addr_type = ADDR_LE_DEV_PUBLIC; |
| |
| return 0; |
| } |
| |
| static int _update_adv_data_sync(struct hci_dev *hdev, void *data) |
| { |
| u8 instance = PTR_UINT(data); |
| |
| return hci_update_adv_data_sync(hdev, instance); |
| } |
| |
| int hci_update_adv_data(struct hci_dev *hdev, u8 instance) |
| { |
| return hci_cmd_sync_queue(hdev, _update_adv_data_sync, |
| UINT_PTR(instance), NULL); |
| } |
| |
| static int hci_acl_create_conn_sync(struct hci_dev *hdev, void *data) |
| { |
| struct hci_conn *conn = data; |
| struct inquiry_entry *ie; |
| struct hci_cp_create_conn cp; |
| int err; |
| |
| if (!hci_conn_valid(hdev, conn)) |
| return -ECANCELED; |
| |
| /* Many controllers disallow HCI Create Connection while it is doing |
| * HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create |
| * Connection. This may cause the MGMT discovering state to become false |
| * without user space's request but it is okay since the MGMT Discovery |
| * APIs do not promise that discovery should be done forever. Instead, |
| * the user space monitors the status of MGMT discovering and it may |
| * request for discovery again when this flag becomes false. |
| */ |
| if (test_bit(HCI_INQUIRY, &hdev->flags)) { |
| err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 0, |
| NULL, HCI_CMD_TIMEOUT); |
| if (err) |
| bt_dev_warn(hdev, "Failed to cancel inquiry %d", err); |
| } |
| |
| conn->state = BT_CONNECT; |
| conn->out = true; |
| conn->role = HCI_ROLE_MASTER; |
| |
| conn->attempt++; |
| |
| conn->link_policy = hdev->link_policy; |
| |
| memset(&cp, 0, sizeof(cp)); |
| bacpy(&cp.bdaddr, &conn->dst); |
| cp.pscan_rep_mode = 0x02; |
| |
| ie = hci_inquiry_cache_lookup(hdev, &conn->dst); |
| if (ie) { |
| if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) { |
| cp.pscan_rep_mode = ie->data.pscan_rep_mode; |
| cp.pscan_mode = ie->data.pscan_mode; |
| cp.clock_offset = ie->data.clock_offset | |
| cpu_to_le16(0x8000); |
| } |
| |
| memcpy(conn->dev_class, ie->data.dev_class, 3); |
| } |
| |
| cp.pkt_type = cpu_to_le16(conn->pkt_type); |
| if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER)) |
| cp.role_switch = 0x01; |
| else |
| cp.role_switch = 0x00; |
| |
| return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN, |
| sizeof(cp), &cp, |
| HCI_EV_CONN_COMPLETE, |
| conn->conn_timeout, NULL); |
| } |
| |
| int hci_connect_acl_sync(struct hci_dev *hdev, struct hci_conn *conn) |
| { |
| return hci_cmd_sync_queue_once(hdev, hci_acl_create_conn_sync, conn, |
| NULL); |
| } |
| |
| static void create_le_conn_complete(struct hci_dev *hdev, void *data, int err) |
| { |
| struct hci_conn *conn = data; |
| |
| bt_dev_dbg(hdev, "err %d", err); |
| |
| if (err == -ECANCELED) |
| return; |
| |
| hci_dev_lock(hdev); |
| |
| if (!hci_conn_valid(hdev, conn)) |
| goto done; |
| |
| if (!err) { |
| hci_connect_le_scan_cleanup(conn, 0x00); |
| goto done; |
| } |
| |
| /* Check if connection is still pending */ |
| if (conn != hci_lookup_le_connect(hdev)) |
| goto done; |
| |
| /* Flush to make sure we send create conn cancel command if needed */ |
| flush_delayed_work(&conn->le_conn_timeout); |
| hci_conn_failed(conn, bt_status(err)); |
| |
| done: |
| hci_dev_unlock(hdev); |
| } |
| |
| int hci_connect_le_sync(struct hci_dev *hdev, struct hci_conn *conn) |
| { |
| return hci_cmd_sync_queue_once(hdev, hci_le_create_conn_sync, conn, |
| create_le_conn_complete); |
| } |
| |
| int hci_cancel_connect_sync(struct hci_dev *hdev, struct hci_conn *conn) |
| { |
| if (conn->state != BT_OPEN) |
| return -EINVAL; |
| |
| switch (conn->type) { |
| case ACL_LINK: |
| return !hci_cmd_sync_dequeue_once(hdev, |
| hci_acl_create_conn_sync, |
| conn, NULL); |
| case LE_LINK: |
| return !hci_cmd_sync_dequeue_once(hdev, hci_le_create_conn_sync, |
| conn, create_le_conn_complete); |
| } |
| |
| return -ENOENT; |
| } |