blob: 54f61c0ff4420ecd1648ba3c2a86cb9752734c6b [file] [log] [blame]
NILFS2
------
NILFS2 is a log-structured file system (LFS) supporting continuous
snapshotting. In addition to versioning capability of the entire file
system, users can even restore files mistakenly overwritten or
destroyed just a few seconds ago. Since NILFS2 can keep consistency
like conventional LFS, it achieves quick recovery after system
crashes.
NILFS2 creates a number of checkpoints every few seconds or per
synchronous write basis (unless there is no change). Users can select
significant versions among continuously created checkpoints, and can
change them into snapshots which will be preserved until they are
changed back to checkpoints.
There is no limit on the number of snapshots until the volume gets
full. Each snapshot is mountable as a read-only file system
concurrently with its writable mount, and this feature is convenient
for online backup.
The userland tools are included in nilfs-utils package, which is
available from the following download page. At least "mkfs.nilfs2",
"mount.nilfs2", "umount.nilfs2", and "nilfs_cleanerd" (so called
cleaner or garbage collector) are required. Details on the tools are
described in the man pages included in the package.
Project web page: http://www.nilfs.org/en/
Download page: http://www.nilfs.org/en/download.html
Git tree web page: http://www.nilfs.org/git/
List info: http://vger.kernel.org/vger-lists.html#linux-nilfs
Caveats
=======
Features which NILFS2 does not support yet:
- atime
- extended attributes
- POSIX ACLs
- quotas
- fsck
- resize
- defragmentation
Mount options
=============
NILFS2 supports the following mount options:
(*) == default
barrier(*) This enables/disables the use of write barriers. This
nobarrier requires an IO stack which can support barriers, and
if nilfs gets an error on a barrier write, it will
disable again with a warning.
errors=continue Keep going on a filesystem error.
errors=remount-ro(*) Remount the filesystem read-only on an error.
errors=panic Panic and halt the machine if an error occurs.
cp=n Specify the checkpoint-number of the snapshot to be
mounted. Checkpoints and snapshots are listed by lscp
user command. Only the checkpoints marked as snapshot
are mountable with this option. Snapshot is read-only,
so a read-only mount option must be specified together.
order=relaxed(*) Apply relaxed order semantics that allows modified data
blocks to be written to disk without making a
checkpoint if no metadata update is going. This mode
is equivalent to the ordered data mode of the ext3
filesystem except for the updates on data blocks still
conserve atomicity. This will improve synchronous
write performance for overwriting.
order=strict Apply strict in-order semantics that preserves sequence
of all file operations including overwriting of data
blocks. That means, it is guaranteed that no
overtaking of events occurs in the recovered file
system after a crash.
norecovery Disable recovery of the filesystem on mount.
This disables every write access on the device for
read-only mounts or snapshots. This option will fail
for r/w mounts on an unclean volume.
discard Issue discard/TRIM commands to the underlying block
device when blocks are freed. This is useful for SSD
devices and sparse/thinly-provisioned LUNs.
NILFS2 usage
============
To use nilfs2 as a local file system, simply:
# mkfs -t nilfs2 /dev/block_device
# mount -t nilfs2 /dev/block_device /dir
This will also invoke the cleaner through the mount helper program
(mount.nilfs2).
Checkpoints and snapshots are managed by the following commands.
Their manpages are included in the nilfs-utils package above.
lscp list checkpoints or snapshots.
mkcp make a checkpoint or a snapshot.
chcp change an existing checkpoint to a snapshot or vice versa.
rmcp invalidate specified checkpoint(s).
To mount a snapshot,
# mount -t nilfs2 -r -o cp=<cno> /dev/block_device /snap_dir
where <cno> is the checkpoint number of the snapshot.
To unmount the NILFS2 mount point or snapshot, simply:
# umount /dir
Then, the cleaner daemon is automatically shut down by the umount
helper program (umount.nilfs2).
Disk format
===========
A nilfs2 volume is equally divided into a number of segments except
for the super block (SB) and segment #0. A segment is the container
of logs. Each log is composed of summary information blocks, payload
blocks, and an optional super root block (SR):
______________________________________________________
| |SB| | Segment | Segment | Segment | ... | Segment | |
|_|__|_|____0____|____1____|____2____|_____|____N____|_|
0 +1K +4K +8M +16M +24M +(8MB x N)
. . (Typical offsets for 4KB-block)
. .
.______________________.
| log | log |... | log |
|__1__|__2__|____|__m__|
. .
. .
. .
.______________________________.
| Summary | Payload blocks |SR|
|_blocks__|_________________|__|
The payload blocks are organized per file, and each file consists of
data blocks and B-tree node blocks:
|<--- File-A --->|<--- File-B --->|
_______________________________________________________________
| Data blocks | B-tree blocks | Data blocks | B-tree blocks | ...
_|_____________|_______________|_____________|_______________|_
Since only the modified blocks are written in the log, it may have
files without data blocks or B-tree node blocks.
The organization of the blocks is recorded in the summary information
blocks, which contains a header structure (nilfs_segment_summary), per
file structures (nilfs_finfo), and per block structures (nilfs_binfo):
_________________________________________________________________________
| Summary | finfo | binfo | ... | binfo | finfo | binfo | ... | binfo |...
|_blocks__|___A___|_(A,1)_|_____|(A,Na)_|___B___|_(B,1)_|_____|(B,Nb)_|___
The logs include regular files, directory files, symbolic link files
and several meta data files. The mata data files are the files used
to maintain file system meta data. The current version of NILFS2 uses
the following meta data files:
1) Inode file (ifile) -- Stores on-disk inodes
2) Checkpoint file (cpfile) -- Stores checkpoints
3) Segment usage file (sufile) -- Stores allocation state of segments
4) Data address translation file -- Maps virtual block numbers to usual
(DAT) block numbers. This file serves to
make on-disk blocks relocatable.
The following figure shows a typical organization of the logs:
_________________________________________________________________________
| Summary | regular file | file | ... | ifile | cpfile | sufile | DAT |SR|
|_blocks__|_or_directory_|_______|_____|_______|________|________|_____|__|
To stride over segment boundaries, this sequence of files may be split
into multiple logs. The sequence of logs that should be treated as
logically one log, is delimited with flags marked in the segment
summary. The recovery code of nilfs2 looks this boundary information
to ensure atomicity of updates.
The super root block is inserted for every checkpoints. It includes
three special inodes, inodes for the DAT, cpfile, and sufile. Inodes
of regular files, directories, symlinks and other special files, are
included in the ifile. The inode of ifile itself is included in the
corresponding checkpoint entry in the cpfile. Thus, the hierarchy
among NILFS2 files can be depicted as follows:
Super block (SB)
|
v
Super root block (the latest cno=xx)
|-- DAT
|-- sufile
`-- cpfile
|-- ifile (cno=c1)
|-- ifile (cno=c2) ---- file (ino=i1)
: : |-- file (ino=i2)
`-- ifile (cno=xx) |-- file (ino=i3)
: :
`-- file (ino=yy)
( regular file, directory, or symlink )
For detail on the format of each file, please see include/linux/nilfs2_fs.h.