blob: ebdb43a8daeff7c7d0636edb63e38944a81bc156 [file] [log] [blame]
/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/gfp.h>
#include "smumgr.h"
#include "tonga_smumgr.h"
#include "pp_debug.h"
#include "smu_ucode_xfer_vi.h"
#include "tonga_ppsmc.h"
#include "smu/smu_7_1_2_d.h"
#include "smu/smu_7_1_2_sh_mask.h"
#include "cgs_common.h"
#define TONGA_SMC_SIZE 0x20000
#define BUFFER_SIZE 80000
#define MAX_STRING_SIZE 15
#define BUFFER_SIZETWO 131072 /*128 *1024*/
/**
* Set the address for reading/writing the SMC SRAM space.
* @param smumgr the address of the powerplay hardware manager.
* @param smcAddress the address in the SMC RAM to access.
*/
static int tonga_set_smc_sram_address(struct pp_smumgr *smumgr,
uint32_t smcAddress, uint32_t limit)
{
if (smumgr == NULL || smumgr->device == NULL)
return -EINVAL;
PP_ASSERT_WITH_CODE((0 == (3 & smcAddress)),
"SMC address must be 4 byte aligned.",
return -1;);
PP_ASSERT_WITH_CODE((limit > (smcAddress + 3)),
"SMC address is beyond the SMC RAM area.",
return -1;);
cgs_write_register(smumgr->device, mmSMC_IND_INDEX_0, smcAddress);
SMUM_WRITE_FIELD(smumgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_11, 0);
return 0;
}
/**
* Copy bytes from an array into the SMC RAM space.
*
* @param smumgr the address of the powerplay SMU manager.
* @param smcStartAddress the start address in the SMC RAM to copy bytes to.
* @param src the byte array to copy the bytes from.
* @param byteCount the number of bytes to copy.
*/
int tonga_copy_bytes_to_smc(struct pp_smumgr *smumgr,
uint32_t smcStartAddress, const uint8_t *src,
uint32_t byteCount, uint32_t limit)
{
uint32_t addr;
uint32_t data, orig_data;
int result = 0;
uint32_t extra_shift;
if (smumgr == NULL || smumgr->device == NULL)
return -EINVAL;
PP_ASSERT_WITH_CODE((0 == (3 & smcStartAddress)),
"SMC address must be 4 byte aligned.",
return 0;);
PP_ASSERT_WITH_CODE((limit > (smcStartAddress + byteCount)),
"SMC address is beyond the SMC RAM area.",
return 0;);
addr = smcStartAddress;
while (byteCount >= 4) {
/*
* Bytes are written into the
* SMC address space with the MSB first
*/
data = (src[0] << 24) + (src[1] << 16) + (src[2] << 8) + src[3];
result = tonga_set_smc_sram_address(smumgr, addr, limit);
if (result)
goto out;
cgs_write_register(smumgr->device, mmSMC_IND_DATA_0, data);
src += 4;
byteCount -= 4;
addr += 4;
}
if (0 != byteCount) {
/* Now write odd bytes left, do a read modify write cycle */
data = 0;
result = tonga_set_smc_sram_address(smumgr, addr, limit);
if (result)
goto out;
orig_data = cgs_read_register(smumgr->device,
mmSMC_IND_DATA_0);
extra_shift = 8 * (4 - byteCount);
while (byteCount > 0) {
data = (data << 8) + *src++;
byteCount--;
}
data <<= extra_shift;
data |= (orig_data & ~((~0UL) << extra_shift));
result = tonga_set_smc_sram_address(smumgr, addr, limit);
if (result)
goto out;
cgs_write_register(smumgr->device, mmSMC_IND_DATA_0, data);
}
out:
return result;
}
int tonga_program_jump_on_start(struct pp_smumgr *smumgr)
{
static unsigned char pData[] = { 0xE0, 0x00, 0x80, 0x40 };
tonga_copy_bytes_to_smc(smumgr, 0x0, pData, 4, sizeof(pData)+1);
return 0;
}
/**
* Return if the SMC is currently running.
*
* @param smumgr the address of the powerplay hardware manager.
