| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Implement CPU time clocks for the POSIX clock interface. |
| */ |
| |
| #include <linux/sched/signal.h> |
| #include <linux/sched/cputime.h> |
| #include <linux/posix-timers.h> |
| #include <linux/errno.h> |
| #include <linux/math64.h> |
| #include <linux/uaccess.h> |
| #include <linux/kernel_stat.h> |
| #include <trace/events/timer.h> |
| #include <linux/tick.h> |
| #include <linux/workqueue.h> |
| #include <linux/compat.h> |
| #include <linux/sched/deadline.h> |
| |
| #include "posix-timers.h" |
| |
| static void posix_cpu_timer_rearm(struct k_itimer *timer); |
| |
| void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit) |
| { |
| posix_cputimers_init(pct); |
| if (cpu_limit != RLIM_INFINITY) { |
| pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC; |
| pct->timers_active = true; |
| } |
| } |
| |
| /* |
| * Called after updating RLIMIT_CPU to run cpu timer and update |
| * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if |
| * necessary. Needs siglock protection since other code may update the |
| * expiration cache as well. |
| */ |
| void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) |
| { |
| u64 nsecs = rlim_new * NSEC_PER_SEC; |
| |
| spin_lock_irq(&task->sighand->siglock); |
| set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL); |
| spin_unlock_irq(&task->sighand->siglock); |
| } |
| |
| /* |
| * Functions for validating access to tasks. |
| */ |
| static struct pid *pid_for_clock(const clockid_t clock, bool gettime) |
| { |
| const bool thread = !!CPUCLOCK_PERTHREAD(clock); |
| const pid_t upid = CPUCLOCK_PID(clock); |
| struct pid *pid; |
| |
| if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX) |
| return NULL; |
| |
| /* |
| * If the encoded PID is 0, then the timer is targeted at current |
| * or the process to which current belongs. |
| */ |
| if (upid == 0) |
| return thread ? task_pid(current) : task_tgid(current); |
| |
| pid = find_vpid(upid); |
| if (!pid) |
| return NULL; |
| |
| if (thread) { |
| struct task_struct *tsk = pid_task(pid, PIDTYPE_PID); |
| return (tsk && same_thread_group(tsk, current)) ? pid : NULL; |
| } |
| |
| /* |
| * For clock_gettime(PROCESS) allow finding the process by |
| * with the pid of the current task. The code needs the tgid |
| * of the process so that pid_task(pid, PIDTYPE_TGID) can be |
| * used to find the process. |
| */ |
| if (gettime && (pid == task_pid(current))) |
| return task_tgid(current); |
| |
| /* |
| * For processes require that pid identifies a process. |
| */ |
| return pid_has_task(pid, PIDTYPE_TGID) ? pid : NULL; |
| } |
| |
| static inline int validate_clock_permissions(const clockid_t clock) |
| { |
| int ret; |
| |
| rcu_read_lock(); |
| ret = pid_for_clock(clock, false) ? 0 : -EINVAL; |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| |
| static inline enum pid_type clock_pid_type(const clockid_t clock) |
| { |
| return CPUCLOCK_PERTHREAD(clock) ? PIDTYPE_PID : PIDTYPE_TGID; |
| } |
| |
| static inline struct task_struct *cpu_timer_task_rcu(struct k_itimer *timer) |
| { |
| return pid_task(timer->it.cpu.pid, clock_pid_type(timer->it_clock)); |
| } |
| |
| /* |
| * Update expiry time from increment, and increase overrun count, |
| * given the current clock sample. |
| */ |
| static u64 bump_cpu_timer(struct k_itimer *timer, u64 now) |
| { |
| u64 delta, incr, expires = timer->it.cpu.node.expires; |
| int i; |
| |
| if (!timer->it_interval) |
| return expires; |
| |
| if (now < expires) |
| return expires; |
| |
| incr = timer->it_interval; |
| delta = now + incr - expires; |
| |
| /* Don't use (incr*2 < delta), incr*2 might overflow. */ |
| for (i = 0; incr < delta - incr; i++) |
| incr = incr << 1; |
| |
| for (; i >= 0; incr >>= 1, i--) { |
| if (delta < incr) |
| continue; |
| |
| timer->it.cpu.node.expires += incr; |
| timer->it_overrun += 1LL << i; |
| delta -= incr; |
| } |
| return timer->it.cpu.node.expires; |
| } |
| |
| /* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */ |
| static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct) |
| { |
| return !(~pct->bases[CPUCLOCK_PROF].nextevt | |
| ~pct->bases[CPUCLOCK_VIRT].nextevt | |
| ~pct->bases[CPUCLOCK_SCHED].nextevt); |
| } |
| |
| static int |
| posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp) |
| { |
| int error = validate_clock_permissions(which_clock); |
| |
| if (!error) { |
| tp->tv_sec = 0; |
| tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); |
| if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { |
| /* |
| * If sched_clock is using a cycle counter, we |
| * don't have any idea of its true resolution |
| * exported, but it is much more than 1s/HZ. |
| */ |
| tp->tv_nsec = 1; |
| } |
| } |
| return error; |
| } |
| |
| static int |
| posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp) |
| { |
| int error = validate_clock_permissions(clock); |
| |
| /* |
| * You can never reset a CPU clock, but we check for other errors |
| * in the call before failing with EPERM. |
| */ |
| return error ? : -EPERM; |
| } |
| |
| /* |
| * Sample a per-thread clock for the given task. clkid is validated. |
| */ |
| static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p) |
| { |
| u64 utime, stime; |
| |
| if (clkid == CPUCLOCK_SCHED) |
| return task_sched_runtime(p); |
| |
| task_cputime(p, &utime, &stime); |
| |
| switch (clkid) { |
| case CPUCLOCK_PROF: |
| return utime + stime; |
| case CPUCLOCK_VIRT: |
| return utime; |
| default: |
| WARN_ON_ONCE(1); |
| } |
| return 0; |
| } |
| |
| static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime) |
| { |
| samples[CPUCLOCK_PROF] = stime + utime; |
| samples[CPUCLOCK_VIRT] = utime; |
| samples[CPUCLOCK_SCHED] = rtime; |
| } |
| |
| static void task_sample_cputime(struct task_struct *p, u64 *samples) |
| { |
| u64 stime, utime; |
| |
| task_cputime(p, &utime, &stime); |
