| // SPDX-License-Identifier: GPL-2.0 |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/objtool.h> |
| #include <linux/percpu.h> |
| |
| #include <asm/debugreg.h> |
| #include <asm/mmu_context.h> |
| |
| #include "cpuid.h" |
| #include "hyperv.h" |
| #include "mmu.h" |
| #include "nested.h" |
| #include "pmu.h" |
| #include "posted_intr.h" |
| #include "sgx.h" |
| #include "trace.h" |
| #include "vmx.h" |
| #include "x86.h" |
| #include "smm.h" |
| |
| static bool __read_mostly enable_shadow_vmcs = 1; |
| module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO); |
| |
| static bool __read_mostly nested_early_check = 0; |
| module_param(nested_early_check, bool, S_IRUGO); |
| |
| #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK |
| |
| /* |
| * Hyper-V requires all of these, so mark them as supported even though |
| * they are just treated the same as all-context. |
| */ |
| #define VMX_VPID_EXTENT_SUPPORTED_MASK \ |
| (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \ |
| VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \ |
| VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \ |
| VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT) |
| |
| #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5 |
| |
| enum { |
| VMX_VMREAD_BITMAP, |
| VMX_VMWRITE_BITMAP, |
| VMX_BITMAP_NR |
| }; |
| static unsigned long *vmx_bitmap[VMX_BITMAP_NR]; |
| |
| #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP]) |
| #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP]) |
| |
| struct shadow_vmcs_field { |
| u16 encoding; |
| u16 offset; |
| }; |
| static struct shadow_vmcs_field shadow_read_only_fields[] = { |
| #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) }, |
| #include "vmcs_shadow_fields.h" |
| }; |
| static int max_shadow_read_only_fields = |
| ARRAY_SIZE(shadow_read_only_fields); |
| |
| static struct shadow_vmcs_field shadow_read_write_fields[] = { |
| #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) }, |
| #include "vmcs_shadow_fields.h" |
| }; |
| static int max_shadow_read_write_fields = |
| ARRAY_SIZE(shadow_read_write_fields); |
| |
| static void init_vmcs_shadow_fields(void) |
| { |
| int i, j; |
| |
| memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE); |
| memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE); |
| |
| for (i = j = 0; i < max_shadow_read_only_fields; i++) { |
| struct shadow_vmcs_field entry = shadow_read_only_fields[i]; |
| u16 field = entry.encoding; |
| |
| if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 && |
| (i + 1 == max_shadow_read_only_fields || |
| shadow_read_only_fields[i + 1].encoding != field + 1)) |
| pr_err("Missing field from shadow_read_only_field %x\n", |
| field + 1); |
| |
| clear_bit(field, vmx_vmread_bitmap); |
| if (field & 1) |
| #ifdef CONFIG_X86_64 |
| continue; |
| #else |
| entry.offset += sizeof(u32); |
| #endif |
| shadow_read_only_fields[j++] = entry; |
| } |
| max_shadow_read_only_fields = j; |
| |
| for (i = j = 0; i < max_shadow_read_write_fields; i++) { |
| struct shadow_vmcs_field entry = shadow_read_write_fields[i]; |
| u16 field = entry.encoding; |
| |
| if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 && |
| (i + 1 == max_shadow_read_write_fields || |
| shadow_read_write_fields[i + 1].encoding != field + 1)) |
| pr_err("Missing field from shadow_read_write_field %x\n", |
| field + 1); |
| |
| WARN_ONCE(field >= GUEST_ES_AR_BYTES && |
| field <= GUEST_TR_AR_BYTES, |
| "Update vmcs12_write_any() to drop reserved bits from AR_BYTES"); |
| |
| /* |
| * PML and the preemption timer can be emulated, but the |
| * processor cannot vmwrite to fields that don't exist |
| * on bare metal. |
| */ |
| switch (field) { |
| case GUEST_PML_INDEX: |
| if (!cpu_has_vmx_pml()) |
| continue; |
| break; |
| case VMX_PREEMPTION_TIMER_VALUE: |
| if (!cpu_has_vmx_preemption_timer()) |
| continue; |
| break; |
| case GUEST_INTR_STATUS: |
| if (!cpu_has_vmx_apicv()) |
| continue; |
| break; |
| default: |
| break; |
| } |
| |
| clear_bit(field, vmx_vmwrite_bitmap); |
| clear_bit(field, vmx_vmread_bitmap); |
| if (field & 1) |
| #ifdef CONFIG_X86_64 |
| continue; |
| #else |
| entry.offset += sizeof(u32); |
| #endif |
| shadow_read_write_fields[j++] = entry; |
| } |
| max_shadow_read_write_fields = j; |
| } |
| |
| /* |
| * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(), |
| * set the success or error code of an emulated VMX instruction (as specified |
| * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated |
| * instruction. |
| */ |
| static int nested_vmx_succeed(struct kvm_vcpu *vcpu) |
| { |
| vmx_set_rflags(vcpu, vmx_get_rflags(vcpu) |
| & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | |
| X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF)); |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| |
| static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu) |
| { |
| vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) |
| & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF | |
| X86_EFLAGS_SF | X86_EFLAGS_OF)) |
| | X86_EFLAGS_CF); |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| |
| static int nested_vmx_failValid(struct kvm_vcpu *vcpu, |
| u32 vm_instruction_error) |
| { |
| vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) |
| & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | |
| X86_EFLAGS_SF | X86_EFLAGS_OF)) |
| | X86_EFLAGS_ZF); |
| get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error; |
| /* |
| * We don't need to force sync to shadow VMCS because |
| * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all |
| * fields and thus must be synced. |
| */ |
| if (nested_vmx_is_evmptr12_set(to_vmx(vcpu))) |
| to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true; |
| |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| |
| static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| /* |
| * failValid writes the error number to the current VMCS, which |
| * can't be done if there isn't a current VMCS. |
| */ |
| if (vmx->nested.current_vmptr == INVALID_GPA && |
| !nested_vmx_is_evmptr12_valid(vmx)) |
| return nested_vmx_failInvalid(vcpu); |
| |
| return nested_vmx_failValid(vcpu, vm_instruction_error); |
| } |
| |
| static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator) |
| { |
| /* TODO: not to reset guest simply here. */ |
| kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
| pr_debug_ratelimited("nested vmx abort, indicator %d\n", indicator); |
| } |
| |
| static inline bool vmx_control_verify(u32 control, u32 low, u32 high) |
| { |
| return fixed_bits_valid(control, low, high); |
| } |
| |
| static inline u64 vmx_control_msr(u32 low, u32 high) |
| { |
| return low | ((u64)high << 32); |
| } |
| |
| static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx) |
| { |
| secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS); |
| vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); |
| vmx->nested.need_vmcs12_to_shadow_sync = false; |
| } |
| |
| static inline void nested_release_evmcs(struct kvm_vcpu *vcpu) |
| { |
| #ifdef CONFIG_KVM_HYPERV |
| struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (nested_vmx_is_evmptr12_valid(vmx)) { |
| kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true); |
| vmx->nested.hv_evmcs = NULL; |
| } |
| |
| vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; |
| |
| if (hv_vcpu) { |
| hv_vcpu->nested.pa_page_gpa = INVALID_GPA; |
| hv_vcpu->nested.vm_id = 0; |
| hv_vcpu->nested.vp_id = 0; |
| } |
| #endif |
| } |
| |
| static bool nested_evmcs_handle_vmclear(struct kvm_vcpu *vcpu, gpa_t vmptr) |
| { |
| #ifdef CONFIG_KVM_HYPERV |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| /* |
| * When Enlightened VMEntry is enabled on the calling CPU we treat |
| * memory area pointer by vmptr as Enlightened VMCS (as there's no good |
| * way to distinguish it from VMCS12) and we must not corrupt it by |
| * writing to the non-existent 'launch_state' field. The area doesn't |
| * have to be the currently active EVMCS on the calling CPU and there's |
| * nothing KVM has to do to transition it from 'active' to 'non-active' |
| * state. It is possible that the area will stay mapped as |
| * vmx->nested.hv_evmcs but this shouldn't be a problem. |
| */ |
| if (!guest_cpuid_has_evmcs(vcpu) || |
| !evmptr_is_valid(nested_get_evmptr(vcpu))) |
| return false; |
| |
| if (nested_vmx_evmcs(vmx) && vmptr == vmx->nested.hv_evmcs_vmptr) |
| nested_release_evmcs(vcpu); |
| |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx, |
| struct loaded_vmcs *prev) |
| { |
| struct vmcs_host_state *dest, *src; |
| |
| if (unlikely(!vmx->guest_state_loaded)) |
| return; |
| |
| src = &prev->host_state; |
| dest = &vmx->loaded_vmcs->host_state; |
| |
| vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base); |
| dest->ldt_sel = src->ldt_sel; |
| #ifdef CONFIG_X86_64 |
| dest->ds_sel = src->ds_sel; |
| dest->es_sel = src->es_sel; |
| #endif |
| } |
| |
| static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct loaded_vmcs *prev; |
| int cpu; |
| |
| if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs)) |
| return; |
| |
| cpu = get_cpu(); |
| prev = vmx->loaded_vmcs; |
| vmx->loaded_vmcs = vmcs; |
| vmx_vcpu_load_vmcs(vcpu, cpu, prev); |
| vmx_sync_vmcs_host_state(vmx, prev); |
| put_cpu(); |
| |
| vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET; |
| |
| /* |
| * All lazily updated registers will be reloaded from VMCS12 on both |
| * vmentry and vmexit. |
| */ |
| vcpu->arch.regs_dirty = 0; |
| } |
| |
| /* |
| * Free whatever needs to be freed from vmx->nested when L1 goes down, or |
| * just stops using VMX. |
| */ |
| static void free_nested(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01)) |
| vmx_switch_vmcs(vcpu, &vmx->vmcs01); |
| |
| if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon) |
| return; |
| |
| kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu); |
| |
| vmx->nested.vmxon = false; |
| vmx->nested.smm.vmxon = false; |
| vmx->nested.vmxon_ptr = INVALID_GPA; |
| free_vpid(vmx->nested.vpid02); |
| vmx->nested.posted_intr_nv = -1; |
| vmx->nested.current_vmptr = INVALID_GPA; |
| if (enable_shadow_vmcs) { |
| vmx_disable_shadow_vmcs(vmx); |
| vmcs_clear(vmx->vmcs01.shadow_vmcs); |
| free_vmcs(vmx->vmcs01.shadow_vmcs); |
| vmx->vmcs01.shadow_vmcs = NULL; |
| } |
| kfree(vmx->nested.cached_vmcs12); |
| vmx->nested.cached_vmcs12 = NULL; |
| kfree(vmx->nested.cached_shadow_vmcs12); |
| vmx->nested.cached_shadow_vmcs12 = NULL; |
| /* |
| * Unpin physical memory we referred to in the vmcs02. The APIC access |
| * page's backing page (yeah, confusing) shouldn't actually be accessed, |
| * and if it is written, the contents are irrelevant. |
| */ |
| kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false); |
| kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true); |
| kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true); |
| vmx->nested.pi_desc = NULL; |
| |
| kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); |
| |
| nested_release_evmcs(vcpu); |
| |
| free_loaded_vmcs(&vmx->nested.vmcs02); |
| } |
| |
| /* |
| * Ensure that the current vmcs of the logical processor is the |
| * vmcs01 of the vcpu before calling free_nested(). |
| */ |
| void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu) |
| { |
| vcpu_load(vcpu); |
| vmx_leave_nested(vcpu); |
| vcpu_put(vcpu); |
| } |
| |
| #define EPTP_PA_MASK GENMASK_ULL(51, 12) |
| |
| static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp) |
| { |
| return VALID_PAGE(root_hpa) && |
| ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK)); |
| } |
| |
| static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp, |
| gpa_t addr) |
| { |
| unsigned long roots = 0; |
| uint i; |
| struct kvm_mmu_root_info *cached_root; |
| |
| WARN_ON_ONCE(!mmu_is_nested(vcpu)); |
| |
| for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { |
| cached_root = &vcpu->arch.mmu->prev_roots[i]; |
| |
| if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd, |
| eptp)) |
| roots |= KVM_MMU_ROOT_PREVIOUS(i); |
| } |
| if (roots) |
| kvm_mmu_invalidate_addr(vcpu, vcpu->arch.mmu, addr, roots); |
| } |
| |
| static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu, |
| struct x86_exception *fault) |
| { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| unsigned long exit_qualification; |
| u32 vm_exit_reason; |
| |
| if (vmx->nested.pml_full) { |
| vm_exit_reason = EXIT_REASON_PML_FULL; |
| vmx->nested.pml_full = false; |
| |
| /* |
| * It should be impossible to trigger a nested PML Full VM-Exit |
| * for anything other than an EPT Violation from L2. KVM *can* |
| * trigger nEPT page fault injection in response to an EPT |
| * Misconfig, e.g. if the MMIO SPTE was stale and L1's EPT |
| * tables also changed, but KVM should not treat EPT Misconfig |
| * VM-Exits as writes. |
| */ |
| WARN_ON_ONCE(vmx->exit_reason.basic != EXIT_REASON_EPT_VIOLATION); |
| |
| /* |
| * PML Full and EPT Violation VM-Exits both use bit 12 to report |
| * "NMI unblocking due to IRET", i.e. the bit can be propagated |
| * as-is from the original EXIT_QUALIFICATION. |
| */ |
| exit_qualification = vmx_get_exit_qual(vcpu) & INTR_INFO_UNBLOCK_NMI; |
| } else { |
| if (fault->error_code & PFERR_RSVD_MASK) { |
| vm_exit_reason = EXIT_REASON_EPT_MISCONFIG; |
| exit_qualification = 0; |
| } else { |
| exit_qualification = fault->exit_qualification; |
| exit_qualification |= vmx_get_exit_qual(vcpu) & |
| (EPT_VIOLATION_GVA_IS_VALID | |
| EPT_VIOLATION_GVA_TRANSLATED); |
| vm_exit_reason = EXIT_REASON_EPT_VIOLATION; |
| } |
| |
| /* |
| * Although the caller (kvm_inject_emulated_page_fault) would |
| * have already synced the faulting address in the shadow EPT |
| * tables for the current EPTP12, we also need to sync it for |
| * any other cached EPTP02s based on the same EP4TA, since the |