*/
static int tonga_is_smc_ram_running(struct pp_smumgr *smumgr)
{
return ((0 == SMUM_READ_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
SMC_SYSCON_CLOCK_CNTL_0, ck_disable))
&& (0x20100 <= cgs_read_ind_register(smumgr->device,
CGS_IND_REG__SMC, ixSMC_PC_C)));
}
static int tonga_send_msg_to_smc_offset(struct pp_smumgr *smumgr)
{
if (smumgr == NULL || smumgr->device == NULL)
return -EINVAL;
SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);
cgs_write_register(smumgr->device, mmSMC_MSG_ARG_0, 0x20000);
cgs_write_register(smumgr->device, mmSMC_MESSAGE_0, PPSMC_MSG_Test);
SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);
return 0;
}
/**
* Send a message to the SMC, and wait for its response.
*
* @param smumgr the address of the powerplay hardware manager.
* @param msg the message to send.
* @return The response that came from the SMC.
*/
static int tonga_send_msg_to_smc(struct pp_smumgr *smumgr, uint16_t msg)
{
if (smumgr == NULL || smumgr->device == NULL)
return -EINVAL;
if (!tonga_is_smc_ram_running(smumgr))
return -1;
SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);
PP_ASSERT_WITH_CODE(
1 == SMUM_READ_FIELD(smumgr->device, SMC_RESP_0, SMC_RESP),
"Failed to send Previous Message.",
);
cgs_write_register(smumgr->device, mmSMC_MESSAGE_0, msg);
SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);
PP_ASSERT_WITH_CODE(
1 == SMUM_READ_FIELD(smumgr->device, SMC_RESP_0, SMC_RESP),
"Failed to send Message.",
);
return 0;
}
/*
* Send a message to the SMC, and do not wait for its response.
*
* @param smumgr the address of the powerplay hardware manager.
* @param msg the message to send.
* @return The response that came from the SMC.
*/
static int tonga_send_msg_to_smc_without_waiting
(struct pp_smumgr *smumgr, uint16_t msg)
{
if (smumgr == NULL || smumgr->device == NULL)
return -EINVAL;
SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);
PP_ASSERT_WITH_CODE(
1 == SMUM_READ_FIELD(smumgr->device, SMC_RESP_0, SMC_RESP),
"Failed to send Previous Message.",
);
cgs_write_register(smumgr->device, mmSMC_MESSAGE_0, msg);
return 0;
}
/*
* Send a message to the SMC with parameter
*
* @param smumgr: the address of the powerplay hardware manager.
* @param msg: the message to send.
* @param parameter: the parameter to send
* @return The response that came from the SMC.
*/
static int tonga_send_msg_to_smc_with_parameter(struct pp_smumgr *smumgr,
uint16_t msg, uint32_t parameter)
{
if (smumgr == NULL || smumgr->device == NULL)
return -EINVAL;
if (!tonga_is_smc_ram_running(smumgr))
return PPSMC_Result_Failed;
SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);
cgs_write_register(smumgr->device, mmSMC_MSG_ARG_0, parameter);
return tonga_send_msg_to_smc(smumgr, msg);
}
/*
* Send a message to the SMC with parameter, do not wait for response
*
* @param smumgr: the address of the powerplay hardware manager.
* @param msg: the message to send.
* @param parameter: the parameter to send
* @return The response that came from the SMC.
*/
static int tonga_send_msg_to_smc_with_parameter_without_waiting(
struct pp_smumgr *smumgr,
uint16_t msg, uint32_t parameter)
{
if (smumgr == NULL || smumgr->device == NULL)
return -EINVAL;
SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);
cgs_write_register(smumgr->device, mmSMC_MSG_ARG_0, parameter);
return tonga_send_msg_to_smc_without_waiting(smumgr, msg);
}
/*
* Read a 32bit value from the SMC SRAM space.
* ALL PARAMETERS ARE IN HOST BYTE ORDER.
* @param smumgr the address of the powerplay hardware manager.
* @param smcAddress the address in the SMC RAM to access.
* @param value and output parameter for the data read from the SMC SRAM.
*/
int tonga_read_smc_sram_dword(struct pp_smumgr *smumgr,
uint32_t smcAddress, uint32_t *value,
uint32_t limit)
{
int result;
result = tonga_set_smc_sram_address(smumgr, smcAddress, limit);
if (0 != result)
return result;
*value = cgs_read_register(smumgr->device, mmSMC_IND_DATA_0);
return 0;
}
/*
* Write a 32bit value to the SMC SRAM space.
* ALL PARAMETERS ARE IN HOST BYTE ORDER.
* @param smumgr the address of the powerplay hardware manager.
* @param smcAddress the address in the SMC RAM to access.