| store_samples(samples, stime, utime, p->se.sum_exec_runtime); |
| } |
| |
| static void proc_sample_cputime_atomic(struct task_cputime_atomic *at, |
| u64 *samples) |
| { |
| u64 stime, utime, rtime; |
| |
| utime = atomic64_read(&at->utime); |
| stime = atomic64_read(&at->stime); |
| rtime = atomic64_read(&at->sum_exec_runtime); |
| store_samples(samples, stime, utime, rtime); |
| } |
| |
| /* |
| * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg |
| * to avoid race conditions with concurrent updates to cputime. |
| */ |
| static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime) |
| { |
| u64 curr_cputime; |
| retry: |
| curr_cputime = atomic64_read(cputime); |
| if (sum_cputime > curr_cputime) { |
| if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime) |
| goto retry; |
| } |
| } |
| |
| static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, |
| struct task_cputime *sum) |
| { |
| __update_gt_cputime(&cputime_atomic->utime, sum->utime); |
| __update_gt_cputime(&cputime_atomic->stime, sum->stime); |
| __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime); |
| } |
| |
| /** |
| * thread_group_sample_cputime - Sample cputime for a given task |
| * @tsk: Task for which cputime needs to be started |
| * @samples: Storage for time samples |
| * |
| * Called from sys_getitimer() to calculate the expiry time of an active |
| * timer. That means group cputime accounting is already active. Called |
| * with task sighand lock held. |
| * |
| * Updates @times with an uptodate sample of the thread group cputimes. |
| */ |
| void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples) |
| { |
| struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; |
| struct posix_cputimers *pct = &tsk->signal->posix_cputimers; |
| |
| WARN_ON_ONCE(!pct->timers_active); |
| |
| proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples); |
| } |
| |
| /** |
| * thread_group_start_cputime - Start cputime and return a sample |
| * @tsk: Task for which cputime needs to be started |
| * @samples: Storage for time samples |
| * |
| * The thread group cputime accounting is avoided when there are no posix |
| * CPU timers armed. Before starting a timer it's required to check whether |
| * the time accounting is active. If not, a full update of the atomic |
| * accounting store needs to be done and the accounting enabled. |
| * |
| * Updates @times with an uptodate sample of the thread group cputimes. |
| */ |
| static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples) |
| { |
| struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; |
| struct posix_cputimers *pct = &tsk->signal->posix_cputimers; |
| |
| /* Check if cputimer isn't running. This is accessed without locking. */ |
| if (!READ_ONCE(pct->timers_active)) { |
| struct task_cputime sum; |
| |
| /* |
| * The POSIX timer interface allows for absolute time expiry |
| * values through the TIMER_ABSTIME flag, therefore we have |
| * to synchronize the timer to the clock every time we start it. |
| */ |
| thread_group_cputime(tsk, &sum); |
| update_gt_cputime(&cputimer->cputime_atomic, &sum); |
| |
| /* |
| * We're setting timers_active without a lock. Ensure this |
| * only gets written to in one operation. We set it after |
| * update_gt_cputime() as a small optimization, but |
| * barriers are not required because update_gt_cputime() |
| * can handle concurrent updates. |
| */ |
| WRITE_ONCE(pct->timers_active, true); |
| } |
| proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples); |
| } |
| |
| static void __thread_group_cputime(struct task_struct *tsk, u64 *samples) |
| { |
| struct task_cputime ct; |
| |
| thread_group_cputime(tsk, &ct); |
| store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime); |
| } |
| |
| /* |
| * Sample a process (thread group) clock for the given task clkid. If the |
| * group's cputime accounting is already enabled, read the atomic |
| * store. Otherwise a full update is required. clkid is already validated. |
| */ |
| static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p, |
| bool start) |
| { |
| struct thread_group_cputimer *cputimer = &p->signal->cputimer; |
| struct posix_cputimers *pct = &p->signal->posix_cputimers; |
| u64 samples[CPUCLOCK_MAX]; |
| |
| if (!READ_ONCE(pct->timers_active)) { |
| if (start) |
| thread_group_start_cputime(p, samples); |
| else |
| __thread_group_cputime(p, samples); |
| } else { |
| proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples); |
| } |
| |
| return samples[clkid]; |
| } |
| |
| static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp) |
| { |
| const clockid_t clkid = CPUCLOCK_WHICH(clock); |
| struct task_struct *tsk; |
| u64 t; |
| |
| rcu_read_lock(); |
| tsk = pid_task(pid_for_clock(clock, true), clock_pid_type(clock)); |
| if (!tsk) { |
| rcu_read_unlock(); |
| return -EINVAL; |
| } |
| |
| if (CPUCLOCK_PERTHREAD(clock)) |
| t = cpu_clock_sample(clkid, tsk); |
| else |
| t = cpu_clock_sample_group(clkid, tsk, false); |
| rcu_read_unlock(); |
| |
| *tp = ns_to_timespec64(t); |
| return 0; |
| } |
| |
| /* |
| * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. |
| * This is called from sys_timer_create() and do_cpu_nanosleep() with the |
| * new timer already all-zeros initialized. |
| */ |
| static int posix_cpu_timer_create(struct k_itimer *new_timer) |
| { |
| static struct lock_class_key posix_cpu_timers_key; |
| struct pid *pid; |
| |
| rcu_read_lock(); |
| pid = pid_for_clock(new_timer->it_clock, false); |
| if (!pid) { |
| rcu_read_unlock(); |
| return -EINVAL; |
| } |
| |
| /* |
| * If posix timer expiry is handled in task work context then |
| * timer::it_lock can be taken without disabling interrupts as all |
| * other locking happens in task context. This requires a separate |
| * lock class key otherwise regular posix timer expiry would record |
