| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 1999-2006 Helge Deller <deller@gmx.de> (07-13-1999) |
| * Copyright (C) 1999 SuSE GmbH Nuernberg |
| * Copyright (C) 2000 Philipp Rumpf (prumpf@tux.org) |
| * |
| * Cache and TLB management |
| * |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/module.h> |
| #include <linux/seq_file.h> |
| #include <linux/pagemap.h> |
| #include <linux/sched.h> |
| #include <linux/sched/mm.h> |
| #include <linux/syscalls.h> |
| #include <linux/vmalloc.h> |
| #include <asm/pdc.h> |
| #include <asm/cache.h> |
| #include <asm/cacheflush.h> |
| #include <asm/tlbflush.h> |
| #include <asm/page.h> |
| #include <asm/processor.h> |
| #include <asm/sections.h> |
| #include <asm/shmparam.h> |
| #include <asm/mmu_context.h> |
| #include <asm/cachectl.h> |
| |
| #define PTR_PAGE_ALIGN_DOWN(addr) PTR_ALIGN_DOWN(addr, PAGE_SIZE) |
| |
| /* |
| * When nonzero, use _PAGE_ACCESSED bit to try to reduce the number |
| * of page flushes done flush_cache_page_if_present. There are some |
| * pros and cons in using this option. It may increase the risk of |
| * random segmentation faults. |
| */ |
| #define CONFIG_FLUSH_PAGE_ACCESSED 0 |
| |
| int split_tlb __ro_after_init; |
| int dcache_stride __ro_after_init; |
| int icache_stride __ro_after_init; |
| EXPORT_SYMBOL(dcache_stride); |
| |
| /* Internal implementation in arch/parisc/kernel/pacache.S */ |
| void flush_dcache_page_asm(unsigned long phys_addr, unsigned long vaddr); |
| EXPORT_SYMBOL(flush_dcache_page_asm); |
| void purge_dcache_page_asm(unsigned long phys_addr, unsigned long vaddr); |
| void flush_icache_page_asm(unsigned long phys_addr, unsigned long vaddr); |
| void flush_data_cache_local(void *); /* flushes local data-cache only */ |
| void flush_instruction_cache_local(void); /* flushes local code-cache only */ |
| |
| static void flush_kernel_dcache_page_addr(const void *addr); |
| |
| /* On some machines (i.e., ones with the Merced bus), there can be |
| * only a single PxTLB broadcast at a time; this must be guaranteed |
| * by software. We need a spinlock around all TLB flushes to ensure |
| * this. |
| */ |
| DEFINE_SPINLOCK(pa_tlb_flush_lock); |
| |
| #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) |
| int pa_serialize_tlb_flushes __ro_after_init; |
| #endif |
| |
| struct pdc_cache_info cache_info __ro_after_init; |
| #ifndef CONFIG_PA20 |
| struct pdc_btlb_info btlb_info; |
| #endif |
| |
| DEFINE_STATIC_KEY_TRUE(parisc_has_cache); |
| DEFINE_STATIC_KEY_TRUE(parisc_has_dcache); |
| DEFINE_STATIC_KEY_TRUE(parisc_has_icache); |
| |
| static void cache_flush_local_cpu(void *dummy) |
| { |
| if (static_branch_likely(&parisc_has_icache)) |
| flush_instruction_cache_local(); |
| if (static_branch_likely(&parisc_has_dcache)) |
| flush_data_cache_local(NULL); |
| } |
| |
| void flush_cache_all_local(void) |
| { |
| cache_flush_local_cpu(NULL); |
| } |
| |
| void flush_cache_all(void) |
| { |
| if (static_branch_likely(&parisc_has_cache)) |
| on_each_cpu(cache_flush_local_cpu, NULL, 1); |
| } |
| |
| static inline void flush_data_cache(void) |
| { |
| if (static_branch_likely(&parisc_has_dcache)) |
| on_each_cpu(flush_data_cache_local, NULL, 1); |
| } |
| |
| |
| /* Kernel virtual address of pfn. */ |
| #define pfn_va(pfn) __va(PFN_PHYS(pfn)) |
| |
| void __update_cache(pte_t pte) |
| { |
| unsigned long pfn = pte_pfn(pte); |
| struct folio *folio; |
| unsigned int nr; |
| |
| /* We don't have pte special. As a result, we can be called with |
| an invalid pfn and we don't need to flush the kernel dcache page. |
| This occurs with FireGL card in C8000. */ |
| if (!pfn_valid(pfn)) |