* @param value to write to the SMC SRAM.
*/
int tonga_write_smc_sram_dword(struct pp_smumgr *smumgr,
uint32_t smcAddress, uint32_t value,
uint32_t limit)
{
int result;
result = tonga_set_smc_sram_address(smumgr, smcAddress, limit);
if (0 != result)
return result;
cgs_write_register(smumgr->device, mmSMC_IND_DATA_0, value);
return 0;
}
static int tonga_smu_fini(struct pp_smumgr *smumgr)
{
if (smumgr->backend != NULL) {
kfree(smumgr->backend);
smumgr->backend = NULL;
}
return 0;
}
static enum cgs_ucode_id tonga_convert_fw_type_to_cgs(uint32_t fw_type)
{
enum cgs_ucode_id result = CGS_UCODE_ID_MAXIMUM;
switch (fw_type) {
case UCODE_ID_SMU:
result = CGS_UCODE_ID_SMU;
break;
case UCODE_ID_SDMA0:
result = CGS_UCODE_ID_SDMA0;
break;
case UCODE_ID_SDMA1:
result = CGS_UCODE_ID_SDMA1;
break;
case UCODE_ID_CP_CE:
result = CGS_UCODE_ID_CP_CE;
break;
case UCODE_ID_CP_PFP:
result = CGS_UCODE_ID_CP_PFP;
break;
case UCODE_ID_CP_ME:
result = CGS_UCODE_ID_CP_ME;
break;
case UCODE_ID_CP_MEC:
result = CGS_UCODE_ID_CP_MEC;
break;
case UCODE_ID_CP_MEC_JT1:
result = CGS_UCODE_ID_CP_MEC_JT1;
break;
case UCODE_ID_CP_MEC_JT2:
result = CGS_UCODE_ID_CP_MEC_JT2;
break;
case UCODE_ID_RLC_G:
result = CGS_UCODE_ID_RLC_G;
break;
default:
break;
}
return result;
}
/**
* Convert the PPIRI firmware type to SMU type mask.
* For MEC, we need to check all MEC related type
*/
static uint16_t tonga_get_mask_for_firmware_type(uint16_t firmwareType)
{
uint16_t result = 0;
switch (firmwareType) {
case UCODE_ID_SDMA0:
result = UCODE_ID_SDMA0_MASK;
break;
case UCODE_ID_SDMA1:
result = UCODE_ID_SDMA1_MASK;
break;
case UCODE_ID_CP_CE:
result = UCODE_ID_CP_CE_MASK;
break;
case UCODE_ID_CP_PFP:
result = UCODE_ID_CP_PFP_MASK;
break;
case UCODE_ID_CP_ME:
result = UCODE_ID_CP_ME_MASK;
break;
case UCODE_ID_CP_MEC:
case UCODE_ID_CP_MEC_JT1:
case UCODE_ID_CP_MEC_JT2:
result = UCODE_ID_CP_MEC_MASK;
break;
case UCODE_ID_RLC_G:
result = UCODE_ID_RLC_G_MASK;
break;
default:
break;
}
return result;
}
/**
* Check if the FW has been loaded,
* SMU will not return if loading has not finished.
*/
static int tonga_check_fw_load_finish(struct pp_smumgr *smumgr, uint32_t fwType)
{
uint16_t fwMask = tonga_get_mask_for_firmware_type(fwType);
if (0 != SMUM_WAIT_VFPF_INDIRECT_REGISTER(smumgr, SMC_IND,
SOFT_REGISTERS_TABLE_28, fwMask, fwMask)) {
printk(KERN_ERR "[ powerplay ] check firmware loading failed\n");
return -EINVAL;
}
return 0;
}
/* Populate one firmware image to the data structure */
static int tonga_populate_single_firmware_entry(struct pp_smumgr *smumgr,
uint16_t firmware_type,
struct SMU_Entry *pentry)
{
int result;
struct cgs_firmware_info info = {0};
result = cgs_get_firmware_info(
smumgr->device,
tonga_convert_fw_type_to_cgs(firmware_type),
&info);
if (result == 0) {
pentry->version = 0;
pentry->id = (uint16_t)firmware_type;
pentry->image_addr_high = smu_upper_32_bits(info.mc_addr);
pentry->image_addr_low = smu_lower_32_bits(info.mc_addr);
pentry->meta_data_addr_high = 0;
pentry->meta_data_addr_low = 0;
pentry->data_size_byte = info.image_size;
pentry->num_register_entries = 0;
if (firmware_type == UCODE_ID_RLC_G)
pentry->flags = 1;
else
pentry->flags = 0;
} else {
return result;
}
return result;
}
static int tonga_request_smu_reload_fw(struct pp_smumgr *smumgr)
{
struct tonga_smumgr *tonga_smu =
(struct tonga_smumgr *)(smumgr->backend);
uint16_t fw_to_load;
int result = 0;
struct SMU_DRAMData_TOC *toc;
/**
* First time this gets called during SmuMgr init,
* we haven't processed SMU header file yet,
* so Soft Register Start offset is unknown.