| * the lock class being taken in interrupt context and generate a |
| * false positive warning. |
| */ |
| if (IS_ENABLED(CONFIG_POSIX_CPU_TIMERS_TASK_WORK)) |
| lockdep_set_class(&new_timer->it_lock, &posix_cpu_timers_key); |
| |
| new_timer->kclock = &clock_posix_cpu; |
| timerqueue_init(&new_timer->it.cpu.node); |
| new_timer->it.cpu.pid = get_pid(pid); |
| rcu_read_unlock(); |
| return 0; |
| } |
| |
| /* |
| * Clean up a CPU-clock timer that is about to be destroyed. |
| * This is called from timer deletion with the timer already locked. |
| * If we return TIMER_RETRY, it's necessary to release the timer's lock |
| * and try again. (This happens when the timer is in the middle of firing.) |
| */ |
| static int posix_cpu_timer_del(struct k_itimer *timer) |
| { |
| struct cpu_timer *ctmr = &timer->it.cpu; |
| struct sighand_struct *sighand; |
| struct task_struct *p; |
| unsigned long flags; |
| int ret = 0; |
| |
| rcu_read_lock(); |
| p = cpu_timer_task_rcu(timer); |
| if (!p) |
| goto out; |
| |
| /* |
| * Protect against sighand release/switch in exit/exec and process/ |
| * thread timer list entry concurrent read/writes. |
| */ |
| sighand = lock_task_sighand(p, &flags); |
| if (unlikely(sighand == NULL)) { |
| /* |
| * This raced with the reaping of the task. The exit cleanup |
| * should have removed this timer from the timer queue. |
| */ |
| WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node)); |
| } else { |
| if (timer->it.cpu.firing) |
| ret = TIMER_RETRY; |
| else |
| cpu_timer_dequeue(ctmr); |
| |
| unlock_task_sighand(p, &flags); |
| } |
| |
| out: |
| rcu_read_unlock(); |
| if (!ret) |
| put_pid(ctmr->pid); |
| |
| return ret; |
| } |
| |
| static void cleanup_timerqueue(struct timerqueue_head *head) |
| { |
| struct timerqueue_node *node; |
| struct cpu_timer *ctmr; |
| |
| while ((node = timerqueue_getnext(head))) { |
| timerqueue_del(head, node); |
| ctmr = container_of(node, struct cpu_timer, node); |
| ctmr->head = NULL; |
| } |
| } |
| |
| /* |
| * Clean out CPU timers which are still armed when a thread exits. The |
| * timers are only removed from the list. No other updates are done. The |
| * corresponding posix timers are still accessible, but cannot be rearmed. |
| * |
| * This must be called with the siglock held. |
| */ |
| static void cleanup_timers(struct posix_cputimers *pct) |
| { |
| cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead); |
| cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead); |
| cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead); |
| } |
| |
| /* |
| * These are both called with the siglock held, when the current thread |
| * is being reaped. When the final (leader) thread in the group is reaped, |
| * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. |
| */ |
| void posix_cpu_timers_exit(struct task_struct *tsk) |
| { |
| cleanup_timers(&tsk->posix_cputimers); |
| } |
| void posix_cpu_timers_exit_group(struct task_struct *tsk) |
| { |
| cleanup_timers(&tsk->signal->posix_cputimers); |
| } |
| |
| /* |
| * Insert the timer on the appropriate list before any timers that |
| * expire later. This must be called with the sighand lock held. |
| */ |
| static void arm_timer(struct k_itimer *timer, struct task_struct *p) |
| { |
| int clkidx = CPUCLOCK_WHICH(timer->it_clock); |
| struct cpu_timer *ctmr = &timer->it.cpu; |
| u64 newexp = cpu_timer_getexpires(ctmr); |
| struct posix_cputimer_base *base; |
| |
| if (CPUCLOCK_PERTHREAD(timer->it_clock)) |
| base = p->posix_cputimers.bases + clkidx; |
| else |
| base = p->signal->posix_cputimers.bases + clkidx; |
| |
| if (!cpu_timer_enqueue(&base->tqhead, ctmr)) |
| return; |
| |
| /* |
| * We are the new earliest-expiring POSIX 1.b timer, hence |
| * need to update expiration cache. Take into account that |
| * for process timers we share expiration cache with itimers |
| * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. |
| */ |
| if (newexp < base->nextevt) |
| base->nextevt = newexp; |
| |
| if (CPUCLOCK_PERTHREAD(timer->it_clock)) |
| tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER); |
| else |
| tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER); |
| } |
| |
| /* |
| * The timer is locked, fire it and arrange for its reload. |
| */ |
| static void cpu_timer_fire(struct k_itimer *timer) |
| { |
| struct cpu_timer *ctmr = &timer->it.cpu; |
| |
| if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { |
| /* |
| * User don't want any signal. |
| */ |
| cpu_timer_setexpires(ctmr, 0); |
| } else if (unlikely(timer->sigq == NULL)) { |
| /* |
| * This a special case for clock_nanosleep, |
| * not a normal timer from sys_timer_create. |
| */ |
| wake_up_process(timer->it_process); |
| cpu_timer_setexpires(ctmr, 0); |
| } else if (!timer->it_interval) { |
| /* |
| * One-shot timer. Clear it as soon as it's fired. |
| */ |
| posix_timer_event(timer, 0); |
| cpu_timer_setexpires(ctmr, 0); |
| } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { |
| /* |
| * The signal did not get queued because the signal |
| * was ignored, so we won't get any callback to |
| * reload the timer. But we need to keep it |
| * ticking in case the signal is deliverable next time. |
| */ |
| posix_cpu_timer_rearm(timer); |
| ++timer->it_requeue_pending; |
| } |
| } |
| |
| /* |
| * Guts of sys_timer_settime for CPU timers. |
| * This is called with the timer locked and interrupts disabled. |
| * If we return TIMER_RETRY, it's necessary to release the timer's lock |
| * and try again. (This happens when the timer is in the middle of firing.) |
| */ |
| static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags, |
| struct itimerspec64 *new, struct itimerspec64 *old) |
| { |
| clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock); |
| u64 old_expires, new_expires, old_incr, val; |
| struct cpu_timer *ctmr = &timer->it.cpu; |
| struct sighand_struct *sighand; |
