| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 2007 MIPS Technologies, Inc. |
| * Copyright (C) 2007 Ralf Baechle <ralf@linux-mips.org> |
| */ |
| #include <linux/clockchips.h> |
| #include <linux/interrupt.h> |
| #include <linux/cpufreq.h> |
| #include <linux/percpu.h> |
| #include <linux/smp.h> |
| #include <linux/irq.h> |
| |
| #include <asm/time.h> |
| #include <asm/cevt-r4k.h> |
| |
| static int mips_next_event(unsigned long delta, |
| struct clock_event_device *evt) |
| { |
| unsigned int cnt; |
| int res; |
| |
| cnt = read_c0_count(); |
| cnt += delta; |
| write_c0_compare(cnt); |
| res = ((int)(read_c0_count() - cnt) >= 0) ? -ETIME : 0; |
| return res; |
| } |
| |
| /** |
| * calculate_min_delta() - Calculate a good minimum delta for mips_next_event(). |
| * |
| * Running under virtualisation can introduce overhead into mips_next_event() in |
| * the form of hypervisor emulation of CP0_Count/CP0_Compare registers, |
| * potentially with an unnatural frequency, which makes a fixed min_delta_ns |
| * value inappropriate as it may be too small. |
| * |
| * It can also introduce occasional latency from the guest being descheduled. |
| * |
| * This function calculates a good minimum delta based roughly on the 75th |
| * percentile of the time taken to do the mips_next_event() sequence, in order |
| * to handle potentially higher overhead while also eliminating outliers due to |
| * unpredictable hypervisor latency (which can be handled by retries). |
| * |
| * Return: An appropriate minimum delta for the clock event device. |
| */ |
| static unsigned int calculate_min_delta(void) |
| { |
| unsigned int cnt, i, j, k, l; |
| unsigned int buf1[4], buf2[3]; |
| unsigned int min_delta; |
| |
| /* |
| * Calculate the median of 5 75th percentiles of 5 samples of how long |
| * it takes to set CP0_Compare = CP0_Count + delta. |
| */ |
| for (i = 0; i < 5; ++i) { |
| for (j = 0; j < 5; ++j) { |
| /* |
| * This is like the code in mips_next_event(), and |
| * directly measures the borderline "safe" delta. |
| */ |
| cnt = read_c0_count(); |
| write_c0_compare(cnt); |
| cnt = read_c0_count() - cnt; |
| |
| /* Sorted insert into buf1 */ |
| for (k = 0; k < j; ++k) { |
| if (cnt < buf1[k]) { |
| l = min_t(unsigned int, |
| j, ARRAY_SIZE(buf1) - 1); |
| for (; l > k; --l) |
| buf1[l] = buf1[l - 1]; |
| break; |
| } |
| } |
| if (k < ARRAY_SIZE(buf1)) |
| buf1[k] = cnt; |
| } |
| |
| /* Sorted insert of 75th percentile into buf2 */ |
| for (k = 0; k < i && k < ARRAY_SIZE(buf2); ++k) { |
| if (buf1[ARRAY_SIZE(buf1) - 1] < buf2[k]) { |
| l = min_t(unsigned int, |
| i, ARRAY_SIZE(buf2) - 1); |
| for (; l > k; --l) |
| buf2[l] = buf2[l - 1]; |
| break; |
| } |
| } |
| if (k < ARRAY_SIZE(buf2)) |
| buf2[k] = buf1[ARRAY_SIZE(buf1) - 1]; |
| } |
| |
| /* Use 2 * median of 75th percentiles */ |
| min_delta = buf2[ARRAY_SIZE(buf2) - 1] * 2; |
| |
| /* Don't go too low */ |
| if (min_delta < 0x300) |
| min_delta = 0x300; |
| |
| pr_debug("%s: median 75th percentile=%#x, min_delta=%#x\n", |
| __func__, buf2[ARRAY_SIZE(buf2) - 1], min_delta); |
| return min_delta; |
| } |
| |
| DEFINE_PER_CPU(struct clock_event_device, mips_clockevent_device); |