| return; |
| |
| folio = page_folio(pfn_to_page(pfn)); |
| pfn = folio_pfn(folio); |
| nr = folio_nr_pages(folio); |
| if (folio_flush_mapping(folio) && |
| test_bit(PG_dcache_dirty, &folio->flags)) { |
| while (nr--) |
| flush_kernel_dcache_page_addr(pfn_va(pfn + nr)); |
| clear_bit(PG_dcache_dirty, &folio->flags); |
| } else if (parisc_requires_coherency()) |
| while (nr--) |
| flush_kernel_dcache_page_addr(pfn_va(pfn + nr)); |
| } |
| |
| void |
| show_cache_info(struct seq_file *m) |
| { |
| char buf[32]; |
| |
| seq_printf(m, "I-cache\t\t: %ld KB\n", |
| cache_info.ic_size/1024 ); |
| if (cache_info.dc_loop != 1) |
| snprintf(buf, 32, "%lu-way associative", cache_info.dc_loop); |
| seq_printf(m, "D-cache\t\t: %ld KB (%s%s, %s, alias=%d)\n", |
| cache_info.dc_size/1024, |
| (cache_info.dc_conf.cc_wt ? "WT":"WB"), |
| (cache_info.dc_conf.cc_sh ? ", shared I/D":""), |
| ((cache_info.dc_loop == 1) ? "direct mapped" : buf), |
| cache_info.dc_conf.cc_alias |
| ); |
| seq_printf(m, "ITLB entries\t: %ld\n" "DTLB entries\t: %ld%s\n", |
| cache_info.it_size, |
| cache_info.dt_size, |
| cache_info.dt_conf.tc_sh ? " - shared with ITLB":"" |
| ); |
| |
| #ifndef CONFIG_PA20 |
| /* BTLB - Block TLB */ |
| if (btlb_info.max_size==0) { |
| seq_printf(m, "BTLB\t\t: not supported\n" ); |
| } else { |
| seq_printf(m, |
| "BTLB fixed\t: max. %d pages, pagesize=%d (%dMB)\n" |
| "BTLB fix-entr.\t: %d instruction, %d data (%d combined)\n" |
| "BTLB var-entr.\t: %d instruction, %d data (%d combined)\n", |
| btlb_info.max_size, (int)4096, |
| btlb_info.max_size>>8, |
| btlb_info.fixed_range_info.num_i, |
| btlb_info.fixed_range_info.num_d, |
| btlb_info.fixed_range_info.num_comb, |
| btlb_info.variable_range_info.num_i, |
| btlb_info.variable_range_info.num_d, |
| btlb_info.variable_range_info.num_comb |
| ); |
| } |
| #endif |
| } |
| |
| void __init |
| parisc_cache_init(void) |
| { |
| if (pdc_cache_info(&cache_info) < 0) |
| panic("parisc_cache_init: pdc_cache_info failed"); |
| |
| #if 0 |
| printk("ic_size %lx dc_size %lx it_size %lx\n", |
| cache_info.ic_size, |
| cache_info.dc_size, |
| cache_info.it_size); |
| |
| printk("DC base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx\n", |
| cache_info.dc_base, |
| cache_info.dc_stride, |
| cache_info.dc_count, |
| cache_info.dc_loop); |
| |
| printk("dc_conf = 0x%lx alias %d blk %d line %d shift %d\n", |
| *(unsigned long *) (&cache_info.dc_conf), |
| cache_info.dc_conf.cc_alias, |
| cache_info.dc_conf.cc_block, |
| cache_info.dc_conf.cc_line, |
| cache_info.dc_conf.cc_shift); |
| printk(" wt %d sh %d cst %d hv %d\n", |
| cache_info.dc_conf.cc_wt, |
| cache_info.dc_conf.cc_sh, |
| cache_info.dc_conf.cc_cst, |
| cache_info.dc_conf.cc_hv); |
| |
| printk("IC base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx\n", |
| cache_info.ic_base, |
| cache_info.ic_stride, |
| cache_info.ic_count, |
| cache_info.ic_loop); |
| |
| printk("IT base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx off_base 0x%lx off_stride 0x%lx off_count 0x%lx\n", |
| cache_info.it_sp_base, |
| cache_info.it_sp_stride, |
| cache_info.it_sp_count, |
| cache_info.it_loop, |
| cache_info.it_off_base, |
| cache_info.it_off_stride, |
| cache_info.it_off_count); |
| |
| printk("DT base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx off_base 0x%lx off_stride 0x%lx off_count 0x%lx\n", |
| cache_info.dt_sp_base, |
| cache_info.dt_sp_stride, |
| cache_info.dt_sp_count, |
| cache_info.dt_loop, |
| cache_info.dt_off_base, |
| cache_info.dt_off_stride, |
| cache_info.dt_off_count); |
| |
| printk("ic_conf = 0x%lx alias %d blk %d line %d shift %d\n", |