| struct task_struct *p; |
| unsigned long flags; |
| int ret = 0; |
| |
| rcu_read_lock(); |
| p = cpu_timer_task_rcu(timer); |
| if (!p) { |
| /* |
| * If p has just been reaped, we can no |
| * longer get any information about it at all. |
| */ |
| rcu_read_unlock(); |
| return -ESRCH; |
| } |
| |
| /* |
| * Use the to_ktime conversion because that clamps the maximum |
| * value to KTIME_MAX and avoid multiplication overflows. |
| */ |
| new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value)); |
| |
| /* |
| * Protect against sighand release/switch in exit/exec and p->cpu_timers |
| * and p->signal->cpu_timers read/write in arm_timer() |
| */ |
| sighand = lock_task_sighand(p, &flags); |
| /* |
| * If p has just been reaped, we can no |
| * longer get any information about it at all. |
| */ |
| if (unlikely(sighand == NULL)) { |
| rcu_read_unlock(); |
| return -ESRCH; |
| } |
| |
| /* |
| * Disarm any old timer after extracting its expiry time. |
| */ |
| old_incr = timer->it_interval; |
| old_expires = cpu_timer_getexpires(ctmr); |
| |
| if (unlikely(timer->it.cpu.firing)) { |
| timer->it.cpu.firing = -1; |
| ret = TIMER_RETRY; |
| } else { |
| cpu_timer_dequeue(ctmr); |
| } |
| |
| /* |
| * We need to sample the current value to convert the new |
| * value from to relative and absolute, and to convert the |
| * old value from absolute to relative. To set a process |
| * timer, we need a sample to balance the thread expiry |
| * times (in arm_timer). With an absolute time, we must |
| * check if it's already passed. In short, we need a sample. |
| */ |
| if (CPUCLOCK_PERTHREAD(timer->it_clock)) |
| val = cpu_clock_sample(clkid, p); |
| else |
| val = cpu_clock_sample_group(clkid, p, true); |
| |
| if (old) { |
| if (old_expires == 0) { |
| old->it_value.tv_sec = 0; |
| old->it_value.tv_nsec = 0; |
| } else { |
| /* |
| * Update the timer in case it has overrun already. |
| * If it has, we'll report it as having overrun and |
| * with the next reloaded timer already ticking, |
| * though we are swallowing that pending |
| * notification here to install the new setting. |
| */ |
| u64 exp = bump_cpu_timer(timer, val); |
| |
| if (val < exp) { |
| old_expires = exp - val; |
| old->it_value = ns_to_timespec64(old_expires); |
| } else { |
| old->it_value.tv_nsec = 1; |
| old->it_value.tv_sec = 0; |
| } |
| } |
| } |
| |
| if (unlikely(ret)) { |
| /* |
| * We are colliding with the timer actually firing. |
| * Punt after filling in the timer's old value, and |
| * disable this firing since we are already reporting |
| * it as an overrun (thanks to bump_cpu_timer above). |
| */ |
| unlock_task_sighand(p, &flags); |
| goto out; |
| } |
| |
| if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) { |
| new_expires += val; |
| } |
| |
| /* |
| * Install the new expiry time (or zero). |
| * For a timer with no notification action, we don't actually |
| * arm the timer (we'll just fake it for timer_gettime). |
| */ |
| cpu_timer_setexpires(ctmr, new_expires); |
| if (new_expires != 0 && val < new_expires) { |
| arm_timer(timer, p); |
| } |
| |
| unlock_task_sighand(p, &flags); |
| /* |
| * Install the new reload setting, and |
| * set up the signal and overrun bookkeeping. |
| */ |
| timer->it_interval = timespec64_to_ktime(new->it_interval); |
| |
| /* |
| * This acts as a modification timestamp for the timer, |
| * so any automatic reload attempt will punt on seeing |
| * that we have reset the timer manually. |
| */ |
| timer->it_requeue_pending = (timer->it_requeue_pending + 2) & |
| ~REQUEUE_PENDING; |
| timer->it_overrun_last = 0; |
| timer->it_overrun = -1; |
| |
| if (new_expires != 0 && !(val < new_expires)) { |
| /* |
| * The designated time already passed, so we notify |
| * immediately, even if the thread never runs to |
| * accumulate more time on this clock. |
| */ |
| cpu_timer_fire(timer); |
| } |
| |
| ret = 0; |
| out: |
| rcu_read_unlock(); |
| if (old) |
| old->it_interval = ns_to_timespec64(old_incr); |
| |
| return ret; |
| } |
| |
| static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp) |
| { |
| clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock); |
| struct cpu_timer *ctmr = &timer->it.cpu; |
| u64 now, expires = cpu_timer_getexpires(ctmr); |
| struct task_struct *p; |
| |
| rcu_read_lock(); |
| p = cpu_timer_task_rcu(timer); |
| if (!p) |
| goto out; |
| |
| /* |
| * Easy part: convert the reload time. |
| */ |
| itp->it_interval = ktime_to_timespec64(timer->it_interval); |
| |
| if (!expires) |
| goto out; |
| |
| /* |
| * Sample the clock to take the difference with the expiry time. |
| */ |
| if (CPUCLOCK_PERTHREAD(timer->it_clock)) |
| now = cpu_clock_sample(clkid, p); |
| else |
| now = cpu_clock_sample_group(clkid, p, false); |
| |
| if (now < expires) { |
| itp->it_value = ns_to_timespec64(expires - now); |
| } else { |
| /* |
| * The timer should have expired already, but the firing |
| * hasn't taken place yet. Say it's just about to expire. |
| */ |
| itp->it_value.tv_nsec = 1; |
| itp->it_value.tv_sec = 0; |
| } |
| out: |
| rcu_read_unlock(); |
| } |
| |
| #define MAX_COLLECTED 20 |
| |
| static u64 collect_timerqueue(struct timerqueue_head *head, |
| struct list_head *firing, u64 now) |
| { |
| struct timerqueue_node *next; |
| int i = 0; |
| |
| while ((next = timerqueue_getnext(head))) { |
| struct cpu_timer *ctmr; |
| u64 expires; |
| |
| ctmr = container_of(next, struct cpu_timer, node); |
| expires = cpu_timer_getexpires(ctmr); |
| /* Limit the number of timers to expire at once */ |
| if (++i == MAX_COLLECTED || now < expires) |
| return expires; |
| |
| ctmr->firing = 1; |
| cpu_timer_dequeue(ctmr); |
| list_add_tail(&ctmr->elist, firing); |
| } |
| |
| return U64_MAX; |
| } |
| |
| static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples, |
| struct list_head *firing) |
| { |