| int cp0_timer_irq_installed; |
| |
| /* |
| * Possibly handle a performance counter interrupt. |
| * Return true if the timer interrupt should not be checked |
| */ |
| static inline int handle_perf_irq(int r2) |
| { |
| /* |
| * The performance counter overflow interrupt may be shared with the |
| * timer interrupt (cp0_perfcount_irq < 0). If it is and a |
| * performance counter has overflowed (perf_irq() == IRQ_HANDLED) |
| * and we can't reliably determine if a counter interrupt has also |
| * happened (!r2) then don't check for a timer interrupt. |
| */ |
| return (cp0_perfcount_irq < 0) && |
| perf_irq() == IRQ_HANDLED && |
| !r2; |
| } |
| |
| irqreturn_t c0_compare_interrupt(int irq, void *dev_id) |
| { |
| const int r2 = cpu_has_mips_r2_r6; |
| struct clock_event_device *cd; |
| int cpu = smp_processor_id(); |
| |
| /* |
| * Suckage alert: |
| * Before R2 of the architecture there was no way to see if a |
| * performance counter interrupt was pending, so we have to run |
| * the performance counter interrupt handler anyway. |
| */ |
| if (handle_perf_irq(r2)) |
| return IRQ_HANDLED; |
| |
| /* |
| * The same applies to performance counter interrupts. But with the |
| * above we now know that the reason we got here must be a timer |
| * interrupt. Being the paranoiacs we are we check anyway. |
| */ |
| if (!r2 || (read_c0_cause() & CAUSEF_TI)) { |
| /* Clear Count/Compare Interrupt */ |
| write_c0_compare(read_c0_compare()); |
| cd = &per_cpu(mips_clockevent_device, cpu); |
| cd->event_handler(cd); |
| |
| return IRQ_HANDLED; |
| } |
| |
| return IRQ_NONE; |
| } |
| |
| struct irqaction c0_compare_irqaction = { |
| .handler = c0_compare_interrupt, |
| /* |
| * IRQF_SHARED: The timer interrupt may be shared with other interrupts |
| * such as perf counter and FDC interrupts. |
| */ |
| .flags = IRQF_PERCPU | IRQF_TIMER | IRQF_SHARED, |
| .name = "timer", |
| }; |
| |
| |
| void mips_event_handler(struct clock_event_device *dev) |
| { |
| } |
| |
| /* |
| * FIXME: This doesn't hold for the relocated E9000 compare interrupt. |
| */ |
| static int c0_compare_int_pending(void) |
| { |
| /* When cpu_has_mips_r2, this checks Cause.TI instead of Cause.IP7 */ |
| return (read_c0_cause() >> cp0_compare_irq_shift) & (1ul << CAUSEB_IP); |
| } |
| |
| /* |
| * Compare interrupt can be routed and latched outside the core, |
| * so wait up to worst case number of cycle counter ticks for timer interrupt |
| * changes to propagate to the cause register. |
| */ |
| #define COMPARE_INT_SEEN_TICKS 50 |
| |
| int c0_compare_int_usable(void) |
| { |
| unsigned int delta; |
| unsigned int cnt; |
| |
| /* |
| * IP7 already pending? Try to clear it by acking the timer. |
| */ |
| if (c0_compare_int_pending()) { |
| cnt = read_c0_count(); |
| write_c0_compare(cnt - 1); |
| back_to_back_c0_hazard(); |
| while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS)) |
| if (!c0_compare_int_pending()) |
| break; |
| if (c0_compare_int_pending()) |
| return 0; |
| } |
| |
| for (delta = 0x10; delta <= 0x400000; delta <<= 1) { |
| cnt = read_c0_count(); |
| cnt += delta; |
| write_c0_compare(cnt); |