| *(unsigned long *) (&cache_info.ic_conf), |
| cache_info.ic_conf.cc_alias, |
| cache_info.ic_conf.cc_block, |
| cache_info.ic_conf.cc_line, |
| cache_info.ic_conf.cc_shift); |
| printk(" wt %d sh %d cst %d hv %d\n", |
| cache_info.ic_conf.cc_wt, |
| cache_info.ic_conf.cc_sh, |
| cache_info.ic_conf.cc_cst, |
| cache_info.ic_conf.cc_hv); |
| |
| printk("D-TLB conf: sh %d page %d cst %d aid %d sr %d\n", |
| cache_info.dt_conf.tc_sh, |
| cache_info.dt_conf.tc_page, |
| cache_info.dt_conf.tc_cst, |
| cache_info.dt_conf.tc_aid, |
| cache_info.dt_conf.tc_sr); |
| |
| printk("I-TLB conf: sh %d page %d cst %d aid %d sr %d\n", |
| cache_info.it_conf.tc_sh, |
| cache_info.it_conf.tc_page, |
| cache_info.it_conf.tc_cst, |
| cache_info.it_conf.tc_aid, |
| cache_info.it_conf.tc_sr); |
| #endif |
| |
| split_tlb = 0; |
| if (cache_info.dt_conf.tc_sh == 0 || cache_info.dt_conf.tc_sh == 2) { |
| if (cache_info.dt_conf.tc_sh == 2) |
| printk(KERN_WARNING "Unexpected TLB configuration. " |
| "Will flush I/D separately (could be optimized).\n"); |
| |
| split_tlb = 1; |
| } |
| |
| /* "New and Improved" version from Jim Hull |
| * (1 << (cc_block-1)) * (cc_line << (4 + cnf.cc_shift)) |
| * The following CAFL_STRIDE is an optimized version, see |
| * http://lists.parisc-linux.org/pipermail/parisc-linux/2004-June/023625.html |
| * http://lists.parisc-linux.org/pipermail/parisc-linux/2004-June/023671.html |
| */ |
| #define CAFL_STRIDE(cnf) (cnf.cc_line << (3 + cnf.cc_block + cnf.cc_shift)) |
| dcache_stride = CAFL_STRIDE(cache_info.dc_conf); |
| icache_stride = CAFL_STRIDE(cache_info.ic_conf); |
| #undef CAFL_STRIDE |
| |
| /* stride needs to be non-zero, otherwise cache flushes will not work */ |
| WARN_ON(cache_info.dc_size && dcache_stride == 0); |
| WARN_ON(cache_info.ic_size && icache_stride == 0); |
| |
| if ((boot_cpu_data.pdc.capabilities & PDC_MODEL_NVA_MASK) == |
| PDC_MODEL_NVA_UNSUPPORTED) { |
| printk(KERN_WARNING "parisc_cache_init: Only equivalent aliasing supported!\n"); |
| #if 0 |
| panic("SMP kernel required to avoid non-equivalent aliasing"); |
| #endif |
| } |
| } |
| |
| void disable_sr_hashing(void) |
| { |
| int srhash_type, retval; |
| unsigned long space_bits; |
| |
| switch (boot_cpu_data.cpu_type) { |
| case pcx: /* We shouldn't get this far. setup.c should prevent it. */ |
| BUG(); |
| return; |
| |
| case pcxs: |
| case pcxt: |
| case pcxt_: |
| srhash_type = SRHASH_PCXST; |
| break; |
| |
| case pcxl: |
| srhash_type = SRHASH_PCXL; |
| break; |
| |
| case pcxl2: /* pcxl2 doesn't support space register hashing */ |
| return; |
| |
| default: /* Currently all PA2.0 machines use the same ins. sequence */ |
| srhash_type = SRHASH_PA20; |
| break; |
| } |
| |
| disable_sr_hashing_asm(srhash_type); |
| |
| retval = pdc_spaceid_bits(&space_bits); |
| /* If this procedure isn't implemented, don't panic. */ |
| if (retval < 0 && retval != PDC_BAD_OPTION) |
| panic("pdc_spaceid_bits call failed.\n"); |
| if (space_bits != 0) |
| panic("SpaceID hashing is still on!\n"); |
| } |
| |
| static inline void |
| __flush_cache_page(struct vm_area_struct *vma, unsigned long vmaddr, |
| unsigned long physaddr) |
| { |
| if (!static_branch_likely(&parisc_has_cache)) |
| return; |
| |
| /* |
| * The TLB is the engine of coherence on parisc. The CPU is |
| * entitled to speculate any page with a TLB mapping, so here |
| * we kill the mapping then flush the page along a special flush |
| * only alias mapping. This guarantees that the page is no-longer |
| * in the cache for any process and nor may it be speculatively |
| * read in (until the user or kernel specifically accesses it, |
| * of course). |
