| #ifndef _ASM_WORD_AT_A_TIME_H |
| #define _ASM_WORD_AT_A_TIME_H |
| |
| /* |
| * Word-at-a-time interfaces for PowerPC. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <asm/asm-compat.h> |
| #include <asm/extable.h> |
| |
| #ifdef __BIG_ENDIAN__ |
| |
| struct word_at_a_time { |
| const unsigned long high_bits, low_bits; |
| }; |
| |
| #define WORD_AT_A_TIME_CONSTANTS { REPEAT_BYTE(0xfe) + 1, REPEAT_BYTE(0x7f) } |
| |
| /* Bit set in the bytes that have a zero */ |
| static inline long prep_zero_mask(unsigned long val, unsigned long rhs, const struct word_at_a_time *c) |
| { |
| unsigned long mask = (val & c->low_bits) + c->low_bits; |
| return ~(mask | rhs); |
| } |
| |
| #define create_zero_mask(mask) (mask) |
| |
| static inline long find_zero(unsigned long mask) |
| { |
| long leading_zero_bits; |
| |
| asm (PPC_CNTLZL "%0,%1" : "=r" (leading_zero_bits) : "r" (mask)); |
| return leading_zero_bits >> 3; |
| } |
| |
| static inline unsigned long has_zero(unsigned long val, unsigned long *data, const struct word_at_a_time *c) |
| { |
| unsigned long rhs = val | c->low_bits; |
| *data = rhs; |
| return (val + c->high_bits) & ~rhs; |
| } |
| |
| static inline unsigned long zero_bytemask(unsigned long mask) |
| { |
| return ~1ul << __fls(mask); |
| } |
| |
| #else |
| |
| #ifdef CONFIG_64BIT |
| |
| /* unused */ |
| struct word_at_a_time { |
| }; |
| |
| #define WORD_AT_A_TIME_CONSTANTS { } |
| |
| /* This will give us 0xff for a NULL char and 0x00 elsewhere */ |
| static inline unsigned long has_zero(unsigned long a, unsigned long *bits, const struct word_at_a_time *c) |
| { |
| unsigned long ret; |
| unsigned long zero = 0; |
| |
| asm("cmpb %0,%1,%2" : "=r" (ret) : "r" (a), "r" (zero)); |
| *bits = ret; |
| |
| return ret; |
| } |
| |
| static inline unsigned long prep_zero_mask(unsigned long a, unsigned long bits, const struct word_at_a_time *c) |
| { |
| return bits; |
| } |
| |
| /* Alan Modra's little-endian strlen tail for 64-bit */ |
| static inline unsigned long create_zero_mask(unsigned long bits) |
| { |
| unsigned long leading_zero_bits; |
| long trailing_zero_bit_mask; |
| |
| asm("addi %1,%2,-1\n\t" |
| "andc %1,%1,%2\n\t" |
| "popcntd %0,%1" |
| : "=r" (leading_zero_bits), "=&r" (trailing_zero_bit_mask) |
| : "b" (bits)); |
| |
| return leading_zero_bits; |
| } |
| |
| static inline unsigned long find_zero(unsigned long mask) |
| { |
| return mask >> 3; |
| } |
| |
| /* This assumes that we never ask for an all 1s bitmask */ |
| static inline unsigned long zero_bytemask(unsigned long mask) |
| { |
| return (1UL << mask) - 1; |
| } |
| |
| #else /* 32-bit case */ |
| |
| struct word_at_a_time { |
| const unsigned long one_bits, high_bits; |
| }; |
| |
| #define WORD_AT_A_TIME_CONSTANTS { REPEAT_BYTE(0x01), REPEAT_BYTE(0x80) } |
| |
| /* |
| * This is largely generic for little-endian machines, but the |
| * optimal byte mask counting is probably going to be something |
| * that is architecture-specific. If you have a reliably fast |
| * bit count instruction, that might be better than the multiply |
| * and shift, for example. |
| */ |
| |
| /* Carl Chatfield / Jan Achrenius G+ version for 32-bit */ |
| static inline long count_masked_bytes(long mask) |
| { |
| /* (000000 0000ff 00ffff ffffff) -> ( 1 1 2 3 ) */ |
| long a = (0x0ff0001+mask) >> 23; |
| /* Fix the 1 for 00 case */ |
| return a & mask; |
| } |
| |
| static inline unsigned long create_zero_mask(unsigned long bits) |
| { |
| bits = (bits - 1) & ~bits; |
| return bits >> 7; |
| } |
| |
| static inline unsigned long find_zero(unsigned long mask) |
| { |
| return count_masked_bytes(mask); |
| } |
| |
| /* Return nonzero if it has a zero */ |
| static inline unsigned long has_zero(unsigned long a, unsigned long *bits, const struct word_at_a_time *c) |
| { |
| unsigned long mask = ((a - c->one_bits) & ~a) & c->high_bits; |
| *bits = mask; |
| return mask; |
| } |
| |
| static inline unsigned long prep_zero_mask(unsigned long a, unsigned long bits, const struct word_at_a_time *c) |
| { |
| return bits; |
| } |
| |
| /* The mask we created is directly usable as a bytemask */ |
| #define zero_bytemask(mask) (mask) |
| |
| #endif /* CONFIG_64BIT */ |
| |
| #endif /* __BIG_ENDIAN__ */ |
| |
| /* |
| * We use load_unaligned_zero() in a selftest, which builds a userspace |
| * program. Some linker scripts seem to discard the .fixup section, so allow |
| * the test code to use a different section name. |
| */ |
| #ifndef FIXUP_SECTION |
| #define FIXUP_SECTION ".fixup" |
| #endif |
| |
| static inline unsigned long load_unaligned_zeropad(const void *addr) |
| { |
| unsigned long ret, offset, tmp; |
| |
| asm( |
| "1: " PPC_LL "%[ret], 0(%[addr])\n" |
| "2:\n" |
| ".section " FIXUP_SECTION ",\"ax\"\n" |
| "3: " |
| #ifdef __powerpc64__ |
| "clrrdi %[tmp], %[addr], 3\n\t" |
| "clrlsldi %[offset], %[addr], 61, 3\n\t" |
| "ld %[ret], 0(%[tmp])\n\t" |
| #ifdef __BIG_ENDIAN__ |
| "sld %[ret], %[ret], %[offset]\n\t" |
| #else |
| "srd %[ret], %[ret], %[offset]\n\t" |
| #endif |
| #else |
| "clrrwi %[tmp], %[addr], 2\n\t" |
| "clrlslwi %[offset], %[addr], 30, 3\n\t" |
| "lwz %[ret], 0(%[tmp])\n\t" |
| #ifdef __BIG_ENDIAN__ |
| "slw %[ret], %[ret], %[offset]\n\t" |
| #else |
| "srw %[ret], %[ret], %[offset]\n\t" |
| #endif |
| #endif |
| "b 2b\n" |
| ".previous\n" |
| EX_TABLE(1b, 3b) |
| : [tmp] "=&b" (tmp), [offset] "=&r" (offset), [ret] "=&r" (ret) |
| : [addr] "b" (addr), "m" (*(unsigned long *)addr)); |
| |
| return ret; |
| } |
| |
| #undef FIXUP_SECTION |
| |
| #endif /* _ASM_WORD_AT_A_TIME_H */ |