| * TLB associates mappings to the EP4TA rather than the full EPTP. |
| */ |
| nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer, |
| fault->address); |
| } |
| |
| nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification); |
| vmcs12->guest_physical_address = fault->address; |
| } |
| |
| static void nested_ept_new_eptp(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT; |
| int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps); |
| |
| kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level, |
| nested_ept_ad_enabled(vcpu), |
| nested_ept_get_eptp(vcpu)); |
| } |
| |
| static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu) |
| { |
| WARN_ON(mmu_is_nested(vcpu)); |
| |
| vcpu->arch.mmu = &vcpu->arch.guest_mmu; |
| nested_ept_new_eptp(vcpu); |
| vcpu->arch.mmu->get_guest_pgd = nested_ept_get_eptp; |
| vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault; |
| vcpu->arch.mmu->get_pdptr = kvm_pdptr_read; |
| |
| vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu; |
| } |
| |
| static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu) |
| { |
| vcpu->arch.mmu = &vcpu->arch.root_mmu; |
| vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; |
| } |
| |
| static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12, |
| u16 error_code) |
| { |
| bool inequality, bit; |
| |
| bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0; |
| inequality = |
| (error_code & vmcs12->page_fault_error_code_mask) != |
| vmcs12->page_fault_error_code_match; |
| return inequality ^ bit; |
| } |
| |
| static bool nested_vmx_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector, |
| u32 error_code) |
| { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| |
| /* |
| * Drop bits 31:16 of the error code when performing the #PF mask+match |
| * check. All VMCS fields involved are 32 bits, but Intel CPUs never |
| * set bits 31:16 and VMX disallows setting bits 31:16 in the injected |
| * error code. Including the to-be-dropped bits in the check might |
| * result in an "impossible" or missed exit from L1's perspective. |
| */ |
| if (vector == PF_VECTOR) |
| return nested_vmx_is_page_fault_vmexit(vmcs12, (u16)error_code); |
| |
| return (vmcs12->exception_bitmap & (1u << vector)); |
| } |
| |
| static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) |
| return 0; |
| |
| if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) || |
| CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b))) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) |
| return 0; |
| |
| if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap))) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) |
| return 0; |
| |
| if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /* |
| * For x2APIC MSRs, ignore the vmcs01 bitmap. L1 can enable x2APIC without L1 |
| * itself utilizing x2APIC. All MSRs were previously set to be intercepted, |
| * only the "disable intercept" case needs to be handled. |
| */ |
| static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1, |
| unsigned long *msr_bitmap_l0, |
| u32 msr, int type) |
| { |
| if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr)) |
| vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr); |
| |
| if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr)) |
| vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr); |
| } |
| |
| static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap) |
| { |
| int msr; |
| |
| for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { |
| unsigned word = msr / BITS_PER_LONG; |
| |
| msr_bitmap[word] = ~0; |
| msr_bitmap[word + (0x800 / sizeof(long))] = ~0; |
| } |
| } |
| |
| #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw) \ |
| static inline \ |
| void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx, \ |
| unsigned long *msr_bitmap_l1, \ |
| unsigned long *msr_bitmap_l0, u32 msr) \ |
| { \ |
| if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) || \ |
| vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr)) \ |
| vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr); \ |
| else \ |
| vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr); \ |
| } |
| BUILD_NVMX_MSR_INTERCEPT_HELPER(read) |
| BUILD_NVMX_MSR_INTERCEPT_HELPER(write) |
| |
| static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx, |
| unsigned long *msr_bitmap_l1, |
| unsigned long *msr_bitmap_l0, |
| u32 msr, int types) |
| { |
| if (types & MSR_TYPE_R) |
| nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1, |
| msr_bitmap_l0, msr); |
| if (types & MSR_TYPE_W) |
| nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1, |
| msr_bitmap_l0, msr); |
| } |
| |
| /* |
| * Merge L0's and L1's MSR bitmap, return false to indicate that |
| * we do not use the hardware. |
| */ |
| static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| int msr; |
| unsigned long *msr_bitmap_l1; |
| unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap; |
| struct kvm_host_map *map = &vmx->nested.msr_bitmap_map; |
| |
| /* Nothing to do if the MSR bitmap is not in use. */ |
| if (!cpu_has_vmx_msr_bitmap() || |
| !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) |
| return false; |
| |
| /* |
| * MSR bitmap update can be skipped when: |
| * - MSR bitmap for L1 hasn't changed. |
| * - Nested hypervisor (L1) is attempting to launch the same L2 as |
| * before. |
| * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature |
| * and tells KVM (L0) there were no changes in MSR bitmap for L2. |
| */ |
| if (!vmx->nested.force_msr_bitmap_recalc) { |
| struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx); |
| |
| if (evmcs && evmcs->hv_enlightenments_control.msr_bitmap && |
| evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP) |
| return true; |
| } |
| |
| if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map)) |
| return false; |
| |
| msr_bitmap_l1 = (unsigned long *)map->hva; |
| |
| /* |
| * To keep the control flow simple, pay eight 8-byte writes (sixteen |
| * 4-byte writes on 32-bit systems) up front to enable intercepts for |
| * the x2APIC MSR range and selectively toggle those relevant to L2. |
| */ |
| enable_x2apic_msr_intercepts(msr_bitmap_l0); |
| |
| if (nested_cpu_has_virt_x2apic_mode(vmcs12)) { |
| if (nested_cpu_has_apic_reg_virt(vmcs12)) { |
| /* |
| * L0 need not intercept reads for MSRs between 0x800 |
| * and 0x8ff, it just lets the processor take the value |
| * from the virtual-APIC page; take those 256 bits |
| * directly from the L1 bitmap. |
| */ |
| for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { |
| unsigned word = msr / BITS_PER_LONG; |
| |
| msr_bitmap_l0[word] = msr_bitmap_l1[word]; |
| } |
| } |
| |
| nested_vmx_disable_intercept_for_x2apic_msr( |
| msr_bitmap_l1, msr_bitmap_l0, |
| X2APIC_MSR(APIC_TASKPRI), |
| MSR_TYPE_R | MSR_TYPE_W); |
| |
| if (nested_cpu_has_vid(vmcs12)) { |
| nested_vmx_disable_intercept_for_x2apic_msr( |
| msr_bitmap_l1, msr_bitmap_l0, |
| X2APIC_MSR(APIC_EOI), |
| MSR_TYPE_W); |
| nested_vmx_disable_intercept_for_x2apic_msr( |
| msr_bitmap_l1, msr_bitmap_l0, |
| X2APIC_MSR(APIC_SELF_IPI), |
| MSR_TYPE_W); |
| } |
| } |
| |
| /* |
| * Always check vmcs01's bitmap to honor userspace MSR filters and any |
| * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through. |
| */ |
| #ifdef CONFIG_X86_64 |
| nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0, |
| MSR_FS_BASE, MSR_TYPE_RW); |
| |
| nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0, |
| MSR_GS_BASE, MSR_TYPE_RW); |
| |
| nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0, |
| MSR_KERNEL_GS_BASE, MSR_TYPE_RW); |
| #endif |
| nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0, |
| MSR_IA32_SPEC_CTRL, MSR_TYPE_RW); |
| |
| nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0, |
| MSR_IA32_PRED_CMD, MSR_TYPE_W); |
| |
| nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0, |
| MSR_IA32_FLUSH_CMD, MSR_TYPE_W); |
| |
| kvm_vcpu_unmap(vcpu, &vmx->nested.msr_bitmap_map, false); |
| |
| vmx->nested.force_msr_bitmap_recalc = false; |
| |
| return true; |
| } |
| |
| static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache; |
| |
| if (!nested_cpu_has_shadow_vmcs(vmcs12) || |
| vmcs12->vmcs_link_pointer == INVALID_GPA) |
| return; |
| |
| if (ghc->gpa != vmcs12->vmcs_link_pointer && |
| kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, |
| vmcs12->vmcs_link_pointer, VMCS12_SIZE)) |
| return; |
| |
| kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu), |
| VMCS12_SIZE); |
| } |
| |
| static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache; |
| |
| if (!nested_cpu_has_shadow_vmcs(vmcs12) || |
| vmcs12->vmcs_link_pointer == INVALID_GPA) |
| return; |
| |
| if (ghc->gpa != vmcs12->vmcs_link_pointer && |
| kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, |
| vmcs12->vmcs_link_pointer, VMCS12_SIZE)) |
| return; |
| |
| kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu), |
| VMCS12_SIZE); |
| } |
| |
| /* |
| * In nested virtualization, check if L1 has set |
| * VM_EXIT_ACK_INTR_ON_EXIT |
| */ |
| static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu) |
| { |
| return get_vmcs12(vcpu)->vm_exit_controls & |
| VM_EXIT_ACK_INTR_ON_EXIT; |
| } |
| |
| static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) && |
| CC(!page_address_valid(vcpu, vmcs12->apic_access_addr))) |
| return -EINVAL; |
| else |
| return 0; |
| } |
| |
| static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| if (!nested_cpu_has_virt_x2apic_mode(vmcs12) && |
| !nested_cpu_has_apic_reg_virt(vmcs12) && |
| !nested_cpu_has_vid(vmcs12) && |
| !nested_cpu_has_posted_intr(vmcs12)) |
| return 0; |
| |
| /* |
| * If virtualize x2apic mode is enabled, |
| * virtualize apic access must be disabled. |
| */ |
| if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) && |
| nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))) |
| return -EINVAL; |
| |
| /* |
| * If virtual interrupt delivery is enabled, |
| * we must exit on external interrupts. |
| */ |
| if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu))) |
| return -EINVAL; |
| |
| /* |
| * bits 15:8 should be zero in posted_intr_nv, |
| * the descriptor address has been already checked |
| * in nested_get_vmcs12_pages. |
| * |
| * bits 5:0 of posted_intr_desc_addr should be zero. |
| */ |
| if (nested_cpu_has_posted_intr(vmcs12) && |
| (CC(!nested_cpu_has_vid(vmcs12)) || |
| CC(!nested_exit_intr_ack_set(vcpu)) || |
| CC((vmcs12->posted_intr_nv & 0xff00)) || |
| CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64)))) |
| return -EINVAL; |
| |
| /* tpr shadow is needed by all apicv features. */ |
| if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu, |
| u32 count, u64 addr) |
| { |
| if (count == 0) |
| return 0; |
| |
| if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) || |
| !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1))) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| if (CC(nested_vmx_check_msr_switch(vcpu, |
| vmcs12->vm_exit_msr_load_count, |
| vmcs12->vm_exit_msr_load_addr)) || |
| CC(nested_vmx_check_msr_switch(vcpu, |
| vmcs12->vm_exit_msr_store_count, |
| vmcs12->vm_exit_msr_store_addr))) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| if (CC(nested_vmx_check_msr_switch(vcpu, |
| vmcs12->vm_entry_msr_load_count, |
| vmcs12->vm_entry_msr_load_addr))) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| if (!nested_cpu_has_pml(vmcs12)) |
| return 0; |
| |
| if (CC(!nested_cpu_has_ept(vmcs12)) || |
| CC(!page_address_valid(vcpu, vmcs12->pml_address))) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) && |
| !nested_cpu_has_ept(vmcs12))) |
| return -EINVAL; |
| return 0; |
| } |
| |
| static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) && |
| !nested_cpu_has_ept(vmcs12))) |
| return -EINVAL; |
| return 0; |
| } |
| |
| static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| if (!nested_cpu_has_shadow_vmcs(vmcs12)) |
| return 0; |
| |
| if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) || |
| CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap))) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu, |
| struct vmx_msr_entry *e) |
| { |
| /* x2APIC MSR accesses are not allowed */ |
| if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)) |
| return -EINVAL; |
| if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */ |
| CC(e->index == MSR_IA32_UCODE_REV)) |
| return -EINVAL; |
| if (CC(e->reserved != 0)) |
| return -EINVAL; |
| return 0; |
| } |
| |
| static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu, |
| struct vmx_msr_entry *e) |
| { |
| if (CC(e->index == MSR_FS_BASE) || |
| CC(e->index == MSR_GS_BASE) || |
| CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */ |
| nested_vmx_msr_check_common(vcpu, e)) |
| return -EINVAL; |
| return 0; |
| } |
| |
| static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu, |
| struct vmx_msr_entry *e) |
| { |
| if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */ |
| nested_vmx_msr_check_common(vcpu, e)) |
| return -EINVAL; |
| return 0; |
| } |
| |
| static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low, |
| vmx->nested.msrs.misc_high); |
| |
| return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER; |
| } |
| |
| /* |
| * Load guest's/host's msr at nested entry/exit. |
| * return 0 for success, entry index for failure. |
| * |
| * One of the failure modes for MSR load/store is when a list exceeds the |
| * virtual hardware's capacity. To maintain compatibility with hardware inasmuch |
| * as possible, process all valid entries before failing rather than precheck |
| * for a capacity violation. |
| */ |
| static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count) |
| { |
| u32 i; |
| struct vmx_msr_entry e; |
| u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu); |