* However, for this case, UcodeLoadStatus is already 0,
* so we can skip this if the Soft Registers Start offset is 0.
*/
cgs_write_ind_register(smumgr->device,
CGS_IND_REG__SMC, ixSOFT_REGISTERS_TABLE_28, 0);
tonga_send_msg_to_smc_with_parameter(smumgr,
PPSMC_MSG_SMU_DRAM_ADDR_HI,
tonga_smu->smu_buffer.mc_addr_high);
tonga_send_msg_to_smc_with_parameter(smumgr,
PPSMC_MSG_SMU_DRAM_ADDR_LO,
tonga_smu->smu_buffer.mc_addr_low);
toc = (struct SMU_DRAMData_TOC *)tonga_smu->pHeader;
toc->num_entries = 0;
toc->structure_version = 1;
PP_ASSERT_WITH_CODE(
0 == tonga_populate_single_firmware_entry(smumgr,
UCODE_ID_RLC_G,
&toc->entry[toc->num_entries++]),
"Failed to Get Firmware Entry.\n",
return -1);
PP_ASSERT_WITH_CODE(
0 == tonga_populate_single_firmware_entry(smumgr,
UCODE_ID_CP_CE,
&toc->entry[toc->num_entries++]),
"Failed to Get Firmware Entry.\n",
return -1);
PP_ASSERT_WITH_CODE(
0 == tonga_populate_single_firmware_entry
(smumgr, UCODE_ID_CP_PFP, &toc->entry[toc->num_entries++]),
"Failed to Get Firmware Entry.\n", return -1);
PP_ASSERT_WITH_CODE(
0 == tonga_populate_single_firmware_entry
(smumgr, UCODE_ID_CP_ME, &toc->entry[toc->num_entries++]),
"Failed to Get Firmware Entry.\n", return -1);
PP_ASSERT_WITH_CODE(
0 == tonga_populate_single_firmware_entry
(smumgr, UCODE_ID_CP_MEC, &toc->entry[toc->num_entries++]),
"Failed to Get Firmware Entry.\n", return -1);
PP_ASSERT_WITH_CODE(
0 == tonga_populate_single_firmware_entry
(smumgr, UCODE_ID_CP_MEC_JT1, &toc->entry[toc->num_entries++]),
"Failed to Get Firmware Entry.\n", return -1);
PP_ASSERT_WITH_CODE(
0 == tonga_populate_single_firmware_entry
(smumgr, UCODE_ID_CP_MEC_JT2, &toc->entry[toc->num_entries++]),
"Failed to Get Firmware Entry.\n", return -1);
PP_ASSERT_WITH_CODE(
0 == tonga_populate_single_firmware_entry
(smumgr, UCODE_ID_SDMA0, &toc->entry[toc->num_entries++]),
"Failed to Get Firmware Entry.\n", return -1);
PP_ASSERT_WITH_CODE(
0 == tonga_populate_single_firmware_entry
(smumgr, UCODE_ID_SDMA1, &toc->entry[toc->num_entries++]),
"Failed to Get Firmware Entry.\n", return -1);
tonga_send_msg_to_smc_with_parameter(smumgr,
PPSMC_MSG_DRV_DRAM_ADDR_HI,
tonga_smu->header_buffer.mc_addr_high);
tonga_send_msg_to_smc_with_parameter(smumgr,
PPSMC_MSG_DRV_DRAM_ADDR_LO,
tonga_smu->header_buffer.mc_addr_low);
fw_to_load = UCODE_ID_RLC_G_MASK
+ UCODE_ID_SDMA0_MASK
+ UCODE_ID_SDMA1_MASK
+ UCODE_ID_CP_CE_MASK
+ UCODE_ID_CP_ME_MASK
+ UCODE_ID_CP_PFP_MASK
+ UCODE_ID_CP_MEC_MASK;
PP_ASSERT_WITH_CODE(
0 == tonga_send_msg_to_smc_with_parameter_without_waiting(
smumgr, PPSMC_MSG_LoadUcodes, fw_to_load),
"Fail to Request SMU Load uCode", return 0);
return result;
}
static int tonga_request_smu_load_specific_fw(struct pp_smumgr *smumgr,
uint32_t firmwareType)
{
return 0;
}
/**
* Upload the SMC firmware to the SMC microcontroller.