| struct posix_cputimer_base *base = pct->bases; |
| int i; |
| |
| for (i = 0; i < CPUCLOCK_MAX; i++, base++) { |
| base->nextevt = collect_timerqueue(&base->tqhead, firing, |
| samples[i]); |
| } |
| } |
| |
| static inline void check_dl_overrun(struct task_struct *tsk) |
| { |
| if (tsk->dl.dl_overrun) { |
| tsk->dl.dl_overrun = 0; |
| __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); |
| } |
| } |
| |
| static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard) |
| { |
| if (time < limit) |
| return false; |
| |
| if (print_fatal_signals) { |
| pr_info("%s Watchdog Timeout (%s): %s[%d]\n", |
| rt ? "RT" : "CPU", hard ? "hard" : "soft", |
| current->comm, task_pid_nr(current)); |
| } |
| __group_send_sig_info(signo, SEND_SIG_PRIV, current); |
| return true; |
| } |
| |
| /* |
| * Check for any per-thread CPU timers that have fired and move them off |
| * the tsk->cpu_timers[N] list onto the firing list. Here we update the |
| * tsk->it_*_expires values to reflect the remaining thread CPU timers. |
| */ |
| static void check_thread_timers(struct task_struct *tsk, |
| struct list_head *firing) |
| { |
| struct posix_cputimers *pct = &tsk->posix_cputimers; |
| u64 samples[CPUCLOCK_MAX]; |
| unsigned long soft; |
| |
| if (dl_task(tsk)) |
| check_dl_overrun(tsk); |
| |
| if (expiry_cache_is_inactive(pct)) |
| return; |
| |
| task_sample_cputime(tsk, samples); |
| collect_posix_cputimers(pct, samples, firing); |
| |
| /* |
| * Check for the special case thread timers. |
| */ |
| soft = task_rlimit(tsk, RLIMIT_RTTIME); |
| if (soft != RLIM_INFINITY) { |
| /* Task RT timeout is accounted in jiffies. RTTIME is usec */ |
| unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ); |
| unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME); |
| |
| /* At the hard limit, send SIGKILL. No further action. */ |
| if (hard != RLIM_INFINITY && |
| check_rlimit(rttime, hard, SIGKILL, true, true)) |
| return; |
| |
| /* At the soft limit, send a SIGXCPU every second */ |
| if (check_rlimit(rttime, soft, SIGXCPU, true, false)) { |
| soft += USEC_PER_SEC; |
| tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft; |
| } |
| } |
| |
| if (expiry_cache_is_inactive(pct)) |
| tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER); |
| } |
| |
| static inline void stop_process_timers(struct signal_struct *sig) |
| { |
| struct posix_cputimers *pct = &sig->posix_cputimers; |
| |
| /* Turn off the active flag. This is done without locking. */ |
| WRITE_ONCE(pct->timers_active, false); |
| tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER); |
| } |
| |
| static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, |
| u64 *expires, u64 cur_time, int signo) |
| { |
| if (!it->expires) |
| return; |
| |
| if (cur_time >= it->expires) { |
| if (it->incr) |
| it->expires += it->incr; |
| else |
| it->expires = 0; |
| |
| trace_itimer_expire(signo == SIGPROF ? |
| ITIMER_PROF : ITIMER_VIRTUAL, |
| task_tgid(tsk), cur_time); |
| __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); |
| } |
| |
| if (it->expires && it->expires < *expires) |
| *expires = it->expires; |
| } |
| |
| /* |
| * Check for any per-thread CPU timers that have fired and move them |
| * off the tsk->*_timers list onto the firing list. Per-thread timers |
| * have already been taken off. |
| */ |
| static void check_process_timers(struct task_struct *tsk, |
| struct list_head *firing) |
| { |
| struct signal_struct *const sig = tsk->signal; |
| struct posix_cputimers *pct = &sig->posix_cputimers; |
| u64 samples[CPUCLOCK_MAX]; |
| unsigned long soft; |
| |
| /* |
| * If there are no active process wide timers (POSIX 1.b, itimers, |
| * RLIMIT_CPU) nothing to check. Also skip the process wide timer |
| * processing when there is already another task handling them. |
| */ |
| if (!READ_ONCE(pct->timers_active) || pct->expiry_active) |
| return; |
| |
| /* |
| * Signify that a thread is checking for process timers. |
| * Write access to this field is protected by the sighand lock. |
| */ |
| pct->expiry_active = true; |
| |
| /* |
| * Collect the current process totals. Group accounting is active |
| * so the sample can be taken directly. |
| */ |
| proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples); |
| collect_posix_cputimers(pct, samples, firing); |
| |
| /* |
| * Check for the special case process timers. |
| */ |
| check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], |
| &pct->bases[CPUCLOCK_PROF].nextevt, |
| samples[CPUCLOCK_PROF], SIGPROF); |
| check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], |
| &pct->bases[CPUCLOCK_VIRT].nextevt, |
| samples[CPUCLOCK_VIRT], SIGVTALRM); |
| |
| soft = task_rlimit(tsk, RLIMIT_CPU); |
| if (soft != RLIM_INFINITY) { |
| /* RLIMIT_CPU is in seconds. Samples are nanoseconds */ |
| unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU); |
| u64 ptime = samples[CPUCLOCK_PROF]; |
| u64 softns = (u64)soft * NSEC_PER_SEC; |
| u64 hardns = (u64)hard * NSEC_PER_SEC; |
| |
| /* At the hard limit, send SIGKILL. No further action. */ |
| if (hard != RLIM_INFINITY && |
| check_rlimit(ptime, hardns, SIGKILL, false, true)) |
| return; |
| |
| /* At the soft limit, send a SIGXCPU every second */ |
| if (check_rlimit(ptime, softns, SIGXCPU, false, false)) { |
| sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1; |
| softns += NSEC_PER_SEC; |
| } |
| |
| /* Update the expiry cache */ |
| if (softns < pct->bases[CPUCLOCK_PROF].nextevt) |
| pct->bases[CPUCLOCK_PROF].nextevt = softns; |
| } |
| |
| if (expiry_cache_is_inactive(pct)) |
| stop_process_timers(sig); |
| |
| pct->expiry_active = false; |
| } |
| |
| /* |
| * This is called from the signal code (via posixtimer_rearm) |
| * when the last timer signal was delivered and we have to reload the timer. |
| */ |
| static void posix_cpu_timer_rearm(struct k_itimer *timer) |
| { |
| clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock); |
| struct task_struct *p; |
| struct sighand_struct *sighand; |
| unsigned long flags; |
| u64 now; |
| |
| rcu_read_lock(); |
| p = cpu_timer_task_rcu(timer); |
| if (!p) |
| goto out; |
| |
| /* |
| * Fetch the current sample and update the timer's expiry time. |
| */ |
| if (CPUCLOCK_PERTHREAD(timer->it_clock)) |
| now = cpu_clock_sample(clkid, p); |
| else |
| now = cpu_clock_sample_group(clkid, p, true); |
| |
| bump_cpu_timer(timer, now); |
| |
| /* Protect timer list r/w in arm_timer() */ |
| sighand = lock_task_sighand(p, &flags); |
| if (unlikely(sighand == NULL)) |
| goto out; |
| |
| /* |
| * Now re-arm for the new expiry time. |
| */ |
| arm_timer(timer, p); |
| unlock_task_sighand(p, &flags); |
| out: |
| rcu_read_unlock(); |
| } |
| |
| /** |
| * task_cputimers_expired - Check whether posix CPU timers are expired |
| * |
| * @samples: Array of current samples for the CPUCLOCK clocks |
| * @pct: Pointer to a posix_cputimers container |
| * |
| * Returns true if any member of @samples is greater than the corresponding |
| * member of @pct->bases[CLK].nextevt. False otherwise |
| */ |
| static inline bool |
| task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct) |
| { |
| int i; |
| |
| for (i = 0; i < CPUCLOCK_MAX; i++) { |
| if (samples[i] >= pct->bases[i].nextevt) |
| return true; |
| } |
| return false; |
| } |
| |
| /** |
| * fastpath_timer_check - POSIX CPU timers fast path. |
| * |
| * @tsk: The task (thread) being checked. |
| * |
| * Check the task and thread group timers. If both are zero (there are no |
| * timers set) return false. Otherwise snapshot the task and thread group |
| * timers and compare them with the corresponding expiration times. Return |
| * true if a timer has expired, else return false. |
| */ |
| static inline bool fastpath_timer_check(struct task_struct *tsk) |
| { |
| struct posix_cputimers *pct = &tsk->posix_cputimers; |
| struct signal_struct *sig; |
| |
| if (!expiry_cache_is_inactive(pct)) { |
| u64 samples[CPUCLOCK_MAX]; |
| |
| task_sample_cputime(tsk, samples); |
| if (task_cputimers_expired(samples, pct)) |
| return true; |
| } |
| |
| sig = tsk->signal; |
| pct = &sig->posix_cputimers; |
| /* |
| * Check if thread group timers expired when timers are active and |
| * no other thread in the group is already handling expiry for |
| * thread group cputimers. These fields are read without the |
| * sighand lock. However, this is fine because this is meant to be |
| * a fastpath heuristic to determine whether we should try to |
| * acquire the sighand lock to handle timer expiry. |
| * |
| * In the worst case scenario, if concurrently timers_active is set |
| * or expiry_active is cleared, but the current thread doesn't see |
| * the change yet, the timer checks are delayed until the next |
| * thread in the group gets a scheduler interrupt to handle the |
| * timer. This isn't an issue in practice because these types of |
| * delays with signals actually getting sent are expected. |
| */ |
| if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) { |
| u64 samples[CPUCLOCK_MAX]; |
| |
| proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, |
| samples); |
| |
| if (task_cputimers_expired(samples, pct)) |
| return true; |
| } |
| |
| if (dl_task(tsk) && tsk->dl.dl_overrun) |
| return true; |
| |
| return false; |
| } |
| |
| static void handle_posix_cpu_timers(struct task_struct *tsk); |
| |
| #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK |
| static void posix_cpu_timers_work(struct callback_head *work) |
| { |
| handle_posix_cpu_timers(current); |
| } |
| |
| /* |
| * Initialize posix CPU timers task work in init task. Out of line to |
| * keep the callback static and to avoid header recursion hell. |
| */ |
| void __init posix_cputimers_init_work(void) |
| { |
| init_task_work(¤t->posix_cputimers_work.work, |
| posix_cpu_timers_work); |
| } |
| |
| /* |
| * Note: All operations on tsk->posix_cputimer_work.scheduled happen either |
| * in hard interrupt context or in task context with interrupts |
| * disabled. Aside of that the writer/reader interaction is always in the |
| * context of the current task, which means they are strict per CPU. |
| */ |
| static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk) |
| { |
| return tsk->posix_cputimers_work.scheduled; |
| } |
| |
| static inline void __run_posix_cpu_timers(struct task_struct *tsk) |
| { |
| if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled)) |
| return; |
| |
| /* Schedule task work to actually expire the timers */ |
| tsk->posix_cputimers_work.scheduled = true; |
| task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME); |
| } |
| |
| static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk, |
| unsigned long start) |
| { |
| bool ret = true; |
| |
| /* |
| * On !RT kernels interrupts are disabled while collecting expired |
| * timers, so no tick can happen and the fast path check can be |
| * reenabled without further checks. |
| */ |
| if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { |
| tsk->posix_cputimers_work.scheduled = false; |
| return true; |
| } |
| |
| /* |
| * On RT enabled kernels ticks can happen while the expired timers |
| * are collected under sighand lock. But any tick which observes |
| * the CPUTIMERS_WORK_SCHEDULED bit set, does not run the fastpath |
| * checks. So reenabling the tick work has do be done carefully: |
| * |
| * Disable interrupts and run the fast path check if jiffies have |
| * advanced since the collecting of expired timers started. If |
| * jiffies have not advanced or the fast path check did not find |
| * newly expired timers, reenable the fast path check in the timer |
| * interrupt. If there are newly expired timers, return false and |
| * let the collection loop repeat. |
| */ |
| local_irq_disable(); |
| if (start != jiffies && fastpath_timer_check(tsk)) |