| */ |
| flush_tlb_page(vma, vmaddr); |
| |
| preempt_disable(); |
| flush_dcache_page_asm(physaddr, vmaddr); |
| if (vma->vm_flags & VM_EXEC) |
| flush_icache_page_asm(physaddr, vmaddr); |
| preempt_enable(); |
| } |
| |
| static void flush_kernel_dcache_page_addr(const void *addr) |
| { |
| unsigned long vaddr = (unsigned long)addr; |
| unsigned long flags; |
| |
| /* Purge TLB entry to remove translation on all CPUs */ |
| purge_tlb_start(flags); |
| pdtlb(SR_KERNEL, addr); |
| purge_tlb_end(flags); |
| |
| /* Use tmpalias flush to prevent data cache move-in */ |
| preempt_disable(); |
| flush_dcache_page_asm(__pa(vaddr), vaddr); |
| preempt_enable(); |
| } |
| |
| static void flush_kernel_icache_page_addr(const void *addr) |
| { |
| unsigned long vaddr = (unsigned long)addr; |
| unsigned long flags; |
| |
| /* Purge TLB entry to remove translation on all CPUs */ |
| purge_tlb_start(flags); |
| pdtlb(SR_KERNEL, addr); |
| purge_tlb_end(flags); |
| |
| /* Use tmpalias flush to prevent instruction cache move-in */ |
| preempt_disable(); |
| flush_icache_page_asm(__pa(vaddr), vaddr); |
| preempt_enable(); |
| } |
| |
| void kunmap_flush_on_unmap(const void *addr) |
| { |
| flush_kernel_dcache_page_addr(addr); |
| } |
| EXPORT_SYMBOL(kunmap_flush_on_unmap); |
| |
| void flush_icache_pages(struct vm_area_struct *vma, struct page *page, |
| unsigned int nr) |
| { |
| void *kaddr = page_address(page); |
| |
| for (;;) { |
| flush_kernel_dcache_page_addr(kaddr); |
| flush_kernel_icache_page_addr(kaddr); |
| if (--nr == 0) |
| break; |
| kaddr += PAGE_SIZE; |
| } |
| } |
| |
| /* |
| * Walk page directory for MM to find PTEP pointer for address ADDR. |
| */ |
| static inline pte_t *get_ptep(struct mm_struct *mm, unsigned long addr) |
| { |
| pte_t *ptep = NULL; |
| pgd_t *pgd = mm->pgd; |
| p4d_t *p4d; |
| pud_t *pud; |
| pmd_t *pmd; |
| |
| if (!pgd_none(*pgd)) { |
| p4d = p4d_offset(pgd, addr); |
| if (!p4d_none(*p4d)) { |
| pud = pud_offset(p4d, addr); |
| if (!pud_none(*pud)) { |
| pmd = pmd_offset(pud, addr); |
| if (!pmd_none(*pmd)) |
| ptep = pte_offset_map(pmd, addr); |
| } |
| } |
| } |
| return ptep; |
| } |
| |
| static inline bool pte_needs_flush(pte_t pte) |
| { |
| return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_NO_CACHE)) |
| == (_PAGE_PRESENT | _PAGE_ACCESSED); |
| } |
| |
| /* |
| * Return user physical address. Returns 0 if page is not present. |
| */ |
| static inline unsigned long get_upa(struct mm_struct *mm, unsigned long addr) |
| { |
| unsigned long flags, space, pgd, prot, pa; |
| #ifdef CONFIG_TLB_PTLOCK |
| unsigned long pgd_lock; |
| #endif |
| |
| /* Save context */ |
| local_irq_save(flags); |
| prot = mfctl(8); |
| space = mfsp(SR_USER); |
| pgd = mfctl(25); |
| #ifdef CONFIG_TLB_PTLOCK |
| pgd_lock = mfctl(28); |
| #endif |
| |
| /* Set context for lpa_user */ |
| switch_mm_irqs_off(NULL, mm, NULL); |
| pa = lpa_user(addr); |
| |
| /* Restore previous context */ |
| #ifdef CONFIG_TLB_PTLOCK |
| mtctl(pgd_lock, 28); |
| #endif |
| mtctl(pgd, 25); |
| mtsp(space, SR_USER); |
| mtctl(prot, 8); |
| local_irq_restore(flags); |
| |
| return pa; |
| } |
| |
| void flush_dcache_folio(struct folio *folio) |
| { |
| struct address_space *mapping = folio_flush_mapping(folio); |
| struct vm_area_struct *vma; |
| unsigned long addr, old_addr = 0; |
| void *kaddr; |
| unsigned long count = 0; |
| unsigned long i, nr, flags; |
| pgoff_t pgoff; |
| |
| if (mapping && !mapping_mapped(mapping)) { |
| set_bit(PG_dcache_dirty, &folio->flags); |
| return; |
| } |
| |
| nr = folio_nr_pages(folio); |
| kaddr = folio_address(folio); |
| for (i = 0; i < nr; i++) |