| |
| for (i = 0; i < count; i++) { |
| if (unlikely(i >= max_msr_list_size)) |
| goto fail; |
| |
| if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e), |
| &e, sizeof(e))) { |
| pr_debug_ratelimited( |
| "%s cannot read MSR entry (%u, 0x%08llx)\n", |
| __func__, i, gpa + i * sizeof(e)); |
| goto fail; |
| } |
| if (nested_vmx_load_msr_check(vcpu, &e)) { |
| pr_debug_ratelimited( |
| "%s check failed (%u, 0x%x, 0x%x)\n", |
| __func__, i, e.index, e.reserved); |
| goto fail; |
| } |
| if (kvm_set_msr_with_filter(vcpu, e.index, e.value)) { |
| pr_debug_ratelimited( |
| "%s cannot write MSR (%u, 0x%x, 0x%llx)\n", |
| __func__, i, e.index, e.value); |
| goto fail; |
| } |
| } |
| return 0; |
| fail: |
| /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */ |
| return i + 1; |
| } |
| |
| static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu, |
| u32 msr_index, |
| u64 *data) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| /* |
| * If the L0 hypervisor stored a more accurate value for the TSC that |
| * does not include the time taken for emulation of the L2->L1 |
| * VM-exit in L0, use the more accurate value. |
| */ |
| if (msr_index == MSR_IA32_TSC) { |
| int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest, |
| MSR_IA32_TSC); |
| |
| if (i >= 0) { |
| u64 val = vmx->msr_autostore.guest.val[i].value; |
| |
| *data = kvm_read_l1_tsc(vcpu, val); |
| return true; |
| } |
| } |
| |
| if (kvm_get_msr_with_filter(vcpu, msr_index, data)) { |
| pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__, |
| msr_index); |
| return false; |
| } |
| return true; |
| } |
| |
| static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i, |
| struct vmx_msr_entry *e) |
| { |
| if (kvm_vcpu_read_guest(vcpu, |
| gpa + i * sizeof(*e), |
| e, 2 * sizeof(u32))) { |
| pr_debug_ratelimited( |
| "%s cannot read MSR entry (%u, 0x%08llx)\n", |
| __func__, i, gpa + i * sizeof(*e)); |
| return false; |
| } |
| if (nested_vmx_store_msr_check(vcpu, e)) { |
| pr_debug_ratelimited( |
| "%s check failed (%u, 0x%x, 0x%x)\n", |
| __func__, i, e->index, e->reserved); |
| return false; |
| } |
| return true; |
| } |
| |
| static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count) |
| { |
| u64 data; |
| u32 i; |
| struct vmx_msr_entry e; |
| u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu); |
| |
| for (i = 0; i < count; i++) { |
| if (unlikely(i >= max_msr_list_size)) |
| return -EINVAL; |
| |
| if (!read_and_check_msr_entry(vcpu, gpa, i, &e)) |
| return -EINVAL; |
| |
| if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data)) |
| return -EINVAL; |
| |
| if (kvm_vcpu_write_guest(vcpu, |
| gpa + i * sizeof(e) + |
| offsetof(struct vmx_msr_entry, value), |
| &data, sizeof(data))) { |
| pr_debug_ratelimited( |
| "%s cannot write MSR (%u, 0x%x, 0x%llx)\n", |
| __func__, i, e.index, data); |
| return -EINVAL; |
| } |
| } |
| return 0; |
| } |
| |
| static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index) |
| { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| u32 count = vmcs12->vm_exit_msr_store_count; |
| u64 gpa = vmcs12->vm_exit_msr_store_addr; |
| struct vmx_msr_entry e; |
| u32 i; |
| |
| for (i = 0; i < count; i++) { |
| if (!read_and_check_msr_entry(vcpu, gpa, i, &e)) |
| return false; |
| |
| if (e.index == msr_index) |
| return true; |
| } |
| return false; |
| } |
| |
| static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu, |
| u32 msr_index) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct vmx_msrs *autostore = &vmx->msr_autostore.guest; |
| bool in_vmcs12_store_list; |
| int msr_autostore_slot; |
| bool in_autostore_list; |
| int last; |
| |
| msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index); |
| in_autostore_list = msr_autostore_slot >= 0; |
| in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index); |
| |
| if (in_vmcs12_store_list && !in_autostore_list) { |
| if (autostore->nr == MAX_NR_LOADSTORE_MSRS) { |
| /* |
| * Emulated VMEntry does not fail here. Instead a less |
| * accurate value will be returned by |
| * nested_vmx_get_vmexit_msr_value() by reading KVM's |
| * internal MSR state instead of reading the value from |
| * the vmcs02 VMExit MSR-store area. |
| */ |
| pr_warn_ratelimited( |
| "Not enough msr entries in msr_autostore. Can't add msr %x\n", |
| msr_index); |
| return; |
| } |
| last = autostore->nr++; |
| autostore->val[last].index = msr_index; |
| } else if (!in_vmcs12_store_list && in_autostore_list) { |
| last = --autostore->nr; |
| autostore->val[msr_autostore_slot] = autostore->val[last]; |
| } |
| } |
| |
| /* |
| * Load guest's/host's cr3 at nested entry/exit. @nested_ept is true if we are |
| * emulating VM-Entry into a guest with EPT enabled. On failure, the expected |
| * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to |
| * @entry_failure_code. |
| */ |
| static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, |
| bool nested_ept, bool reload_pdptrs, |
| enum vm_entry_failure_code *entry_failure_code) |
| { |
| if (CC(!kvm_vcpu_is_legal_cr3(vcpu, cr3))) { |
| *entry_failure_code = ENTRY_FAIL_DEFAULT; |
| return -EINVAL; |
| } |
| |
| /* |
| * If PAE paging and EPT are both on, CR3 is not used by the CPU and |
| * must not be dereferenced. |
| */ |
| if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) && |
| CC(!load_pdptrs(vcpu, cr3))) { |
| *entry_failure_code = ENTRY_FAIL_PDPTE; |
| return -EINVAL; |
| } |
| |
| vcpu->arch.cr3 = cr3; |
| kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); |
| |
| /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */ |
| kvm_init_mmu(vcpu); |
| |
| if (!nested_ept) |
| kvm_mmu_new_pgd(vcpu, cr3); |
| |
| return 0; |
| } |
| |
| /* |
| * Returns if KVM is able to config CPU to tag TLB entries |
| * populated by L2 differently than TLB entries populated |
| * by L1. |
| * |
| * If L0 uses EPT, L1 and L2 run with different EPTP because |
| * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries |
| * are tagged with different EPTP. |
| * |
| * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged |
| * with different VPID (L1 entries are tagged with vmx->vpid |
| * while L2 entries are tagged with vmx->nested.vpid02). |
| */ |
| static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu) |
| { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| |
| return enable_ept || |
| (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02); |
| } |
| |
| static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12, |
| bool is_vmenter) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| /* Handle pending Hyper-V TLB flush requests */ |
| kvm_hv_nested_transtion_tlb_flush(vcpu, enable_ept); |
| |
| /* |
| * If VPID is disabled, then guest TLB accesses use VPID=0, i.e. the |
| * same VPID as the host, and so architecturally, linear and combined |
| * mappings for VPID=0 must be flushed at VM-Enter and VM-Exit. KVM |
| * emulates L2 sharing L1's VPID=0 by using vpid01 while running L2, |
| * and so KVM must also emulate TLB flush of VPID=0, i.e. vpid01. This |
| * is required if VPID is disabled in KVM, as a TLB flush (there are no |
| * VPIDs) still occurs from L1's perspective, and KVM may need to |
| * synchronize the MMU in response to the guest TLB flush. |
| * |
| * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use. |
| * EPT is a special snowflake, as guest-physical mappings aren't |
| * flushed on VPID invalidations, including VM-Enter or VM-Exit with |
| * VPID disabled. As a result, KVM _never_ needs to sync nEPT |
| * entries on VM-Enter because L1 can't rely on VM-Enter to flush |
| * those mappings. |
| */ |
| if (!nested_cpu_has_vpid(vmcs12)) { |
| kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); |
| return; |
| } |
| |
| /* L2 should never have a VPID if VPID is disabled. */ |
| WARN_ON(!enable_vpid); |
| |
| /* |
| * VPID is enabled and in use by vmcs12. If vpid12 is changing, then |
| * emulate a guest TLB flush as KVM does not track vpid12 history nor |
| * is the VPID incorporated into the MMU context. I.e. KVM must assume |
| * that the new vpid12 has never been used and thus represents a new |
| * guest ASID that cannot have entries in the TLB. |
| */ |
| if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) { |
| vmx->nested.last_vpid = vmcs12->virtual_processor_id; |
| kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); |
| return; |
| } |
| |
| /* |
| * If VPID is enabled, used by vmc12, and vpid12 is not changing but |
| * does not have a unique TLB tag (ASID), i.e. EPT is disabled and |
| * KVM was unable to allocate a VPID for L2, flush the current context |
| * as the effective ASID is common to both L1 and L2. |
| */ |
| if (!nested_has_guest_tlb_tag(vcpu)) |
| kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); |
| } |
| |
| static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask) |
| { |
| superset &= mask; |
| subset &= mask; |
| |
| return (superset | subset) == superset; |
| } |
| |
| static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data) |
| { |
| const u64 feature_bits = VMX_BASIC_DUAL_MONITOR_TREATMENT | |
| VMX_BASIC_INOUT | |
| VMX_BASIC_TRUE_CTLS; |
| |
| const u64 reserved_bits = GENMASK_ULL(63, 56) | |
| GENMASK_ULL(47, 45) | |
| BIT_ULL(31); |
| |
| u64 vmx_basic = vmcs_config.nested.basic; |
| |
| BUILD_BUG_ON(feature_bits & reserved_bits); |
| |
| /* |
| * Except for 32BIT_PHYS_ADDR_ONLY, which is an anti-feature bit (has |
| * inverted polarity), the incoming value must not set feature bits or |
| * reserved bits that aren't allowed/supported by KVM. Fields, i.e. |
| * multi-bit values, are explicitly checked below. |
| */ |
| if (!is_bitwise_subset(vmx_basic, data, feature_bits | reserved_bits)) |
| return -EINVAL; |
| |
| /* |
| * KVM does not emulate a version of VMX that constrains physical |
| * addresses of VMX structures (e.g. VMCS) to 32-bits. |
| */ |
| if (data & VMX_BASIC_32BIT_PHYS_ADDR_ONLY) |
| return -EINVAL; |
| |
| if (vmx_basic_vmcs_revision_id(vmx_basic) != |
| vmx_basic_vmcs_revision_id(data)) |
| return -EINVAL; |
| |
| if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data)) |
| return -EINVAL; |
| |
| vmx->nested.msrs.basic = data; |
| return 0; |
| } |
| |
| static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index, |
| u32 **low, u32 **high) |
| { |
| switch (msr_index) { |
| case MSR_IA32_VMX_TRUE_PINBASED_CTLS: |
| *low = &msrs->pinbased_ctls_low; |
| *high = &msrs->pinbased_ctls_high; |
| break; |
| case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: |
| *low = &msrs->procbased_ctls_low; |
| *high = &msrs->procbased_ctls_high; |
| break; |
| case MSR_IA32_VMX_TRUE_EXIT_CTLS: |
| *low = &msrs->exit_ctls_low; |
| *high = &msrs->exit_ctls_high; |
| break; |
| case MSR_IA32_VMX_TRUE_ENTRY_CTLS: |
| *low = &msrs->entry_ctls_low; |
| *high = &msrs->entry_ctls_high; |
| break; |
| case MSR_IA32_VMX_PROCBASED_CTLS2: |
| *low = &msrs->secondary_ctls_low; |
| *high = &msrs->secondary_ctls_high; |
| break; |
| default: |
| BUG(); |
| } |
| } |
| |
| static int |
| vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data) |
| { |
| u32 *lowp, *highp; |
| u64 supported; |
| |
| vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp); |
| |
| supported = vmx_control_msr(*lowp, *highp); |
| |
| /* Check must-be-1 bits are still 1. */ |
| if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0))) |
| return -EINVAL; |
| |
| /* Check must-be-0 bits are still 0. */ |
| if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32))) |
| return -EINVAL; |
| |
| vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp); |
| *lowp = data; |
| *highp = data >> 32; |
| return 0; |
| } |
| |
| static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data) |
| { |
| const u64 feature_bits = VMX_MISC_SAVE_EFER_LMA | |
| VMX_MISC_ACTIVITY_HLT | |
| VMX_MISC_ACTIVITY_SHUTDOWN | |
| VMX_MISC_ACTIVITY_WAIT_SIPI | |
| VMX_MISC_INTEL_PT | |
| VMX_MISC_RDMSR_IN_SMM | |
| VMX_MISC_VMWRITE_SHADOW_RO_FIELDS | |
| VMX_MISC_VMXOFF_BLOCK_SMI | |
| VMX_MISC_ZERO_LEN_INS; |
| |
| const u64 reserved_bits = BIT_ULL(31) | GENMASK_ULL(13, 9); |
| |
| u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low, |
| vmcs_config.nested.misc_high); |
| |
| BUILD_BUG_ON(feature_bits & reserved_bits); |
| |
| /* |
| * The incoming value must not set feature bits or reserved bits that |
| * aren't allowed/supported by KVM. Fields, i.e. multi-bit values, are |
| * explicitly checked below. |
| */ |
| if (!is_bitwise_subset(vmx_misc, data, feature_bits | reserved_bits)) |
| return -EINVAL; |
| |
| if ((vmx->nested.msrs.pinbased_ctls_high & |
| PIN_BASED_VMX_PREEMPTION_TIMER) && |
| vmx_misc_preemption_timer_rate(data) != |
| vmx_misc_preemption_timer_rate(vmx_misc)) |
| return -EINVAL; |
| |
| if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc)) |
| return -EINVAL; |
| |
| if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc)) |
| return -EINVAL; |
| |
| if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc)) |
| return -EINVAL; |
| |
| vmx->nested.msrs.misc_low = data; |
| vmx->nested.msrs.misc_high = data >> 32; |
| |
| return 0; |
| } |
| |
| static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data) |
| { |
| u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps, |
| vmcs_config.nested.vpid_caps); |
| |
| /* Every bit is either reserved or a feature bit. */ |
| if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL)) |
| return -EINVAL; |
| |
| vmx->nested.msrs.ept_caps = data; |
| vmx->nested.msrs.vpid_caps = data >> 32; |
| return 0; |
| } |
| |
| static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index) |
| { |
| switch (msr_index) { |
| case MSR_IA32_VMX_CR0_FIXED0: |
| return &msrs->cr0_fixed0; |
| case MSR_IA32_VMX_CR4_FIXED0: |
| return &msrs->cr4_fixed0; |
| default: |
| BUG(); |
| } |
| } |