| ret = false; |
| else |
| tsk->posix_cputimers_work.scheduled = false; |
| local_irq_enable(); |
| |
| return ret; |
| } |
| #else /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */ |
| static inline void __run_posix_cpu_timers(struct task_struct *tsk) |
| { |
| lockdep_posixtimer_enter(); |
| handle_posix_cpu_timers(tsk); |
| lockdep_posixtimer_exit(); |
| } |
| |
| static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk) |
| { |
| return false; |
| } |
| |
| static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk, |
| unsigned long start) |
| { |
| return true; |
| } |
| #endif /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */ |
| |
| static void handle_posix_cpu_timers(struct task_struct *tsk) |
| { |
| struct k_itimer *timer, *next; |
| unsigned long flags, start; |
| LIST_HEAD(firing); |
| |
| if (!lock_task_sighand(tsk, &flags)) |
| return; |
| |
| do { |
| /* |
| * On RT locking sighand lock does not disable interrupts, |
| * so this needs to be careful vs. ticks. Store the current |
| * jiffies value. |
| */ |
| start = READ_ONCE(jiffies); |
| barrier(); |
| |
| /* |
| * Here we take off tsk->signal->cpu_timers[N] and |
| * tsk->cpu_timers[N] all the timers that are firing, and |
| * put them on the firing list. |
| */ |
| check_thread_timers(tsk, &firing); |
| |
| check_process_timers(tsk, &firing); |
| |
| /* |
| * The above timer checks have updated the expiry cache and |
| * because nothing can have queued or modified timers after |
| * sighand lock was taken above it is guaranteed to be |
| * consistent. So the next timer interrupt fastpath check |
| * will find valid data. |
| * |
| * If timer expiry runs in the timer interrupt context then |
| * the loop is not relevant as timers will be directly |
| * expired in interrupt context. The stub function below |
| * returns always true which allows the compiler to |
| * optimize the loop out. |
| * |
| * If timer expiry is deferred to task work context then |
| * the following rules apply: |
| * |
| * - On !RT kernels no tick can have happened on this CPU |
| * after sighand lock was acquired because interrupts are |
| * disabled. So reenabling task work before dropping |
| * sighand lock and reenabling interrupts is race free. |
| * |
| * - On RT kernels ticks might have happened but the tick |
| * work ignored posix CPU timer handling because the |
| * CPUTIMERS_WORK_SCHEDULED bit is set. Reenabling work |
| * must be done very carefully including a check whether |
| * ticks have happened since the start of the timer |
| * expiry checks. posix_cpu_timers_enable_work() takes |
| * care of that and eventually lets the expiry checks |
| * run again. |
| */ |
| } while (!posix_cpu_timers_enable_work(tsk, start)); |
| |
| /* |
| * We must release sighand lock before taking any timer's lock. |
| * There is a potential race with timer deletion here, as the |
| * siglock now protects our private firing list. We have set |
| * the firing flag in each timer, so that a deletion attempt |
| * that gets the timer lock before we do will give it up and |
| * spin until we've taken care of that timer below. |
| */ |
| unlock_task_sighand(tsk, &flags); |
| |
| /* |
| * Now that all the timers on our list have the firing flag, |
| * no one will touch their list entries but us. We'll take |
| * each timer's lock before clearing its firing flag, so no |
| * timer call will interfere. |
| */ |
| list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) { |
| int cpu_firing; |
| |
| /* |
| * spin_lock() is sufficient here even independent of the |
| * expiry context. If expiry happens in hard interrupt |
| * context it's obvious. For task work context it's safe |
| * because all other operations on timer::it_lock happen in |
| * task context (syscall or exit). |
| */ |
| spin_lock(&timer->it_lock); |
| list_del_init(&timer->it.cpu.elist); |
| cpu_firing = timer->it.cpu.firing; |
| timer->it.cpu.firing = 0; |
| /* |
| * The firing flag is -1 if we collided with a reset |
| * of the timer, which already reported this |
| * almost-firing as an overrun. So don't generate an event. |
| */ |
| if (likely(cpu_firing >= 0)) |
| cpu_timer_fire(timer); |
| spin_unlock(&timer->it_lock); |
| } |
| } |
| |
| /* |
| * This is called from the timer interrupt handler. The irq handler has |
| * already updated our counts. We need to check if any timers fire now. |
| * Interrupts are disabled. |
| */ |
| void run_posix_cpu_timers(void) |
| { |
| struct task_struct *tsk = current; |
| |
| lockdep_assert_irqs_disabled(); |
| |
| /* |
| * If the actual expiry is deferred to task work context and the |
| * work is already scheduled there is no point to do anything here. |
| */ |
| if (posix_cpu_timers_work_scheduled(tsk)) |
| return; |
| |
| /* |
| * The fast path checks that there are no expired thread or thread |
| * group timers. If that's so, just return. |
| */ |
| if (!fastpath_timer_check(tsk)) |
| return; |
| |
| __run_posix_cpu_timers(tsk); |
| } |
| |
| /* |
| * Set one of the process-wide special case CPU timers or RLIMIT_CPU. |
| * The tsk->sighand->siglock must be held by the caller. |
| */ |
| void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid, |
| u64 *newval, u64 *oldval) |
| { |
| u64 now, *nextevt; |
| |
| if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED)) |
| return; |
| |
| nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt; |
| now = cpu_clock_sample_group(clkid, tsk, true); |
| |
| if (oldval) { |
| /* |
| * We are setting itimer. The *oldval is absolute and we update |
| * it to be relative, *newval argument is relative and we update |
| * it to be absolute. |
| */ |
| if (*oldval) { |
| if (*oldval <= now) { |
| /* Just about to fire. */ |
| *oldval = TICK_NSEC; |
| } else { |
| *oldval -= now; |
| } |
| } |
| |
| if (!*newval) |
| return; |
| *newval += now; |