| back_to_back_c0_hazard(); |
| if ((int)(read_c0_count() - cnt) < 0) |
| break; |
| /* increase delta if the timer was already expired */ |
| } |
| |
| while ((int)(read_c0_count() - cnt) <= 0) |
| ; /* Wait for expiry */ |
| |
| while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS)) |
| if (c0_compare_int_pending()) |
| break; |
| if (!c0_compare_int_pending()) |
| return 0; |
| cnt = read_c0_count(); |
| write_c0_compare(cnt - 1); |
| back_to_back_c0_hazard(); |
| while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS)) |
| if (!c0_compare_int_pending()) |
| break; |
| if (c0_compare_int_pending()) |
| return 0; |
| |
| /* |
| * Feels like a real count / compare timer. |
| */ |
| return 1; |
| } |
| |
| unsigned int __weak get_c0_compare_int(void) |
| { |
| return MIPS_CPU_IRQ_BASE + cp0_compare_irq; |
| } |
| |
| #ifdef CONFIG_CPU_FREQ |
| |
| static unsigned long mips_ref_freq; |
| |
| static int r4k_cpufreq_callback(struct notifier_block *nb, |
| unsigned long val, void *data) |
| { |
| struct cpufreq_freqs *freq = data; |
| struct clock_event_device *cd; |
| unsigned long rate; |
| int cpu; |
| |
| if (!mips_ref_freq) |
| mips_ref_freq = freq->old; |
| |
| if (val == CPUFREQ_POSTCHANGE) { |
| rate = cpufreq_scale(mips_hpt_frequency, mips_ref_freq, |
| freq->new); |
| |
| for_each_cpu(cpu, freq->policy->cpus) { |
| cd = &per_cpu(mips_clockevent_device, cpu); |
| |
| clockevents_update_freq(cd, rate); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static struct notifier_block r4k_cpufreq_notifier = { |
| .notifier_call = r4k_cpufreq_callback, |
| }; |
| |
| static int __init r4k_register_cpufreq_notifier(void) |
| { |
| return cpufreq_register_notifier(&r4k_cpufreq_notifier, |
| CPUFREQ_TRANSITION_NOTIFIER); |
| |
| } |
| core_initcall(r4k_register_cpufreq_notifier); |
| |
| #endif /* !CONFIG_CPU_FREQ */ |
| |
| int r4k_clockevent_init(void) |
| { |
| unsigned long flags = IRQF_PERCPU | IRQF_TIMER | IRQF_SHARED; |
| unsigned int cpu = smp_processor_id(); |
| struct clock_event_device *cd; |
| unsigned int irq, min_delta; |
| |
| if (!cpu_has_counter || !mips_hpt_frequency) |
| return -ENXIO; |
| |
| if (!c0_compare_int_usable()) |
| return -ENXIO; |
| |
| /* |
| * With vectored interrupts things are getting platform specific. |
| * get_c0_compare_int is a hook to allow a platform to return the |
| * interrupt number of its liking. |
| */ |
| irq = get_c0_compare_int(); |
| |
| cd = &per_cpu(mips_clockevent_device, cpu); |
| |
| cd->name = "MIPS"; |
| cd->features = CLOCK_EVT_FEAT_ONESHOT | |
| CLOCK_EVT_FEAT_C3STOP | |
| CLOCK_EVT_FEAT_PERCPU; |
| |
| min_delta = calculate_min_delta(); |
| |
| cd->rating = 300; |
| cd->irq = irq; |
| cd->cpumask = cpumask_of(cpu); |
| cd->set_next_event = mips_next_event; |
| cd->event_handler = mips_event_handler; |
| |
| clockevents_config_and_register(cd, mips_hpt_frequency, min_delta, 0x7fffffff); |
| |
| if (cp0_timer_irq_installed) |
| return 0; |
| |
| cp0_timer_irq_installed = 1; |
| |
| if (request_irq(irq, c0_compare_interrupt, flags, "timer", |
| c0_compare_interrupt)) |
| pr_err("Failed to request irq %d (timer)\n", irq); |
| |
| return 0; |
| } |
| |