| flush_kernel_dcache_page_addr(kaddr + i * PAGE_SIZE); |
| |
| if (!mapping) |
| return; |
| |
| pgoff = folio->index; |
| |
| /* |
| * We have carefully arranged in arch_get_unmapped_area() that |
| * *any* mappings of a file are always congruently mapped (whether |
| * declared as MAP_PRIVATE or MAP_SHARED), so we only need |
| * to flush one address here for them all to become coherent |
| * on machines that support equivalent aliasing |
| */ |
| flush_dcache_mmap_lock_irqsave(mapping, flags); |
| vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff + nr - 1) { |
| unsigned long offset = pgoff - vma->vm_pgoff; |
| unsigned long pfn = folio_pfn(folio); |
| |
| addr = vma->vm_start; |
| nr = folio_nr_pages(folio); |
| if (offset > -nr) { |
| pfn -= offset; |
| nr += offset; |
| } else { |
| addr += offset * PAGE_SIZE; |
| } |
| if (addr + nr * PAGE_SIZE > vma->vm_end) |
| nr = (vma->vm_end - addr) / PAGE_SIZE; |
| |
| if (old_addr == 0 || (old_addr & (SHM_COLOUR - 1)) |
| != (addr & (SHM_COLOUR - 1))) { |
| for (i = 0; i < nr; i++) |
| __flush_cache_page(vma, |
| addr + i * PAGE_SIZE, |
| (pfn + i) * PAGE_SIZE); |
| /* |
| * Software is allowed to have any number |
| * of private mappings to a page. |
| */ |
| if (!(vma->vm_flags & VM_SHARED)) |
| continue; |
| if (old_addr) |
| pr_err("INEQUIVALENT ALIASES 0x%lx and 0x%lx in file %pD\n", |
| old_addr, addr, vma->vm_file); |
| if (nr == folio_nr_pages(folio)) |
| old_addr = addr; |
| } |
| WARN_ON(++count == 4096); |
| } |
| flush_dcache_mmap_unlock_irqrestore(mapping, flags); |
| } |
| EXPORT_SYMBOL(flush_dcache_folio); |
| |
| /* Defined in arch/parisc/kernel/pacache.S */ |
| EXPORT_SYMBOL(flush_kernel_dcache_range_asm); |
| EXPORT_SYMBOL(flush_kernel_icache_range_asm); |
| |
| #define FLUSH_THRESHOLD 0x80000 /* 0.5MB */ |
| static unsigned long parisc_cache_flush_threshold __ro_after_init = FLUSH_THRESHOLD; |
| |
| #define FLUSH_TLB_THRESHOLD (16*1024) /* 16 KiB minimum TLB threshold */ |
| static unsigned long parisc_tlb_flush_threshold __ro_after_init = ~0UL; |
| |
| void __init parisc_setup_cache_timing(void) |
| { |
| unsigned long rangetime, alltime; |
| unsigned long size; |
| unsigned long threshold, threshold2; |
| |
| alltime = mfctl(16); |
| flush_data_cache(); |
| alltime = mfctl(16) - alltime; |
| |
| size = (unsigned long)(_end - _text); |
| rangetime = mfctl(16); |
| flush_kernel_dcache_range((unsigned long)_text, size); |
| rangetime = mfctl(16) - rangetime; |
| |
| printk(KERN_DEBUG "Whole cache flush %lu cycles, flushing %lu bytes %lu cycles\n", |
| alltime, size, rangetime); |
| |
| threshold = L1_CACHE_ALIGN((unsigned long)((uint64_t)size * alltime / rangetime)); |
| pr_info("Calculated flush threshold is %lu KiB\n", |
| threshold/1024); |
| |
| /* |
| * The threshold computed above isn't very reliable. The following |
| * heuristic works reasonably well on c8000/rp3440. |
| */ |
| threshold2 = cache_info.dc_size * num_online_cpus(); |
| parisc_cache_flush_threshold = threshold2; |
| printk(KERN_INFO "Cache flush threshold set to %lu KiB\n", |
| parisc_cache_flush_threshold/1024); |
| |
| /* calculate TLB flush threshold */ |
| |
| /* On SMP machines, skip the TLB measure of kernel text which |
| * has been mapped as huge pages. */ |
| if (num_online_cpus() > 1 && !parisc_requires_coherency()) { |
| threshold = max(cache_info.it_size, cache_info.dt_size); |
| threshold *= PAGE_SIZE; |
| threshold /= num_online_cpus(); |
| goto set_tlb_threshold; |
| } |
| |
| size = (unsigned long)_end - (unsigned long)_text; |
| rangetime = mfctl(16); |
| flush_tlb_kernel_range((unsigned long)_text, (unsigned long)_end); |