| |
| static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data) |
| { |
| const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index); |
| |
| /* |
| * 1 bits (which indicates bits which "must-be-1" during VMX operation) |
| * must be 1 in the restored value. |
| */ |
| if (!is_bitwise_subset(data, *msr, -1ULL)) |
| return -EINVAL; |
| |
| *vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data; |
| return 0; |
| } |
| |
| /* |
| * Called when userspace is restoring VMX MSRs. |
| * |
| * Returns 0 on success, non-0 otherwise. |
| */ |
| int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| /* |
| * Don't allow changes to the VMX capability MSRs while the vCPU |
| * is in VMX operation. |
| */ |
| if (vmx->nested.vmxon) |
| return -EBUSY; |
| |
| switch (msr_index) { |
| case MSR_IA32_VMX_BASIC: |
| return vmx_restore_vmx_basic(vmx, data); |
| case MSR_IA32_VMX_PINBASED_CTLS: |
| case MSR_IA32_VMX_PROCBASED_CTLS: |
| case MSR_IA32_VMX_EXIT_CTLS: |
| case MSR_IA32_VMX_ENTRY_CTLS: |
| /* |
| * The "non-true" VMX capability MSRs are generated from the |
| * "true" MSRs, so we do not support restoring them directly. |
| * |
| * If userspace wants to emulate VMX_BASIC[55]=0, userspace |
| * should restore the "true" MSRs with the must-be-1 bits |
| * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND |
| * DEFAULT SETTINGS". |
| */ |
| return -EINVAL; |
| case MSR_IA32_VMX_TRUE_PINBASED_CTLS: |
| case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: |
| case MSR_IA32_VMX_TRUE_EXIT_CTLS: |
| case MSR_IA32_VMX_TRUE_ENTRY_CTLS: |
| case MSR_IA32_VMX_PROCBASED_CTLS2: |
| return vmx_restore_control_msr(vmx, msr_index, data); |
| case MSR_IA32_VMX_MISC: |
| return vmx_restore_vmx_misc(vmx, data); |
| case MSR_IA32_VMX_CR0_FIXED0: |
| case MSR_IA32_VMX_CR4_FIXED0: |
| return vmx_restore_fixed0_msr(vmx, msr_index, data); |
| case MSR_IA32_VMX_CR0_FIXED1: |
| case MSR_IA32_VMX_CR4_FIXED1: |
| /* |
| * These MSRs are generated based on the vCPU's CPUID, so we |
| * do not support restoring them directly. |
| */ |
| return -EINVAL; |
| case MSR_IA32_VMX_EPT_VPID_CAP: |
| return vmx_restore_vmx_ept_vpid_cap(vmx, data); |
| case MSR_IA32_VMX_VMCS_ENUM: |
| vmx->nested.msrs.vmcs_enum = data; |
| return 0; |
| case MSR_IA32_VMX_VMFUNC: |
| if (data & ~vmcs_config.nested.vmfunc_controls) |
| return -EINVAL; |
| vmx->nested.msrs.vmfunc_controls = data; |
| return 0; |
| default: |
| /* |
| * The rest of the VMX capability MSRs do not support restore. |
| */ |
| return -EINVAL; |
| } |
| } |
| |
| /* Returns 0 on success, non-0 otherwise. */ |
| int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata) |
| { |
| switch (msr_index) { |
| case MSR_IA32_VMX_BASIC: |
| *pdata = msrs->basic; |
| break; |
| case MSR_IA32_VMX_TRUE_PINBASED_CTLS: |
| case MSR_IA32_VMX_PINBASED_CTLS: |
| *pdata = vmx_control_msr( |
| msrs->pinbased_ctls_low, |
| msrs->pinbased_ctls_high); |
| if (msr_index == MSR_IA32_VMX_PINBASED_CTLS) |
| *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR; |
| break; |
| case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: |
| case MSR_IA32_VMX_PROCBASED_CTLS: |
| *pdata = vmx_control_msr( |
| msrs->procbased_ctls_low, |
| msrs->procbased_ctls_high); |
| if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS) |
| *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR; |
| break; |
| case MSR_IA32_VMX_TRUE_EXIT_CTLS: |
| case MSR_IA32_VMX_EXIT_CTLS: |
| *pdata = vmx_control_msr( |
| msrs->exit_ctls_low, |
| msrs->exit_ctls_high); |
| if (msr_index == MSR_IA32_VMX_EXIT_CTLS) |
| *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR; |
| break; |
| case MSR_IA32_VMX_TRUE_ENTRY_CTLS: |
| case MSR_IA32_VMX_ENTRY_CTLS: |
| *pdata = vmx_control_msr( |
| msrs->entry_ctls_low, |
| msrs->entry_ctls_high); |
| if (msr_index == MSR_IA32_VMX_ENTRY_CTLS) |
| *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR; |
| break; |
| case MSR_IA32_VMX_MISC: |
| *pdata = vmx_control_msr( |
| msrs->misc_low, |
| msrs->misc_high); |
| break; |
| case MSR_IA32_VMX_CR0_FIXED0: |
| *pdata = msrs->cr0_fixed0; |
| break; |
| case MSR_IA32_VMX_CR0_FIXED1: |
| *pdata = msrs->cr0_fixed1; |
| break; |
| case MSR_IA32_VMX_CR4_FIXED0: |
| *pdata = msrs->cr4_fixed0; |
| break; |
| case MSR_IA32_VMX_CR4_FIXED1: |
| *pdata = msrs->cr4_fixed1; |
| break; |
| case MSR_IA32_VMX_VMCS_ENUM: |
| *pdata = msrs->vmcs_enum; |
| break; |
| case MSR_IA32_VMX_PROCBASED_CTLS2: |
| *pdata = vmx_control_msr( |
| msrs->secondary_ctls_low, |
| msrs->secondary_ctls_high); |
| break; |
| case MSR_IA32_VMX_EPT_VPID_CAP: |
| *pdata = msrs->ept_caps | |
| ((u64)msrs->vpid_caps << 32); |
| break; |
| case MSR_IA32_VMX_VMFUNC: |
| *pdata = msrs->vmfunc_controls; |
| break; |
| default: |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Copy the writable VMCS shadow fields back to the VMCS12, in case they have |
| * been modified by the L1 guest. Note, "writable" in this context means |
| * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of |
| * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only" |
| * VM-exit information fields (which are actually writable if the vCPU is |
| * configured to support "VMWRITE to any supported field in the VMCS"). |
| */ |
| static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx) |
| { |
| struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs; |
| struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu); |
| struct shadow_vmcs_field field; |
| unsigned long val; |
| int i; |
| |
| if (WARN_ON(!shadow_vmcs)) |
| return; |
| |
| preempt_disable(); |
| |
| vmcs_load(shadow_vmcs); |
| |
| for (i = 0; i < max_shadow_read_write_fields; i++) { |
| field = shadow_read_write_fields[i]; |
| val = __vmcs_readl(field.encoding); |
| vmcs12_write_any(vmcs12, field.encoding, field.offset, val); |
| } |
| |
| vmcs_clear(shadow_vmcs); |
| vmcs_load(vmx->loaded_vmcs->vmcs); |
| |
| preempt_enable(); |
| } |
| |
| static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx) |
| { |
| const struct shadow_vmcs_field *fields[] = { |
| shadow_read_write_fields, |
| shadow_read_only_fields |
| }; |
| const int max_fields[] = { |
| max_shadow_read_write_fields, |
| max_shadow_read_only_fields |
| }; |
| struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs; |
| struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu); |
| struct shadow_vmcs_field field; |
| unsigned long val; |
| int i, q; |
| |
| if (WARN_ON(!shadow_vmcs)) |
| return; |
| |
| vmcs_load(shadow_vmcs); |
| |
| for (q = 0; q < ARRAY_SIZE(fields); q++) { |
| for (i = 0; i < max_fields[q]; i++) { |
| field = fields[q][i]; |
| val = vmcs12_read_any(vmcs12, field.encoding, |
| field.offset); |
| __vmcs_writel(field.encoding, val); |
| } |
| } |
| |
| vmcs_clear(shadow_vmcs); |
| vmcs_load(vmx->loaded_vmcs->vmcs); |
| } |
| |
| static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields) |
| { |
| #ifdef CONFIG_KVM_HYPERV |
| struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12; |
| struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx); |
| struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(&vmx->vcpu); |
| |
| /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */ |
| vmcs12->tpr_threshold = evmcs->tpr_threshold; |
| vmcs12->guest_rip = evmcs->guest_rip; |
| |
| if (unlikely(!(hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_ENLIGHTENMENTSCONTROL))) { |
| hv_vcpu->nested.pa_page_gpa = evmcs->partition_assist_page; |
| hv_vcpu->nested.vm_id = evmcs->hv_vm_id; |
| hv_vcpu->nested.vp_id = evmcs->hv_vp_id; |
| } |
| |
| if (unlikely(!(hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) { |
| vmcs12->guest_rsp = evmcs->guest_rsp; |
| vmcs12->guest_rflags = evmcs->guest_rflags; |
| vmcs12->guest_interruptibility_info = |
| evmcs->guest_interruptibility_info; |
| /* |
| * Not present in struct vmcs12: |
| * vmcs12->guest_ssp = evmcs->guest_ssp; |
| */ |
| } |
| |
| if (unlikely(!(hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) { |
| vmcs12->cpu_based_vm_exec_control = |
| evmcs->cpu_based_vm_exec_control; |
| } |
| |
| if (unlikely(!(hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) { |
| vmcs12->exception_bitmap = evmcs->exception_bitmap; |
| } |
| |
| if (unlikely(!(hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) { |
| vmcs12->vm_entry_controls = evmcs->vm_entry_controls; |
| } |
| |
| if (unlikely(!(hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) { |
| vmcs12->vm_entry_intr_info_field = |
| evmcs->vm_entry_intr_info_field; |
| vmcs12->vm_entry_exception_error_code = |
| evmcs->vm_entry_exception_error_code; |
| vmcs12->vm_entry_instruction_len = |
| evmcs->vm_entry_instruction_len; |
| } |
| |
| if (unlikely(!(hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) { |
| vmcs12->host_ia32_pat = evmcs->host_ia32_pat; |
| vmcs12->host_ia32_efer = evmcs->host_ia32_efer; |
| vmcs12->host_cr0 = evmcs->host_cr0; |
| vmcs12->host_cr3 = evmcs->host_cr3; |
| vmcs12->host_cr4 = evmcs->host_cr4; |
| vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp; |
| vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip; |
| vmcs12->host_rip = evmcs->host_rip; |
| vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs; |
| vmcs12->host_es_selector = evmcs->host_es_selector; |
| vmcs12->host_cs_selector = evmcs->host_cs_selector; |
| vmcs12->host_ss_selector = evmcs->host_ss_selector; |
| vmcs12->host_ds_selector = evmcs->host_ds_selector; |
| vmcs12->host_fs_selector = evmcs->host_fs_selector; |
| vmcs12->host_gs_selector = evmcs->host_gs_selector; |
| vmcs12->host_tr_selector = evmcs->host_tr_selector; |
| vmcs12->host_ia32_perf_global_ctrl = evmcs->host_ia32_perf_global_ctrl; |
| /* |
| * Not present in struct vmcs12: |
| * vmcs12->host_ia32_s_cet = evmcs->host_ia32_s_cet; |
| * vmcs12->host_ssp = evmcs->host_ssp; |
| * vmcs12->host_ia32_int_ssp_table_addr = evmcs->host_ia32_int_ssp_table_addr; |
| */ |
| } |
| |
| if (unlikely(!(hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) { |
| vmcs12->pin_based_vm_exec_control = |
| evmcs->pin_based_vm_exec_control; |
| vmcs12->vm_exit_controls = evmcs->vm_exit_controls; |
| vmcs12->secondary_vm_exec_control = |
| evmcs->secondary_vm_exec_control; |
| } |
| |
| if (unlikely(!(hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) { |
| vmcs12->io_bitmap_a = evmcs->io_bitmap_a; |
| vmcs12->io_bitmap_b = evmcs->io_bitmap_b; |
| } |
| |
| if (unlikely(!(hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) { |
| vmcs12->msr_bitmap = evmcs->msr_bitmap; |
| } |
| |
| if (unlikely(!(hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) { |
| vmcs12->guest_es_base = evmcs->guest_es_base; |
| vmcs12->guest_cs_base = evmcs->guest_cs_base; |
| vmcs12->guest_ss_base = evmcs->guest_ss_base; |
| vmcs12->guest_ds_base = evmcs->guest_ds_base; |
| vmcs12->guest_fs_base = evmcs->guest_fs_base; |
| vmcs12->guest_gs_base = evmcs->guest_gs_base; |
| vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base; |
| vmcs12->guest_tr_base = evmcs->guest_tr_base; |
| vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base; |
| vmcs12->guest_idtr_base = evmcs->guest_idtr_base; |
| vmcs12->guest_es_limit = evmcs->guest_es_limit; |
| vmcs12->guest_cs_limit = evmcs->guest_cs_limit; |
| vmcs12->guest_ss_limit = evmcs->guest_ss_limit; |
| vmcs12->guest_ds_limit = evmcs->guest_ds_limit; |
| vmcs12->guest_fs_limit = evmcs->guest_fs_limit; |
| vmcs12->guest_gs_limit = evmcs->guest_gs_limit; |
| vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit; |
| vmcs12->guest_tr_limit = evmcs->guest_tr_limit; |
| vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit; |
| vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit; |
| vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes; |
| vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes; |
| vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes; |
| vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes; |
| vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes; |
| vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes; |
| vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes; |
| vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes; |
| vmcs12->guest_es_selector = evmcs->guest_es_selector; |
| vmcs12->guest_cs_selector = evmcs->guest_cs_selector; |
| vmcs12->guest_ss_selector = evmcs->guest_ss_selector; |
| vmcs12->guest_ds_selector = evmcs->guest_ds_selector; |
| vmcs12->guest_fs_selector = evmcs->guest_fs_selector; |
| vmcs12->guest_gs_selector = evmcs->guest_gs_selector; |
| vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector; |
| vmcs12->guest_tr_selector = evmcs->guest_tr_selector; |
| } |
| |
| if (unlikely(!(hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) { |
| vmcs12->tsc_offset = evmcs->tsc_offset; |
| vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr; |
| vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap; |
| vmcs12->encls_exiting_bitmap = evmcs->encls_exiting_bitmap; |
| vmcs12->tsc_multiplier = evmcs->tsc_multiplier; |
| } |
| |
| if (unlikely(!(hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) { |
| vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask; |
| vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask; |
| vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow; |
| vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow; |
| vmcs12->guest_cr0 = evmcs->guest_cr0; |
| vmcs12->guest_cr3 = evmcs->guest_cr3; |
| vmcs12->guest_cr4 = evmcs->guest_cr4; |
| vmcs12->guest_dr7 = evmcs->guest_dr7; |
| } |
| |
| if (unlikely(!(hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) { |
| vmcs12->host_fs_base = evmcs->host_fs_base; |
| vmcs12->host_gs_base = evmcs->host_gs_base; |
| vmcs12->host_tr_base = evmcs->host_tr_base; |
| vmcs12->host_gdtr_base = evmcs->host_gdtr_base; |