*
* @param smumgr the address of the powerplay hardware manager.
* @param pFirmware the data structure containing the various sections of the firmware.
*/
static int tonga_smu_upload_firmware_image(struct pp_smumgr *smumgr)
{
const uint8_t *src;
uint32_t byte_count;
uint32_t *data;
struct cgs_firmware_info info = {0};
if (smumgr == NULL || smumgr->device == NULL)
return -EINVAL;
cgs_get_firmware_info(smumgr->device,
tonga_convert_fw_type_to_cgs(UCODE_ID_SMU), &info);
if (info.image_size & 3) {
printk(KERN_ERR "[ powerplay ] SMC ucode is not 4 bytes aligned\n");
return -EINVAL;
}
if (info.image_size > TONGA_SMC_SIZE) {
printk(KERN_ERR "[ powerplay ] SMC address is beyond the SMC RAM area\n");
return -EINVAL;
}
cgs_write_register(smumgr->device, mmSMC_IND_INDEX_0, 0x20000);
SMUM_WRITE_FIELD(smumgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1);
byte_count = info.image_size;
src = (const uint8_t *)info.kptr;
data = (uint32_t *)src;
for (; byte_count >= 4; data++, byte_count -= 4)
cgs_write_register(smumgr->device, mmSMC_IND_DATA_0, data[0]);
SMUM_WRITE_FIELD(smumgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
return 0;
}
static int tonga_start_in_protection_mode(struct pp_smumgr *smumgr)
{
int result;
/* Assert reset */
SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
SMC_SYSCON_RESET_CNTL, rst_reg, 1);
result = tonga_smu_upload_firmware_image(smumgr);
if (result)
return result;
/* Clear status */
cgs_write_ind_register(smumgr->device, CGS_IND_REG__SMC,
ixSMU_STATUS, 0);
/* Enable clock */
SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
/* De-assert reset */
SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
SMC_SYSCON_RESET_CNTL, rst_reg, 0);
/* Set SMU Auto Start */
SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
SMU_INPUT_DATA, AUTO_START, 1);
/* Clear firmware interrupt enable flag */
cgs_write_ind_register(smumgr->device, CGS_IND_REG__SMC,
ixFIRMWARE_FLAGS, 0);
SMUM_WAIT_VFPF_INDIRECT_FIELD(smumgr, SMC_IND,
RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1);
/**
* Call Test SMU message with 0x20000 offset to trigger SMU start
*/
tonga_send_msg_to_smc_offset(smumgr);
/* Wait for done bit to be set */
SMUM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(smumgr, SMC_IND,
SMU_STATUS, SMU_DONE, 0);
/* Check pass/failed indicator */
if (1 != SMUM_READ_VFPF_INDIRECT_FIELD(smumgr->device,
CGS_IND_REG__SMC, SMU_STATUS, SMU_PASS)) {
printk(KERN_ERR "[ powerplay ] SMU Firmware start failed\n");
return -EINVAL;
}
/* Wait for firmware to initialize */
SMUM_WAIT_VFPF_INDIRECT_FIELD(smumgr, SMC_IND,
FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
return 0;
}
static int tonga_start_in_non_protection_mode(struct pp_smumgr *smumgr)
{
int result = 0;
/* wait for smc boot up */
SMUM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(smumgr, SMC_IND,
RCU_UC_EVENTS, boot_seq_done, 0);
/*Clear firmware interrupt enable flag*/
cgs_write_ind_register(smumgr->device, CGS_IND_REG__SMC,
ixFIRMWARE_FLAGS, 0);
SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
SMC_SYSCON_RESET_CNTL, rst_reg, 1);
result = tonga_smu_upload_firmware_image(smumgr);
if (result != 0)
return result;
/* Set smc instruct start point at 0x0 */
tonga_program_jump_on_start(smumgr);
SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
/*De-assert reset*/
SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
SMC_SYSCON_RESET_CNTL, rst_reg, 0);
/* Wait for firmware to initialize */
SMUM_WAIT_VFPF_INDIRECT_FIELD(smumgr, SMC_IND,
FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
return result;
}
static int tonga_start_smu(struct pp_smumgr *smumgr)
{
int result;
/* Only start SMC if SMC RAM is not running */
if (!tonga_is_smc_ram_running(smumgr)) {
/*Check if SMU is running in protected mode*/
if (0 == SMUM_READ_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
SMU_FIRMWARE, SMU_MODE)) {
result = tonga_start_in_non_protection_mode(smumgr);
if (result)
return result;
} else {
result = tonga_start_in_protection_mode(smumgr);
if (result)
return result;
}
}
result = tonga_request_smu_reload_fw(smumgr);
return result;
}
/**
* Write a 32bit value to the SMC SRAM space.