| rangetime = mfctl(16) - rangetime; |
| |
| alltime = mfctl(16); |
| flush_tlb_all(); |
| alltime = mfctl(16) - alltime; |
| |
| printk(KERN_INFO "Whole TLB flush %lu cycles, Range flush %lu bytes %lu cycles\n", |
| alltime, size, rangetime); |
| |
| threshold = PAGE_ALIGN((num_online_cpus() * size * alltime) / rangetime); |
| printk(KERN_INFO "Calculated TLB flush threshold %lu KiB\n", |
| threshold/1024); |
| |
| set_tlb_threshold: |
| parisc_tlb_flush_threshold = max(threshold, FLUSH_TLB_THRESHOLD); |
| printk(KERN_INFO "TLB flush threshold set to %lu KiB\n", |
| parisc_tlb_flush_threshold/1024); |
| } |
| |
| extern void purge_kernel_dcache_page_asm(unsigned long); |
| extern void clear_user_page_asm(void *, unsigned long); |
| extern void copy_user_page_asm(void *, void *, unsigned long); |
| |
| static void flush_cache_page_if_present(struct vm_area_struct *vma, |
| unsigned long vmaddr) |
| { |
| #if CONFIG_FLUSH_PAGE_ACCESSED |
| bool needs_flush = false; |
| pte_t *ptep, pte; |
| |
| ptep = get_ptep(vma->vm_mm, vmaddr); |
| if (ptep) { |
| pte = ptep_get(ptep); |
| needs_flush = pte_needs_flush(pte); |
| pte_unmap(ptep); |
| } |
| if (needs_flush) |
| __flush_cache_page(vma, vmaddr, PFN_PHYS(pte_pfn(pte))); |
| #else |
| struct mm_struct *mm = vma->vm_mm; |
| unsigned long physaddr = get_upa(mm, vmaddr); |
| |
| if (physaddr) |
| __flush_cache_page(vma, vmaddr, PAGE_ALIGN_DOWN(physaddr)); |
| #endif |
| } |
| |
| void copy_user_highpage(struct page *to, struct page *from, |
| unsigned long vaddr, struct vm_area_struct *vma) |
| { |
| void *kto, *kfrom; |
| |
| kfrom = kmap_local_page(from); |
| kto = kmap_local_page(to); |
| __flush_cache_page(vma, vaddr, PFN_PHYS(page_to_pfn(from))); |
| copy_page_asm(kto, kfrom); |
| kunmap_local(kto); |
| kunmap_local(kfrom); |
| } |
| |
| void copy_to_user_page(struct vm_area_struct *vma, struct page *page, |
| unsigned long user_vaddr, void *dst, void *src, int len) |
| { |
| __flush_cache_page(vma, user_vaddr, PFN_PHYS(page_to_pfn(page))); |
| memcpy(dst, src, len); |
| flush_kernel_dcache_page_addr(PTR_PAGE_ALIGN_DOWN(dst)); |
| } |
| |
| void copy_from_user_page(struct vm_area_struct *vma, struct page *page, |
| unsigned long user_vaddr, void *dst, void *src, int len) |
| { |
| __flush_cache_page(vma, user_vaddr, PFN_PHYS(page_to_pfn(page))); |
| memcpy(dst, src, len); |
| flush_kernel_dcache_page_addr(PTR_PAGE_ALIGN_DOWN(src)); |
| } |
| |
| /* __flush_tlb_range() |
| * |
| * returns 1 if all TLBs were flushed. |
| */ |
| int __flush_tlb_range(unsigned long sid, unsigned long start, |
| unsigned long end) |
| { |
| unsigned long flags; |
| |
| if ((!IS_ENABLED(CONFIG_SMP) || !arch_irqs_disabled()) && |
| end - start >= parisc_tlb_flush_threshold) { |
| flush_tlb_all(); |
| return 1; |
| } |
| |
| /* Purge TLB entries for small ranges using the pdtlb and |
| pitlb instructions. These instructions execute locally |
| but cause a purge request to be broadcast to other TLBs. */ |
| while (start < end) { |
| purge_tlb_start(flags); |
| mtsp(sid, SR_TEMP1); |
| pdtlb(SR_TEMP1, start); |
| pitlb(SR_TEMP1, start); |
| purge_tlb_end(flags); |
| start += PAGE_SIZE; |
| } |
| return 0; |
| } |
| |
| static void flush_cache_pages(struct vm_area_struct *vma, unsigned long start, unsigned long end) |
| { |
| unsigned long addr; |
| |
| for (addr = start; addr < end; addr += PAGE_SIZE) |
| flush_cache_page_if_present(vma, addr); |
| } |
| |
| static inline unsigned long mm_total_size(struct mm_struct *mm) |
| { |
| struct vm_area_struct *vma; |
| unsigned long usize = 0; |
| VMA_ITERATOR(vmi, mm, 0); |
| |
| for_each_vma(vmi, vma) { |