| vmcs12->host_idtr_base = evmcs->host_idtr_base; |
| vmcs12->host_rsp = evmcs->host_rsp; |
| } |
| |
| if (unlikely(!(hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) { |
| vmcs12->ept_pointer = evmcs->ept_pointer; |
| vmcs12->virtual_processor_id = evmcs->virtual_processor_id; |
| } |
| |
| if (unlikely(!(hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) { |
| vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer; |
| vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl; |
| vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat; |
| vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer; |
| vmcs12->guest_pdptr0 = evmcs->guest_pdptr0; |
| vmcs12->guest_pdptr1 = evmcs->guest_pdptr1; |
| vmcs12->guest_pdptr2 = evmcs->guest_pdptr2; |
| vmcs12->guest_pdptr3 = evmcs->guest_pdptr3; |
| vmcs12->guest_pending_dbg_exceptions = |
| evmcs->guest_pending_dbg_exceptions; |
| vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp; |
| vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip; |
| vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs; |
| vmcs12->guest_activity_state = evmcs->guest_activity_state; |
| vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs; |
| vmcs12->guest_ia32_perf_global_ctrl = evmcs->guest_ia32_perf_global_ctrl; |
| /* |
| * Not present in struct vmcs12: |
| * vmcs12->guest_ia32_s_cet = evmcs->guest_ia32_s_cet; |
| * vmcs12->guest_ia32_lbr_ctl = evmcs->guest_ia32_lbr_ctl; |
| * vmcs12->guest_ia32_int_ssp_table_addr = evmcs->guest_ia32_int_ssp_table_addr; |
| */ |
| } |
| |
| /* |
| * Not used? |
| * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr; |
| * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr; |
| * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr; |
| * vmcs12->page_fault_error_code_mask = |
| * evmcs->page_fault_error_code_mask; |
| * vmcs12->page_fault_error_code_match = |
| * evmcs->page_fault_error_code_match; |
| * vmcs12->cr3_target_count = evmcs->cr3_target_count; |
| * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count; |
| * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count; |
| * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count; |
| */ |
| |
| /* |
| * Read only fields: |
| * vmcs12->guest_physical_address = evmcs->guest_physical_address; |
| * vmcs12->vm_instruction_error = evmcs->vm_instruction_error; |
| * vmcs12->vm_exit_reason = evmcs->vm_exit_reason; |
| * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info; |
| * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code; |
| * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field; |
| * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code; |
| * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len; |
| * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info; |
| * vmcs12->exit_qualification = evmcs->exit_qualification; |
| * vmcs12->guest_linear_address = evmcs->guest_linear_address; |
| * |
| * Not present in struct vmcs12: |
| * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx; |
| * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi; |
| * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi; |
| * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip; |
| */ |
| |
| return; |
| #else /* CONFIG_KVM_HYPERV */ |
| KVM_BUG_ON(1, vmx->vcpu.kvm); |
| #endif /* CONFIG_KVM_HYPERV */ |
| } |
| |
| static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx) |
| { |
| #ifdef CONFIG_KVM_HYPERV |
| struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12; |
| struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx); |
| |
| /* |
| * Should not be changed by KVM: |
| * |
| * evmcs->host_es_selector = vmcs12->host_es_selector; |
| * evmcs->host_cs_selector = vmcs12->host_cs_selector; |
| * evmcs->host_ss_selector = vmcs12->host_ss_selector; |
| * evmcs->host_ds_selector = vmcs12->host_ds_selector; |
| * evmcs->host_fs_selector = vmcs12->host_fs_selector; |
| * evmcs->host_gs_selector = vmcs12->host_gs_selector; |
| * evmcs->host_tr_selector = vmcs12->host_tr_selector; |
| * evmcs->host_ia32_pat = vmcs12->host_ia32_pat; |
| * evmcs->host_ia32_efer = vmcs12->host_ia32_efer; |
| * evmcs->host_cr0 = vmcs12->host_cr0; |
| * evmcs->host_cr3 = vmcs12->host_cr3; |
| * evmcs->host_cr4 = vmcs12->host_cr4; |
| * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp; |
| * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip; |
| * evmcs->host_rip = vmcs12->host_rip; |
| * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs; |
| * evmcs->host_fs_base = vmcs12->host_fs_base; |
| * evmcs->host_gs_base = vmcs12->host_gs_base; |
| * evmcs->host_tr_base = vmcs12->host_tr_base; |
| * evmcs->host_gdtr_base = vmcs12->host_gdtr_base; |
| * evmcs->host_idtr_base = vmcs12->host_idtr_base; |
| * evmcs->host_rsp = vmcs12->host_rsp; |
| * sync_vmcs02_to_vmcs12() doesn't read these: |
| * evmcs->io_bitmap_a = vmcs12->io_bitmap_a; |
| * evmcs->io_bitmap_b = vmcs12->io_bitmap_b; |
| * evmcs->msr_bitmap = vmcs12->msr_bitmap; |
| * evmcs->ept_pointer = vmcs12->ept_pointer; |
| * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap; |
| * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr; |
| * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr; |
| * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr; |
| * evmcs->tpr_threshold = vmcs12->tpr_threshold; |
| * evmcs->virtual_processor_id = vmcs12->virtual_processor_id; |
| * evmcs->exception_bitmap = vmcs12->exception_bitmap; |
| * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer; |
| * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control; |
| * evmcs->vm_exit_controls = vmcs12->vm_exit_controls; |
| * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control; |
| * evmcs->page_fault_error_code_mask = |
| * vmcs12->page_fault_error_code_mask; |
| * evmcs->page_fault_error_code_match = |
| * vmcs12->page_fault_error_code_match; |
| * evmcs->cr3_target_count = vmcs12->cr3_target_count; |
| * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr; |
| * evmcs->tsc_offset = vmcs12->tsc_offset; |
| * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl; |
| * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask; |
| * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask; |
| * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow; |
| * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow; |
| * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count; |
| * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count; |
| * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count; |
| * evmcs->guest_ia32_perf_global_ctrl = vmcs12->guest_ia32_perf_global_ctrl; |
| * evmcs->host_ia32_perf_global_ctrl = vmcs12->host_ia32_perf_global_ctrl; |
| * evmcs->encls_exiting_bitmap = vmcs12->encls_exiting_bitmap; |
| * evmcs->tsc_multiplier = vmcs12->tsc_multiplier; |
| * |
| * Not present in struct vmcs12: |
| * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx; |
| * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi; |
| * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi; |
| * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip; |
| * evmcs->host_ia32_s_cet = vmcs12->host_ia32_s_cet; |
| * evmcs->host_ssp = vmcs12->host_ssp; |
| * evmcs->host_ia32_int_ssp_table_addr = vmcs12->host_ia32_int_ssp_table_addr; |
| * evmcs->guest_ia32_s_cet = vmcs12->guest_ia32_s_cet; |
| * evmcs->guest_ia32_lbr_ctl = vmcs12->guest_ia32_lbr_ctl; |
| * evmcs->guest_ia32_int_ssp_table_addr = vmcs12->guest_ia32_int_ssp_table_addr; |
| * evmcs->guest_ssp = vmcs12->guest_ssp; |
| */ |
| |
| evmcs->guest_es_selector = vmcs12->guest_es_selector; |
| evmcs->guest_cs_selector = vmcs12->guest_cs_selector; |
| evmcs->guest_ss_selector = vmcs12->guest_ss_selector; |
| evmcs->guest_ds_selector = vmcs12->guest_ds_selector; |
| evmcs->guest_fs_selector = vmcs12->guest_fs_selector; |
| evmcs->guest_gs_selector = vmcs12->guest_gs_selector; |
| evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector; |
| evmcs->guest_tr_selector = vmcs12->guest_tr_selector; |
| |
| evmcs->guest_es_limit = vmcs12->guest_es_limit; |
| evmcs->guest_cs_limit = vmcs12->guest_cs_limit; |
| evmcs->guest_ss_limit = vmcs12->guest_ss_limit; |
| evmcs->guest_ds_limit = vmcs12->guest_ds_limit; |
| evmcs->guest_fs_limit = vmcs12->guest_fs_limit; |
| evmcs->guest_gs_limit = vmcs12->guest_gs_limit; |
| evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit; |
| evmcs->guest_tr_limit = vmcs12->guest_tr_limit; |
| evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit; |
| evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit; |
| |
| evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes; |
| evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes; |
| evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes; |
| evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes; |
| evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes; |
| evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes; |
| evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes; |
| evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes; |
| |
| evmcs->guest_es_base = vmcs12->guest_es_base; |
| evmcs->guest_cs_base = vmcs12->guest_cs_base; |
| evmcs->guest_ss_base = vmcs12->guest_ss_base; |
| evmcs->guest_ds_base = vmcs12->guest_ds_base; |
| evmcs->guest_fs_base = vmcs12->guest_fs_base; |
| evmcs->guest_gs_base = vmcs12->guest_gs_base; |
| evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base; |
| evmcs->guest_tr_base = vmcs12->guest_tr_base; |
| evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base; |
| evmcs->guest_idtr_base = vmcs12->guest_idtr_base; |
| |
| evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat; |
| evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer; |
| |
| evmcs->guest_pdptr0 = vmcs12->guest_pdptr0; |
| evmcs->guest_pdptr1 = vmcs12->guest_pdptr1; |
| evmcs->guest_pdptr2 = vmcs12->guest_pdptr2; |
| evmcs->guest_pdptr3 = vmcs12->guest_pdptr3; |
| |
| evmcs->guest_pending_dbg_exceptions = |
| vmcs12->guest_pending_dbg_exceptions; |
| evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp; |
| evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip; |
| |
| evmcs->guest_activity_state = vmcs12->guest_activity_state; |
| evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs; |
| |
| evmcs->guest_cr0 = vmcs12->guest_cr0; |
| evmcs->guest_cr3 = vmcs12->guest_cr3; |
| evmcs->guest_cr4 = vmcs12->guest_cr4; |
| evmcs->guest_dr7 = vmcs12->guest_dr7; |
| |
| evmcs->guest_physical_address = vmcs12->guest_physical_address; |
| |
| evmcs->vm_instruction_error = vmcs12->vm_instruction_error; |
| evmcs->vm_exit_reason = vmcs12->vm_exit_reason; |
| evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info; |
| evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code; |
| evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field; |
| evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code; |
| evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len; |
| evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info; |
| |
| evmcs->exit_qualification = vmcs12->exit_qualification; |
| |
| evmcs->guest_linear_address = vmcs12->guest_linear_address; |
| evmcs->guest_rsp = vmcs12->guest_rsp; |
| evmcs->guest_rflags = vmcs12->guest_rflags; |
| |
| evmcs->guest_interruptibility_info = |
| vmcs12->guest_interruptibility_info; |
| evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control; |
| evmcs->vm_entry_controls = vmcs12->vm_entry_controls; |
| evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field; |
| evmcs->vm_entry_exception_error_code = |
| vmcs12->vm_entry_exception_error_code; |
| evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len; |
| |
| evmcs->guest_rip = vmcs12->guest_rip; |
| |
| evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs; |
| |
| return; |
| #else /* CONFIG_KVM_HYPERV */ |
| KVM_BUG_ON(1, vmx->vcpu.kvm); |
| #endif /* CONFIG_KVM_HYPERV */ |
| } |
| |
| /* |
| * This is an equivalent of the nested hypervisor executing the vmptrld |
| * instruction. |
| */ |
| static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld( |
| struct kvm_vcpu *vcpu, bool from_launch) |
| { |
| #ifdef CONFIG_KVM_HYPERV |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| bool evmcs_gpa_changed = false; |
| u64 evmcs_gpa; |
| |
| if (likely(!guest_cpuid_has_evmcs(vcpu))) |
| return EVMPTRLD_DISABLED; |
| |
| evmcs_gpa = nested_get_evmptr(vcpu); |
| if (!evmptr_is_valid(evmcs_gpa)) { |
| nested_release_evmcs(vcpu); |
| return EVMPTRLD_DISABLED; |
| } |
| |
| if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) { |
| vmx->nested.current_vmptr = INVALID_GPA; |
| |
| nested_release_evmcs(vcpu); |
| |
| if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa), |
| &vmx->nested.hv_evmcs_map)) |
| return EVMPTRLD_ERROR; |
| |
| vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva; |
| |
| /* |
| * Currently, KVM only supports eVMCS version 1 |
| * (== KVM_EVMCS_VERSION) and thus we expect guest to set this |
| * value to first u32 field of eVMCS which should specify eVMCS |
| * VersionNumber. |
| * |
| * Guest should be aware of supported eVMCS versions by host by |
| * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is |
| * expected to set this CPUID leaf according to the value |
| * returned in vmcs_version from nested_enable_evmcs(). |
| * |
| * However, it turns out that Microsoft Hyper-V fails to comply |
| * to their own invented interface: When Hyper-V use eVMCS, it |
| * just sets first u32 field of eVMCS to revision_id specified |
| * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number |
| * which is one of the supported versions specified in |
| * CPUID.0x4000000A.EAX[0:15]. |
| * |
| * To overcome Hyper-V bug, we accept here either a supported |
| * eVMCS version or VMCS12 revision_id as valid values for first |
| * u32 field of eVMCS. |