| } |
| |
| /* |
| * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF |
| * expiry cache is also used by RLIMIT_CPU!. |
| */ |
| if (*newval < *nextevt) |
| *nextevt = *newval; |
| |
| tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER); |
| } |
| |
| static int do_cpu_nanosleep(const clockid_t which_clock, int flags, |
| const struct timespec64 *rqtp) |
| { |
| struct itimerspec64 it; |
| struct k_itimer timer; |
| u64 expires; |
| int error; |
| |
| /* |
| * Set up a temporary timer and then wait for it to go off. |
| */ |
| memset(&timer, 0, sizeof timer); |
| spin_lock_init(&timer.it_lock); |
| timer.it_clock = which_clock; |
| timer.it_overrun = -1; |
| error = posix_cpu_timer_create(&timer); |
| timer.it_process = current; |
| |
| if (!error) { |
| static struct itimerspec64 zero_it; |
| struct restart_block *restart; |
| |
| memset(&it, 0, sizeof(it)); |
| it.it_value = *rqtp; |
| |
| spin_lock_irq(&timer.it_lock); |
| error = posix_cpu_timer_set(&timer, flags, &it, NULL); |
| if (error) { |
| spin_unlock_irq(&timer.it_lock); |
| return error; |
| } |
| |
| while (!signal_pending(current)) { |
| if (!cpu_timer_getexpires(&timer.it.cpu)) { |
| /* |
| * Our timer fired and was reset, below |
| * deletion can not fail. |
| */ |
| posix_cpu_timer_del(&timer); |
| spin_unlock_irq(&timer.it_lock); |
| return 0; |
| } |
| |
| /* |
| * Block until cpu_timer_fire (or a signal) wakes us. |
| */ |
| __set_current_state(TASK_INTERRUPTIBLE); |
| spin_unlock_irq(&timer.it_lock); |
| schedule(); |
| spin_lock_irq(&timer.it_lock); |
| } |
| |
| /* |
| * We were interrupted by a signal. |
| */ |
| expires = cpu_timer_getexpires(&timer.it.cpu); |
| error = posix_cpu_timer_set(&timer, 0, &zero_it, &it); |
| if (!error) { |
| /* |
| * Timer is now unarmed, deletion can not fail. |
| */ |
| posix_cpu_timer_del(&timer); |
| } |
| spin_unlock_irq(&timer.it_lock); |
| |
| while (error == TIMER_RETRY) { |
| /* |
| * We need to handle case when timer was or is in the |
| * middle of firing. In other cases we already freed |
| * resources. |
| */ |
| spin_lock_irq(&timer.it_lock); |
| error = posix_cpu_timer_del(&timer); |
| spin_unlock_irq(&timer.it_lock); |
| } |
| |
| if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) { |
| /* |
| * It actually did fire already. |
| */ |
| return 0; |
| } |
| |
| error = -ERESTART_RESTARTBLOCK; |
| /* |
| * Report back to the user the time still remaining. |
| */ |
| restart = ¤t->restart_block; |
| restart->nanosleep.expires = expires; |
| if (restart->nanosleep.type != TT_NONE) |
| error = nanosleep_copyout(restart, &it.it_value); |
| } |
| |
| return error; |
| } |
| |
| static long posix_cpu_nsleep_restart(struct restart_block *restart_block); |
| |
| static int posix_cpu_nsleep(const clockid_t which_clock, int flags, |
| const struct timespec64 *rqtp) |
| { |
| struct restart_block *restart_block = ¤t->restart_block; |
| int error; |
| |
| /* |
| * Diagnose required errors first. |
| */ |
| if (CPUCLOCK_PERTHREAD(which_clock) && |
| (CPUCLOCK_PID(which_clock) == 0 || |
| CPUCLOCK_PID(which_clock) == task_pid_vnr(current))) |
| return -EINVAL; |
| |
| error = do_cpu_nanosleep(which_clock, flags, rqtp); |
| |
| if (error == -ERESTART_RESTARTBLOCK) { |
| |
| if (flags & TIMER_ABSTIME) |
| return -ERESTARTNOHAND; |
| |
| restart_block->nanosleep.clockid = which_clock; |
| set_restart_fn(restart_block, posix_cpu_nsleep_restart); |
| } |
| return error; |
| } |
| |
| static long posix_cpu_nsleep_restart(struct restart_block *restart_block) |
| { |
| clockid_t which_clock = restart_block->nanosleep.clockid; |
| struct timespec64 t; |
| |
| t = ns_to_timespec64(restart_block->nanosleep.expires); |
| |
| return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t); |
| } |
| |
| #define PROCESS_CLOCK make_process_cpuclock(0, CPUCLOCK_SCHED) |
| #define THREAD_CLOCK make_thread_cpuclock(0, CPUCLOCK_SCHED) |
| |
| static int process_cpu_clock_getres(const clockid_t which_clock, |
| struct timespec64 *tp) |
| { |
| return posix_cpu_clock_getres(PROCESS_CLOCK, tp); |
| } |
| static int process_cpu_clock_get(const clockid_t which_clock, |
| struct timespec64 *tp) |
| { |
| return posix_cpu_clock_get(PROCESS_CLOCK, tp); |
| } |
| static int process_cpu_timer_create(struct k_itimer *timer) |
| { |
| timer->it_clock = PROCESS_CLOCK; |
| return posix_cpu_timer_create(timer); |
| } |
| static int process_cpu_nsleep(const clockid_t which_clock, int flags, |
| const struct timespec64 *rqtp) |
| { |
| return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp); |
| } |
| static int thread_cpu_clock_getres(const clockid_t which_clock, |
| struct timespec64 *tp) |
| { |
| return posix_cpu_clock_getres(THREAD_CLOCK, tp); |
| } |
| static int thread_cpu_clock_get(const clockid_t which_clock, |
| struct timespec64 *tp) |
| { |
| return posix_cpu_clock_get(THREAD_CLOCK, tp); |
| } |
| static int thread_cpu_timer_create(struct k_itimer *timer) |
| { |
| timer->it_clock = THREAD_CLOCK; |
| return posix_cpu_timer_create(timer); |
| } |
| |
| const struct k_clock clock_posix_cpu = { |
| .clock_getres = posix_cpu_clock_getres, |
| .clock_set = posix_cpu_clock_set, |
| .clock_get_timespec = posix_cpu_clock_get, |
| .timer_create = posix_cpu_timer_create, |
| .nsleep = posix_cpu_nsleep, |
| .timer_set = posix_cpu_timer_set, |
| .timer_del = posix_cpu_timer_del, |
| .timer_get = posix_cpu_timer_get, |
| .timer_rearm = posix_cpu_timer_rearm, |
| }; |
| |
| const struct k_clock clock_process = { |
| .clock_getres = process_cpu_clock_getres, |
| .clock_get_timespec = process_cpu_clock_get, |
| .timer_create = process_cpu_timer_create, |
| .nsleep = process_cpu_nsleep, |
| }; |
| |
| const struct k_clock clock_thread = { |
| .clock_getres = thread_cpu_clock_getres, |
| .clock_get_timespec = thread_cpu_clock_get, |
| .timer_create = thread_cpu_timer_create, |
| }; |