| if (usize >= parisc_cache_flush_threshold) |
| break; |
| usize += vma->vm_end - vma->vm_start; |
| } |
| return usize; |
| } |
| |
| void flush_cache_mm(struct mm_struct *mm) |
| { |
| struct vm_area_struct *vma; |
| VMA_ITERATOR(vmi, mm, 0); |
| |
| /* |
| * Flushing the whole cache on each cpu takes forever on |
| * rp3440, etc. So, avoid it if the mm isn't too big. |
| * |
| * Note that we must flush the entire cache on machines |
| * with aliasing caches to prevent random segmentation |
| * faults. |
| */ |
| if (!parisc_requires_coherency() |
| || mm_total_size(mm) >= parisc_cache_flush_threshold) { |
| if (WARN_ON(IS_ENABLED(CONFIG_SMP) && arch_irqs_disabled())) |
| return; |
| flush_tlb_all(); |
| flush_cache_all(); |
| return; |
| } |
| |
| /* Flush mm */ |
| for_each_vma(vmi, vma) |
| flush_cache_pages(vma, vma->vm_start, vma->vm_end); |
| } |
| |
| void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) |
| { |
| if (!parisc_requires_coherency() |
| || end - start >= parisc_cache_flush_threshold) { |
| if (WARN_ON(IS_ENABLED(CONFIG_SMP) && arch_irqs_disabled())) |
| return; |
| flush_tlb_range(vma, start, end); |
| if (vma->vm_flags & VM_EXEC) |
| flush_cache_all(); |
| else |
| flush_data_cache(); |
| return; |
| } |
| |
| flush_cache_pages(vma, start & PAGE_MASK, end); |
| } |
| |
| void flush_cache_page(struct vm_area_struct *vma, unsigned long vmaddr, unsigned long pfn) |
| { |
| __flush_cache_page(vma, vmaddr, PFN_PHYS(pfn)); |
| } |
| |
| void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr) |
| { |
| if (!PageAnon(page)) |
| return; |
| |
| __flush_cache_page(vma, vmaddr, PFN_PHYS(page_to_pfn(page))); |
| } |
| |
| int ptep_clear_flush_young(struct vm_area_struct *vma, unsigned long addr, |
| pte_t *ptep) |
| { |
| pte_t pte = ptep_get(ptep); |
| |
| if (!pte_young(pte)) |
| return 0; |
| set_pte(ptep, pte_mkold(pte)); |
| #if CONFIG_FLUSH_PAGE_ACCESSED |
| __flush_cache_page(vma, addr, PFN_PHYS(pte_pfn(pte))); |
| #endif |
| return 1; |
| } |
| |
| /* |
| * After a PTE is cleared, we have no way to flush the cache for |
| * the physical page. On PA8800 and PA8900 processors, these lines |
| * can cause random cache corruption. Thus, we must flush the cache |
| * as well as the TLB when clearing a PTE that's valid. |
| */ |
| pte_t ptep_clear_flush(struct vm_area_struct *vma, unsigned long addr, |
| pte_t *ptep) |
| { |
| struct mm_struct *mm = (vma)->vm_mm; |
| pte_t pte = ptep_get_and_clear(mm, addr, ptep); |
| unsigned long pfn = pte_pfn(pte); |
| |
| if (pfn_valid(pfn)) |
| __flush_cache_page(vma, addr, PFN_PHYS(pfn)); |
| else if (pte_accessible(mm, pte)) |
| flush_tlb_page(vma, addr); |
| |
| return pte; |
| } |
| |
| /* |
| * The physical address for pages in the ioremap case can be obtained |
| * from the vm_struct struct. I wasn't able to successfully handle the |
| * vmalloc and vmap cases. We have an array of struct page pointers in |
| * the uninitialized vmalloc case but the flush failed using page_to_pfn. |
| */ |
| void flush_cache_vmap(unsigned long start, unsigned long end) |
| { |
| unsigned long addr, physaddr; |
| struct vm_struct *vm; |
| |
| /* Prevent cache move-in */ |
| flush_tlb_kernel_range(start, end); |
| |
| if (end - start >= parisc_cache_flush_threshold) { |
| flush_cache_all(); |
| return; |
| } |
| |
| if (WARN_ON_ONCE(!is_vmalloc_addr((void *)start))) { |
| flush_cache_all(); |
| return; |
| } |
| |
| vm = find_vm_area((void *)start); |
| if (WARN_ON_ONCE(!vm)) { |
| flush_cache_all(); |
| return; |
| } |
| |
| /* The physical addresses of IOREMAP regions are contiguous */ |
| if (vm->flags & VM_IOREMAP) { |