* ALL PARAMETERS ARE IN HOST BYTE ORDER.
* @param smumgr the address of the powerplay hardware manager.
* @param smcAddress the address in the SMC RAM to access.
* @param value to write to the SMC SRAM.
*/
static int tonga_smu_init(struct pp_smumgr *smumgr)
{
struct tonga_smumgr *tonga_smu;
uint8_t *internal_buf;
uint64_t mc_addr = 0;
/* Allocate memory for backend private data */
tonga_smu = (struct tonga_smumgr *)(smumgr->backend);
tonga_smu->header_buffer.data_size =
((sizeof(struct SMU_DRAMData_TOC) / 4096) + 1) * 4096;
tonga_smu->smu_buffer.data_size = 200*4096;
smu_allocate_memory(smumgr->device,
tonga_smu->header_buffer.data_size,
CGS_GPU_MEM_TYPE__VISIBLE_CONTIG_FB,
PAGE_SIZE,
&mc_addr,
&tonga_smu->header_buffer.kaddr,
&tonga_smu->header_buffer.handle);
tonga_smu->pHeader = tonga_smu->header_buffer.kaddr;
tonga_smu->header_buffer.mc_addr_high = smu_upper_32_bits(mc_addr);
tonga_smu->header_buffer.mc_addr_low = smu_lower_32_bits(mc_addr);
PP_ASSERT_WITH_CODE((NULL != tonga_smu->pHeader),
"Out of memory.",
kfree(smumgr->backend);
cgs_free_gpu_mem(smumgr->device,
(cgs_handle_t)tonga_smu->header_buffer.handle);
return -1);
smu_allocate_memory(smumgr->device,
tonga_smu->smu_buffer.data_size,
CGS_GPU_MEM_TYPE__VISIBLE_CONTIG_FB,
PAGE_SIZE,
&mc_addr,
&tonga_smu->smu_buffer.kaddr,
&tonga_smu->smu_buffer.handle);
internal_buf = tonga_smu->smu_buffer.kaddr;
tonga_smu->smu_buffer.mc_addr_high = smu_upper_32_bits(mc_addr);
tonga_smu->smu_buffer.mc_addr_low = smu_lower_32_bits(mc_addr);
PP_ASSERT_WITH_CODE((NULL != internal_buf),
"Out of memory.",
kfree(smumgr->backend);
cgs_free_gpu_mem(smumgr->device,
(cgs_handle_t)tonga_smu->smu_buffer.handle);
return -1;);
return 0;
}
static const struct pp_smumgr_func tonga_smu_funcs = {
.smu_init = &tonga_smu_init,
.smu_fini = &tonga_smu_fini,
.start_smu = &tonga_start_smu,
.check_fw_load_finish = &tonga_check_fw_load_finish,
.request_smu_load_fw = &tonga_request_smu_reload_fw,
.request_smu_load_specific_fw = &tonga_request_smu_load_specific_fw,
.send_msg_to_smc = &tonga_send_msg_to_smc,
.send_msg_to_smc_with_parameter = &tonga_send_msg_to_smc_with_parameter,
.download_pptable_settings = NULL,
.upload_pptable_settings = NULL,
};
int tonga_smum_init(struct pp_smumgr *smumgr)
{
struct tonga_smumgr *tonga_smu = NULL;
tonga_smu = kzalloc(sizeof(struct tonga_smumgr), GFP_KERNEL);
if (tonga_smu == NULL)
return -ENOMEM;
smumgr->backend = tonga_smu;
smumgr->smumgr_funcs = &tonga_smu_funcs;
return 0;
}