| physaddr = vm->phys_addr; |
| for (addr = start; addr < end; addr += PAGE_SIZE) { |
| preempt_disable(); |
| flush_dcache_page_asm(physaddr, start); |
| flush_icache_page_asm(physaddr, start); |
| preempt_enable(); |
| physaddr += PAGE_SIZE; |
| } |
| return; |
| } |
| |
| flush_cache_all(); |
| } |
| EXPORT_SYMBOL(flush_cache_vmap); |
| |
| /* |
| * The vm_struct has been retired and the page table is set up. The |
| * last page in the range is a guard page. Its physical address can't |
| * be determined using lpa, so there is no way to flush the range |
| * using flush_dcache_page_asm. |
| */ |
| void flush_cache_vunmap(unsigned long start, unsigned long end) |
| { |
| /* Prevent cache move-in */ |
| flush_tlb_kernel_range(start, end); |
| flush_data_cache(); |
| } |
| EXPORT_SYMBOL(flush_cache_vunmap); |
| |
| /* |
| * On systems with PA8800/PA8900 processors, there is no way to flush |
| * a vmap range other than using the architected loop to flush the |
| * entire cache. The page directory is not set up, so we can't use |
| * fdc, etc. FDCE/FICE don't work to flush a portion of the cache. |
| * L2 is physically indexed but FDCE/FICE instructions in virtual |
| * mode output their virtual address on the core bus, not their |
| * real address. As a result, the L2 cache index formed from the |
| * virtual address will most likely not be the same as the L2 index |
| * formed from the real address. |
| */ |
| void flush_kernel_vmap_range(void *vaddr, int size) |
| { |
| unsigned long start = (unsigned long)vaddr; |
| unsigned long end = start + size; |
| |
| flush_tlb_kernel_range(start, end); |
| |
| if (!static_branch_likely(&parisc_has_dcache)) |
| return; |
| |
| /* If interrupts are disabled, we can only do local flush */ |
| if (WARN_ON(IS_ENABLED(CONFIG_SMP) && arch_irqs_disabled())) { |
| flush_data_cache_local(NULL); |
| return; |
| } |
| |
| flush_data_cache(); |
| } |
| EXPORT_SYMBOL(flush_kernel_vmap_range); |
| |
| void invalidate_kernel_vmap_range(void *vaddr, int size) |
| { |
| unsigned long start = (unsigned long)vaddr; |
| unsigned long end = start + size; |
| |
| /* Ensure DMA is complete */ |
| asm_syncdma(); |
| |
| flush_tlb_kernel_range(start, end); |
| |
| if (!static_branch_likely(&parisc_has_dcache)) |
| return; |
| |
| /* If interrupts are disabled, we can only do local flush */ |
| if (WARN_ON(IS_ENABLED(CONFIG_SMP) && arch_irqs_disabled())) { |
| flush_data_cache_local(NULL); |
| return; |
| } |
| |
| flush_data_cache(); |
| } |
| EXPORT_SYMBOL(invalidate_kernel_vmap_range); |
| |
| |
| SYSCALL_DEFINE3(cacheflush, unsigned long, addr, unsigned long, bytes, |
| unsigned int, cache) |
| { |
| unsigned long start, end; |
| ASM_EXCEPTIONTABLE_VAR(error); |
| |
| if (bytes == 0) |
| return 0; |
| if (!access_ok((void __user *) addr, bytes)) |
| return -EFAULT; |
| |
| end = addr + bytes; |
| |
| if (cache & DCACHE) { |
| start = addr; |
| __asm__ __volatile__ ( |
| #ifdef CONFIG_64BIT |
| "1: cmpb,*<<,n %0,%2,1b\n" |
| #else |
| "1: cmpb,<<,n %0,%2,1b\n" |
| #endif |
| " fic,m %3(%4,%0)\n" |
| "2: sync\n" |
| ASM_EXCEPTIONTABLE_ENTRY_EFAULT(1b, 2b, "%1") |
| : "+r" (start), "+r" (error) |
| : "r" (end), "r" (dcache_stride), "i" (SR_USER)); |
| } |
| |
| if (cache & ICACHE && error == 0) { |
| start = addr; |
| __asm__ __volatile__ ( |
| #ifdef CONFIG_64BIT |
| "1: cmpb,*<<,n %0,%2,1b\n" |
| #else |
| "1: cmpb,<<,n %0,%2,1b\n" |
| #endif |
| " fdc,m %3(%4,%0)\n" |
| "2: sync\n" |
| ASM_EXCEPTIONTABLE_ENTRY_EFAULT(1b, 2b, "%1") |
| : "+r" (start), "+r" (error) |
| : "r" (end), "r" (icache_stride), "i" (SR_USER)); |
| } |
| |
| return error; |
| } |