| */ |
| if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) && |
| (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) { |
| nested_release_evmcs(vcpu); |
| return EVMPTRLD_VMFAIL; |
| } |
| |
| vmx->nested.hv_evmcs_vmptr = evmcs_gpa; |
| |
| evmcs_gpa_changed = true; |
| /* |
| * Unlike normal vmcs12, enlightened vmcs12 is not fully |
| * reloaded from guest's memory (read only fields, fields not |
| * present in struct hv_enlightened_vmcs, ...). Make sure there |
| * are no leftovers. |
| */ |
| if (from_launch) { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| memset(vmcs12, 0, sizeof(*vmcs12)); |
| vmcs12->hdr.revision_id = VMCS12_REVISION; |
| } |
| |
| } |
| |
| /* |
| * Clean fields data can't be used on VMLAUNCH and when we switch |
| * between different L2 guests as KVM keeps a single VMCS12 per L1. |
| */ |
| if (from_launch || evmcs_gpa_changed) { |
| vmx->nested.hv_evmcs->hv_clean_fields &= |
| ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; |
| |
| vmx->nested.force_msr_bitmap_recalc = true; |
| } |
| |
| return EVMPTRLD_SUCCEEDED; |
| #else |
| return EVMPTRLD_DISABLED; |
| #endif |
| } |
| |
| void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (nested_vmx_is_evmptr12_valid(vmx)) |
| copy_vmcs12_to_enlightened(vmx); |
| else |
| copy_vmcs12_to_shadow(vmx); |
| |
| vmx->nested.need_vmcs12_to_shadow_sync = false; |
| } |
| |
| static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer) |
| { |
| struct vcpu_vmx *vmx = |
| container_of(timer, struct vcpu_vmx, nested.preemption_timer); |
| |
| vmx->nested.preemption_timer_expired = true; |
| kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu); |
| kvm_vcpu_kick(&vmx->vcpu); |
| |
| return HRTIMER_NORESTART; |
| } |
| |
| static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| |
| u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >> |
| VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE; |
| |
| if (!vmx->nested.has_preemption_timer_deadline) { |
| vmx->nested.preemption_timer_deadline = |
| vmcs12->vmx_preemption_timer_value + l1_scaled_tsc; |
| vmx->nested.has_preemption_timer_deadline = true; |
| } |
| return vmx->nested.preemption_timer_deadline - l1_scaled_tsc; |
| } |
| |
| static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu, |
| u64 preemption_timeout) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| /* |
| * A timer value of zero is architecturally guaranteed to cause |
| * a VMExit prior to executing any instructions in the guest. |
| */ |
| if (preemption_timeout == 0) { |
| vmx_preemption_timer_fn(&vmx->nested.preemption_timer); |
| return; |
| } |
| |
| if (vcpu->arch.virtual_tsc_khz == 0) |
| return; |
| |
| preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE; |
| preemption_timeout *= 1000000; |
| do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz); |
| hrtimer_start(&vmx->nested.preemption_timer, |
| ktime_add_ns(ktime_get(), preemption_timeout), |
| HRTIMER_MODE_ABS_PINNED); |
| } |
| |
| static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) |
| { |
| if (vmx->nested.nested_run_pending && |
| (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) |
| return vmcs12->guest_ia32_efer; |
| else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) |
| return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME); |
| else |
| return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME); |
| } |
| |
| static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx) |
| { |
| struct kvm *kvm = vmx->vcpu.kvm; |
| |
| /* |
| * If vmcs02 hasn't been initialized, set the constant vmcs02 state |
| * according to L0's settings (vmcs12 is irrelevant here). Host |
| * fields that come from L0 and are not constant, e.g. HOST_CR3, |
| * will be set as needed prior to VMLAUNCH/VMRESUME. |
| */ |
| if (vmx->nested.vmcs02_initialized) |
| return; |
| vmx->nested.vmcs02_initialized = true; |
| |
| /* |
| * We don't care what the EPTP value is we just need to guarantee |
| * it's valid so we don't get a false positive when doing early |
| * consistency checks. |
| */ |
| if (enable_ept && nested_early_check) |
| vmcs_write64(EPT_POINTER, |
| construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL)); |
| |
| if (vmx->ve_info) |
| vmcs_write64(VE_INFORMATION_ADDRESS, __pa(vmx->ve_info)); |
| |
| /* All VMFUNCs are currently emulated through L0 vmexits. */ |
| if (cpu_has_vmx_vmfunc()) |
| vmcs_write64(VM_FUNCTION_CONTROL, 0); |
| |
| if (cpu_has_vmx_posted_intr()) |
| vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR); |
| |
| if (cpu_has_vmx_msr_bitmap()) |
| vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap)); |
| |
| /* |
| * PML is emulated for L2, but never enabled in hardware as the MMU |
| * handles A/D emulation. Disabling PML for L2 also avoids having to |
| * deal with filtering out L2 GPAs from the buffer. |
| */ |
| if (enable_pml) { |
| vmcs_write64(PML_ADDRESS, 0); |
| vmcs_write16(GUEST_PML_INDEX, -1); |
| } |
| |
| if (cpu_has_vmx_encls_vmexit()) |
| vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA); |
| |
| if (kvm_notify_vmexit_enabled(kvm)) |
| vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window); |
| |
| /* |
| * Set the MSR load/store lists to match L0's settings. Only the |
| * addresses are constant (for vmcs02), the counts can change based |
| * on L2's behavior, e.g. switching to/from long mode. |
| */ |
| vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val)); |
| vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); |
| vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); |
| |
| vmx_set_constant_host_state(vmx); |
| } |
| |
| static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx, |
| struct vmcs12 *vmcs12) |
| { |
| prepare_vmcs02_constant_state(vmx); |
| |
| vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); |
| |
| /* |
| * If VPID is disabled, then guest TLB accesses use VPID=0, i.e. the |
| * same VPID as the host. Emulate this behavior by using vpid01 for L2 |
| * if VPID is disabled in vmcs12. Note, if VPID is disabled, VM-Enter |
| * and VM-Exit are architecturally required to flush VPID=0, but *only* |
| * VPID=0. I.e. using vpid02 would be ok (so long as KVM emulates the |
| * required flushes), but doing so would cause KVM to over-flush. E.g. |
| * if L1 runs L2 X with VPID12=1, then runs L2 Y with VPID12 disabled, |
| * and then runs L2 X again, then KVM can and should retain TLB entries |
| * for VPID12=1. |
| */ |
| if (enable_vpid) { |
| if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) |
| vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02); |
| else |
| vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); |
| } |
| } |
| |
| static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01, |
| struct vmcs12 *vmcs12) |
| { |
| u32 exec_control; |
| u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12); |
| |
| if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx)) |
| prepare_vmcs02_early_rare(vmx, vmcs12); |
| |
| /* |
| * PIN CONTROLS |
| */ |
| exec_control = __pin_controls_get(vmcs01); |
| exec_control |= (vmcs12->pin_based_vm_exec_control & |
| ~PIN_BASED_VMX_PREEMPTION_TIMER); |
| |
| /* Posted interrupts setting is only taken from vmcs12. */ |
| vmx->nested.pi_pending = false; |
| if (nested_cpu_has_posted_intr(vmcs12)) { |
| vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv; |
| } else { |
| vmx->nested.posted_intr_nv = -1; |
| exec_control &= ~PIN_BASED_POSTED_INTR; |
| } |
| pin_controls_set(vmx, exec_control); |
| |
| /* |
| * EXEC CONTROLS |
| */ |
| exec_control = __exec_controls_get(vmcs01); /* L0's desires */ |
| exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING; |
| exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING; |
| exec_control &= ~CPU_BASED_TPR_SHADOW; |
| exec_control |= vmcs12->cpu_based_vm_exec_control; |
| |
| vmx->nested.l1_tpr_threshold = -1; |
| if (exec_control & CPU_BASED_TPR_SHADOW) |
| vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold); |
| #ifdef CONFIG_X86_64 |
| else |
| exec_control |= CPU_BASED_CR8_LOAD_EXITING | |
| CPU_BASED_CR8_STORE_EXITING; |
| #endif |
| |
| /* |
| * A vmexit (to either L1 hypervisor or L0 userspace) is always needed |
| * for I/O port accesses. |
| */ |
| exec_control |= CPU_BASED_UNCOND_IO_EXITING; |
| exec_control &= ~CPU_BASED_USE_IO_BITMAPS; |
| |
| /* |
| * This bit will be computed in nested_get_vmcs12_pages, because |
| * we do not have access to L1's MSR bitmap yet. For now, keep |
| * the same bit as before, hoping to avoid multiple VMWRITEs that |
| * only set/clear this bit. |
| */ |
| exec_control &= ~CPU_BASED_USE_MSR_BITMAPS; |
| exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS; |
| |
| exec_controls_set(vmx, exec_control); |
| |
| /* |
| * SECONDARY EXEC CONTROLS |
| */ |
| if (cpu_has_secondary_exec_ctrls()) { |
| exec_control = __secondary_exec_controls_get(vmcs01); |
| |
| /* Take the following fields only from vmcs12 */ |
| exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | |
| SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | |
| SECONDARY_EXEC_ENABLE_INVPCID | |
| SECONDARY_EXEC_ENABLE_RDTSCP | |
| SECONDARY_EXEC_ENABLE_XSAVES | |
| SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE | |
| SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | |
| SECONDARY_EXEC_APIC_REGISTER_VIRT | |
| SECONDARY_EXEC_ENABLE_VMFUNC | |
| SECONDARY_EXEC_DESC); |
| |
| if (nested_cpu_has(vmcs12, |
| CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) |
| exec_control |= vmcs12->secondary_vm_exec_control; |
| |
| /* PML is emulated and never enabled in hardware for L2. */ |
| exec_control &= ~SECONDARY_EXEC_ENABLE_PML; |
| |
| /* VMCS shadowing for L2 is emulated for now */ |
| exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; |
| |
| /* |
| * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4() |
| * will not have to rewrite the controls just for this bit. |
| */ |
| if (vmx_umip_emulated() && (vmcs12->guest_cr4 & X86_CR4_UMIP)) |
| exec_control |= SECONDARY_EXEC_DESC; |
| |
| if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) |
| vmcs_write16(GUEST_INTR_STATUS, |
| vmcs12->guest_intr_status); |
| |
| if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST)) |
| exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; |
| |
| if (exec_control & SECONDARY_EXEC_ENCLS_EXITING) |
| vmx_write_encls_bitmap(&vmx->vcpu, vmcs12); |
| |
| secondary_exec_controls_set(vmx, exec_control); |
| } |
| |
| /* |
| * ENTRY CONTROLS |
| * |
| * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE |
| * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate |
| * on the related bits (if supported by the CPU) in the hope that |
| * we can avoid VMWrites during vmx_set_efer(). |
| * |
| * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is |
| * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to |
| * do the same for L2. |
| */ |
| exec_control = __vm_entry_controls_get(vmcs01); |
| exec_control |= (vmcs12->vm_entry_controls & |
| ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL); |
| exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER); |
| if (cpu_has_load_ia32_efer()) { |
| if (guest_efer & EFER_LMA) |
| exec_control |= VM_ENTRY_IA32E_MODE; |
| if (guest_efer != kvm_host.efer) |
| exec_control |= VM_ENTRY_LOAD_IA32_EFER; |
| } |
| vm_entry_controls_set(vmx, exec_control); |
| |
| /* |
| * EXIT CONTROLS |
| * |
| * L2->L1 exit controls are emulated - the hardware exit is to L0 so |
| * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER |
| * bits may be modified by vmx_set_efer() in prepare_vmcs02(). |
| */ |
| exec_control = __vm_exit_controls_get(vmcs01); |
| if (cpu_has_load_ia32_efer() && guest_efer != kvm_host.efer) |
| exec_control |= VM_EXIT_LOAD_IA32_EFER; |
| else |
| exec_control &= ~VM_EXIT_LOAD_IA32_EFER; |
| vm_exit_controls_set(vmx, exec_control); |
| |
| /* |
| * Interrupt/Exception Fields |
| */ |
| if (vmx->nested.nested_run_pending) { |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, |
| vmcs12->vm_entry_intr_info_field); |
| vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, |
| vmcs12->vm_entry_exception_error_code); |
| vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, |
| vmcs12->vm_entry_instruction_len); |
| vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, |
| vmcs12->guest_interruptibility_info); |
| vmx->loaded_vmcs->nmi_known_unmasked = |
| !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI); |
| } else { |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); |
| } |
| } |
| |
| static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) |
| { |
| struct hv_enlightened_vmcs *hv_evmcs = nested_vmx_evmcs(vmx); |
| |
| if (!hv_evmcs || !(hv_evmcs->hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) { |
| |
| vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector); |
| vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector); |
| vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector); |
| vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector); |
| vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector); |
| vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector); |
| vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector); |
| vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector); |
| vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit); |
| vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit); |
| vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit); |
| vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit); |
| vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit); |
| vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit); |
| vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit); |
| vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit); |
| vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit); |
| vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit); |
| vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes); |
| vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes); |
| vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes); |
| vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes); |
| vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes); |
| vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes); |
| vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes); |
| vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes); |
| vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base); |
| vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base); |
| vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base); |
| vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base); |
| vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base); |
| vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base); |
| vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base); |
| vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base); |
| vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base); |
| vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base); |
| |
| vmx_segment_cache_clear(vmx); |
| } |
| |
| if (!hv_evmcs || !(hv_evmcs->hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) { |
| vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs); |
| vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, |
| vmcs12->guest_pending_dbg_exceptions); |
| vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp); |
| vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip); |
| |
| /* |
| * L1 may access the L2's PDPTR, so save them to construct |
| * vmcs12 |
| */ |
| if (enable_ept) { |
| vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0); |
| vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1); |
| vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2); |
| vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3); |
| } |
| |
| if (kvm_mpx_supported() && vmx->nested.nested_run_pending && |
| (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)) |
| vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs); |
| } |
| |
| if (nested_cpu_has_xsaves(vmcs12)) |
| vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap); |
| |
| /* |
| * Whether page-faults are trapped is determined by a combination of |
| * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. If L0 |
| * doesn't care about page faults then we should set all of these to |
| * L1's desires. However, if L0 does care about (some) page faults, it |
| * is not easy (if at all possible?) to merge L0 and L1's desires, we |
| * simply ask to exit on each and every L2 page fault. This is done by |
| * setting MASK=MATCH=0 and (see below) EB.PF=1. |
| * Note that below we don't need special code to set EB.PF beyond the |
| * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept, |
| * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when |
| * !enable_ept, EB.PF is 1, so the "or" will always be 1. |
| */ |
| if (vmx_need_pf_intercept(&vmx->vcpu)) { |
| /* |
| * TODO: if both L0 and L1 need the same MASK and MATCH, |
| * go ahead and use it? |
| */ |
| vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); |
| vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); |
| } else { |
| vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask); |
| vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match); |
| } |
| |
| if (cpu_has_vmx_apicv()) { |
| vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0); |
| vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1); |
| vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2); |
| vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3); |
| } |
| |
| /* |
| * Make sure the msr_autostore list is up to date before we set the |
| * count in the vmcs02. |
| */ |
| prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC); |
| |
| vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr); |
| vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); |
| vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); |
| |
| set_cr4_guest_host_mask(vmx); |
| } |
| |
| /* |
| * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested |
| * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it |
| * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2 |
| * guest in a way that will both be appropriate to L1's requests, and our |
| * needs. In addition to modifying the active vmcs (which is vmcs02), this |
| * function also has additional necessary side-effects, like setting various |
| * vcpu->arch fields. |
| * Returns 0 on success, 1 on failure. Invalid state exit qualification code |
| * is assigned to entry_failure_code on failure. |
| */ |
| static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, |
| bool from_vmentry, |
| enum vm_entry_failure_code *entry_failure_code) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx); |
| bool load_guest_pdptrs_vmcs12 = false; |
| |
| if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx)) { |
| prepare_vmcs02_rare(vmx, vmcs12); |
| vmx->nested.dirty_vmcs12 = false; |
| |
| load_guest_pdptrs_vmcs12 = !nested_vmx_is_evmptr12_valid(vmx) || |
| !(evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1); |
| } |
| |
| if (vmx->nested.nested_run_pending && |
| (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) { |
| kvm_set_dr(vcpu, 7, vmcs12->guest_dr7); |
| vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl); |
| } else { |
| kvm_set_dr(vcpu, 7, vcpu->arch.dr7); |
| vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.pre_vmenter_debugctl); |
| } |
| if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending || |
| !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))) |
| vmcs_write64(GUEST_BNDCFGS, vmx->nested.pre_vmenter_bndcfgs); |
| vmx_set_rflags(vcpu, vmcs12->guest_rflags); |
| |
| /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the |
| * bitwise-or of what L1 wants to trap for L2, and what we want to |
| * trap. Note that CR0.TS also needs updating - we do this later. |
| */ |
| vmx_update_exception_bitmap(vcpu); |
| vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask; |
| vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); |
| |
| if (vmx->nested.nested_run_pending && |
| (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) { |
| vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat); |
| vcpu->arch.pat = vmcs12->guest_ia32_pat; |
| } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { |
| vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); |
| } |
| |
| vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( |
| vcpu->arch.l1_tsc_offset, |
| vmx_get_l2_tsc_offset(vcpu), |
| vmx_get_l2_tsc_multiplier(vcpu)); |
| |
| vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( |
| vcpu->arch.l1_tsc_scaling_ratio, |
| vmx_get_l2_tsc_multiplier(vcpu)); |
| |
| vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); |
| if (kvm_caps.has_tsc_control) |
| vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio); |
| |
| nested_vmx_transition_tlb_flush(vcpu, vmcs12, true); |
| |
| if (nested_cpu_has_ept(vmcs12)) |
| nested_ept_init_mmu_context(vcpu); |
| |
| /* |
| * Override the CR0/CR4 read shadows after setting the effective guest |
| * CR0/CR4. The common helpers also set the shadows, but they don't |
| * account for vmcs12's cr0/4_guest_host_mask. |
| */ |
| vmx_set_cr0(vcpu, vmcs12->guest_cr0); |
| vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12)); |
| |
| vmx_set_cr4(vcpu, vmcs12->guest_cr4); |
| vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12)); |
| |
| vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12); |
| /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */ |
| vmx_set_efer(vcpu, vcpu->arch.efer); |
| |
| /* |
| * Guest state is invalid and unrestricted guest is disabled, |
| * which means L1 attempted VMEntry to L2 with invalid state. |
| * Fail the VMEntry. |
| * |
| * However when force loading the guest state (SMM exit or |
| * loading nested state after migration, it is possible to |
| * have invalid guest state now, which will be later fixed by |
| * restoring L2 register state |
| */ |
| if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) { |
| *entry_failure_code = ENTRY_FAIL_DEFAULT; |
| return -EINVAL; |
| } |
| |
| /* Shadow page tables on either EPT or shadow page tables. */ |
| if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12), |
| from_vmentry, entry_failure_code)) |
| return -EINVAL; |
| |
| /* |
| * Immediately write vmcs02.GUEST_CR3. It will be propagated to vmcs12 |
| * on nested VM-Exit, which can occur without actually running L2 and |
| * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with |
| * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the |
| * transition to HLT instead of running L2. |
| */ |
| if (enable_ept) |
| vmcs_writel(GUEST_CR3, vmcs12->guest_cr3); |
| |
| /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */ |
| if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) && |
| is_pae_paging(vcpu)) { |
| vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0); |
| vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1); |
| vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2); |
| vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3); |
| } |
| |
| if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) && |
| kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)) && |
| WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL, |
| vmcs12->guest_ia32_perf_global_ctrl))) { |
| *entry_failure_code = ENTRY_FAIL_DEFAULT; |
| return -EINVAL; |
| } |
| |
| kvm_rsp_write(vcpu, vmcs12->guest_rsp); |
| kvm_rip_write(vcpu, vmcs12->guest_rip); |
| |
| /* |
| * It was observed that genuine Hyper-V running in L1 doesn't reset |
| * 'hv_clean_fields' by itself, it only sets the corresponding dirty |
| * bits when it changes a field in eVMCS. Mark all fields as clean |
| * here. |
| */ |
| if (nested_vmx_is_evmptr12_valid(vmx)) |
| evmcs->hv_clean_fields |= HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; |
| |
| return 0; |
| } |
| |
| static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12) |
| { |
| if (CC(!nested_cpu_has_nmi_exiting(vmcs12) && |
| nested_cpu_has_virtual_nmis(vmcs12))) |
| return -EINVAL; |
| |
| if (CC(!nested_cpu_has_virtual_nmis(vmcs12) && |
| nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING))) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| /* Check for memory type validity */ |
| switch (new_eptp & VMX_EPTP_MT_MASK) { |
| case VMX_EPTP_MT_UC: |
| if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))) |
| return false; |
| break; |
| case VMX_EPTP_MT_WB: |
| if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))) |
| return false; |
| break; |
| default: |
| return false; |
| } |
| |
| /* Page-walk levels validity. */ |
| switch (new_eptp & VMX_EPTP_PWL_MASK) { |
| case VMX_EPTP_PWL_5: |
| if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT))) |
| return false; |
| break; |
| case VMX_EPTP_PWL_4: |
| if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT))) |
| return false; |
| break; |
| default: |
| return false; |
| } |
| |
| /* Reserved bits should not be set */ |
| if (CC(!kvm_vcpu_is_legal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f))) |
| return false; |
| |
| /* AD, if set, should be supported */ |
| if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) { |
| if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Checks related to VM-Execution Control Fields |
| */ |
| static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control, |
| vmx->nested.msrs.pinbased_ctls_low, |
| vmx->nested.msrs.pinbased_ctls_high)) || |
| CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control, |
| vmx->nested.msrs.procbased_ctls_low, |
| vmx->nested.msrs.procbased_ctls_high))) |
| return -EINVAL; |
| |
| if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) && |
| CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control, |
| vmx->nested.msrs.secondary_ctls_low, |
| vmx->nested.msrs.secondary_ctls_high))) |
| return -EINVAL; |
| |
| if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) || |
| nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) || |
| nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) || |
| nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) || |
| nested_vmx_check_apic_access_controls(vcpu, vmcs12) || |
| nested_vmx_check_apicv_controls(vcpu, vmcs12) || |
| nested_vmx_check_nmi_controls(vmcs12) || |
| nested_vmx_check_pml_controls(vcpu, vmcs12) || |
| nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) || |
| nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) || |
| nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) || |
| CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id)) |
| return -EINVAL; |
| |
| if (!nested_cpu_has_preemption_timer(vmcs12) && |
| nested_cpu_has_save_preemption_timer(vmcs12)) |
| return -EINVAL; |
| |
| if (nested_cpu_has_ept(vmcs12) && |
| CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer))) |
| return -EINVAL; |
| |
| if (nested_cpu_has_vmfunc(vmcs12)) { |
| if (CC(vmcs12->vm_function_control & |
| ~vmx->nested.msrs.vmfunc_controls)) |
| return -EINVAL; |
| |
| if (nested_cpu_has_eptp_switching(vmcs12)) { |
| if (CC(!nested_cpu_has_ept(vmcs12)) || |
| CC(!page_address_valid(vcpu, vmcs12->eptp_list_address))) |
| return -EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Checks related to VM-Exit Control Fields |
| */ |
| static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (CC(!vmx_control_verify(vmcs12->vm_exit_controls, |
| vmx->nested.msrs.exit_ctls_low, |
| vmx->nested.msrs.exit_ctls_high)) || |
| CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12))) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /* |
| * Checks related to VM-Entry Control Fields |
| */ |
| static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (CC(!vmx_control_verify(vmcs12->vm_entry_controls, |
| vmx->nested.msrs.entry_ctls_low, |
| vmx->nested.msrs.entry_ctls_high))) |
| return -EINVAL; |
| |
| /* |
| * From the Intel SDM, volume 3: |
| * Fields relevant to VM-entry event injection must be set properly. |
| * These fields are the VM-entry interruption-information field, the |
| * VM-entry exception error code, and the VM-entry instruction length. |
| */ |
| if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) { |
| u32 intr_info = vmcs12->vm_entry_intr_info_field; |
| u8 vector = intr_info & INTR_INFO_VECTOR_MASK; |
| u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK; |
| bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK; |
| bool should_have_error_code; |
| bool urg = nested_cpu_has2(vmcs12, |
| SECONDARY_EXEC_UNRESTRICTED_GUEST); |
| bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE; |
| |
| /* VM-entry interruption-info field: interruption type */ |
| if (CC(intr_type == INTR_TYPE_RESERVED) || |
| CC(intr_type == INTR_TYPE_OTHER_EVENT && |
| !nested_cpu_supports_monitor_trap_flag(vcpu))) |
| return -EINVAL; |
| |
| /* VM-entry interruption-info field: vector */ |
| if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) || |
| CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) || |
| CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0)) |
| return -EINVAL; |
| |
| /* VM-entry interruption-info field: deliver error code */ |
| should_have_error_code = |
| intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode && |
| x86_exception_has_error_code(vector); |
| if (CC(has_error_code != should_have_error_code)) |
| return -EINVAL; |
| |
| /* VM-entry exception error code */ |
| if (CC(has_error_code && |
| vmcs12->vm_entry_exception_error_code & GENMASK(31, 16))) |
| return -EINVAL; |
| |
| /* VM-entry interruption-info field: reserved bits */ |
| if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK)) |
| return -EINVAL; |
| |
| /* VM-entry instruction length */ |
| switch (intr_type) { |
| case INTR_TYPE_SOFT_EXCEPTION: |
| case INTR_TYPE_SOFT_INTR: |
| case INTR_TYPE_PRIV_SW_EXCEPTION: |
| if (CC(vmcs12->vm_entry_instruction_len > 15) || |
| CC(vmcs12->vm_entry_instruction_len == 0 && |
| CC(!nested_cpu_has_zero_length_injection(vcpu)))) |
| return -EINVAL; |
| } |
| } |
| |
| if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int nested_vmx_check_controls(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| if (nested_check_vm_execution_controls(vcpu, vmcs12) || |
| nested_check_vm_exit_controls(vcpu, vmcs12) || |
| nested_check_vm_entry_controls(vcpu, vmcs12)) |
| return -EINVAL; |
| |
| #ifdef CONFIG_KVM_HYPERV |
| if (guest_cpuid_has_evmcs(vcpu)) |
| return nested_evmcs_check_controls(vmcs12); |
| #endif |
| |
| return 0; |
| } |
| |
| static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| #ifdef CONFIG_X86_64 |
| if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) != |
| !!(vcpu->arch.efer & EFER_LMA))) |
| return -EINVAL; |
| #endif |
| return 0; |
| } |
| |
| static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| bool ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE); |
| |
| if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) || |
| CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) || |
| CC(!kvm_vcpu_is_legal_cr3(vcpu, vmcs12->host_cr3))) |
| return -EINVAL; |
| |
| if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) || |
| CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu))) |
| return -EINVAL; |
| |
| if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) && |
| CC(!kvm_pat_valid(vmcs12->host_ia32_pat))) |
| return -EINVAL; |
| |
| if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) && |
| CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu), |
| vmcs12->host_ia32_perf_global_ctrl))) |
| return -EINVAL; |
| |
| if (ia32e) { |
| if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE))) |
| return -EINVAL; |
| } else { |
| if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) || |
| CC(vmcs12->host_cr4 & X86_CR4_PCIDE) || |
| CC((vmcs12->host_rip) >> 32)) |
| return -EINVAL; |
| } |
| |
| if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) || |
| CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) || |
| CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) || |
| CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) || |
| CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) || |
| CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) || |
| CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) || |
| CC(vmcs12->host_cs_selector == 0) || |
| CC(vmcs12->host_tr_selector == 0) || |
| CC(vmcs12->host_ss_selector == 0 && !ia32e)) |
| return -EINVAL; |
| |
| if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) || |
| CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) || |
| CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) || |
| CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) || |
| CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) || |
| CC(is_noncanonical_address(vmcs12->host_rip, vcpu))) |
| return -EINVAL; |
| |
| /* |
| * If the load IA32_EFER VM-exit control is 1, bits reserved in the |
| * IA32_EFER MSR must be 0 in the field for that register. In addition, |
| * the values of the LMA and LME bits in the field must each be that of |
| * the host address-space size VM-exit control. |
| */ |
| if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) { |
| if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) || |
| CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) || |
| CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))) |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache; |
| struct vmcs_hdr hdr; |
| |
| if (vmcs12->vmcs_link_pointer == INVALID_GPA) |
| return 0; |
| |
| if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer))) |
| return -EINVAL; |
| |
| if (ghc->gpa != vmcs12->vmcs_link_pointer && |
| CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, |
| vmcs12->vmcs_link_pointer, VMCS12_SIZE))) |
| return -EINVAL; |
| |
| if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr, |
| offsetof(struct vmcs12, hdr), |
| sizeof(hdr)))) |
| return -EINVAL; |
| |
| if (CC(hdr.revision_id != VMCS12_REVISION) || |
| CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /* |
| * Checks related to Guest Non-register State |
| */ |
| static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12) |
| { |
| if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE && |
| vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT && |
| vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12, |
| enum vm_entry_failure_code *entry_failure_code) |
| { |
| bool ia32e = !!(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE); |
| |
| *entry_failure_code = ENTRY_FAIL_DEFAULT; |
| |
| if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) || |
| CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))) |
| return -EINVAL; |
| |
| if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) && |
| CC(!kvm_dr7_valid(vmcs12->guest_dr7))) |
| return -EINVAL; |
| |
| if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) && |
| CC(!kvm_pat_valid(vmcs12->guest_ia32_pat))) |
| return -EINVAL; |
| |
| if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) { |
| *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR; |
| return -EINVAL; |
| } |
| |
| if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) && |
| CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu), |
| vmcs12->guest_ia32_perf_global_ctrl))) |
| return -EINVAL; |
| |
| if (CC((vmcs12->guest_cr0 & (X86_CR0_PG | X86_CR0_PE)) == X86_CR0_PG)) |
| return -EINVAL; |
| |
| if (CC(ia32e && !(vmcs12->guest_cr4 & X86_CR4_PAE)) || |
| CC(ia32e && !(vmcs12->guest_cr0 & X86_CR0_PG))) |
| return -EINVAL; |
| |
| /* |
| * If the load IA32_EFER VM-entry control is 1, the following checks |
| * are performed on the field for the IA32_EFER MSR: |
| * - Bits reserved in the IA32_EFER MSR must be 0. |
| * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of |
| * the IA-32e mode guest VM-exit control. It must also be identical |
| * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to |
| * CR0.PG) is 1. |
| */ |
| if (to_vmx(vcpu)->nested.nested_run_pending && |
| (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) { |
| if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) || |
| CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) || |
| CC(((vmcs12->guest_cr0 & X86_CR0_PG) && |
| ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))) |
| return -EINVAL; |
| } |
| |
| if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) && |
| (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) || |
| CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))) |
| return -EINVAL; |
| |
| if (nested_check_guest_non_reg_state(vmcs12)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| unsigned long cr3, cr4; |
| bool vm_fail; |
| |
| if (!nested_early_check) |
| return 0; |
| |
| if (vmx->msr_autoload.host.nr) |
| vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); |
| if (vmx->msr_autoload.guest.nr) |
| vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); |
| |
| preempt_disable(); |
| |
| vmx_prepare_switch_to_guest(vcpu); |
| |
| /* |
| * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS, |
| * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to |
| * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e. |
| * there is no need to preserve other bits or save/restore the field. |
| */ |
| vmcs_writel(GUEST_RFLAGS, 0); |
| |
| cr3 = __get_current_cr3_fast(); |
| if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { |
| vmcs_writel(HOST_CR3, cr3); |
| vmx->loaded_vmcs->host_state.cr3 = cr3; |
| } |
| |
| cr4 = cr4_read_shadow(); |
| if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { |
| vmcs_writel(HOST_CR4, cr4); |
| vmx->loaded_vmcs->host_state.cr4 = cr4; |
| } |
| |
| vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, |
| __vmx_vcpu_run_flags(vmx)); |
| |
| if (vmx->msr_autoload.host.nr) |
| vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); |
| if (vmx->msr_autoload.guest.nr) |
| vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); |
| |
| if (vm_fail) { |
| u32 error = vmcs_read32(VM_INSTRUCTION_ERROR); |
| |
| preempt_enable(); |
| |
| trace_kvm_nested_vmenter_failed( |
| "early hardware check VM-instruction error: ", error); |
| WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD); |
| return 1; |
| } |
| |
| /* |
| * VMExit clears RFLAGS.IF and DR7, even on a consistency check. |
| */ |
| if (hw_breakpoint_active()) |
| set_debugreg(__this_cpu_read(cpu_dr7), 7); |
| local_irq_enable(); |
| preempt_enable(); |
| |
| /* |
| * A non-failing VMEntry means we somehow entered guest mode with |
| * an illegal RIP, and that's just the tip of the iceberg. There |
| * is no telling what memory has been modified or what state has |
| * been exposed to unknown code. Hitting this all but guarantees |
| * a (very critical) hardware issue. |
| */ |
| WARN_ON(!(vmcs_read32(VM_EXIT_REASON) & |
| VMX_EXIT_REASONS_FAILED_VMENTRY)); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_KVM_HYPERV |
| static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| /* |
| * hv_evmcs may end up being not mapped after migration (when |
| * L2 was running), map it here to make sure vmcs12 changes are |
| * properly reflected. |
| */ |
| if (guest_cpuid_has_evmcs(vcpu) && |
| vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) { |
| enum nested_evmptrld_status evmptrld_status = |
| nested_vmx_handle_enlightened_vmptrld(vcpu, false); |
| |
| if (evmptrld_status == EVMPTRLD_VMFAIL || |
| evmptrld_status == EVMPTRLD_ERROR) |
| return false; |
| |
| /* |
| * Post migration VMCS12 always provides the most actual |
| * information, copy it to eVMCS upon entry. |
| */ |
| vmx->nested.need_vmcs12_to_shadow_sync = true; |
| } |
| |
| return true; |
| } |
| #endif |
| |
| static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu) |
| { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct kvm_host_map *map; |
| |
| if (!vcpu->arch.pdptrs_from_userspace && |
| !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) { |
| /* |
| * Reload the guest's PDPTRs since after a migration |
| * the guest CR3 might be restored prior to setting the nested |
| * state which can lead to a load of wrong PDPTRs. |
| */ |
| if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3))) |
| return false; |
| } |
| |
| |
| if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { |
| map = &vmx->nested.apic_access_page_map; |
| |
| if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->apic_access_addr), map)) { |
| vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(map->pfn)); |
| } else { |
| pr_debug_ratelimited("%s: no backing for APIC-access address in vmcs12\n", |
| __func__); |
| vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| vcpu->run->internal.suberror = |
| KVM_INTERNAL_ERROR_EMULATION; |
| vcpu->run->internal.ndata = 0; |
| return false; |
| } |
| } |
| |
| if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) { |
| map = &vmx->nested.virtual_apic_map; |
| |
| if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) { |
| vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn)); |
| } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) && |
| nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) && |
| !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { |
| /* |
| * The processor will never use the TPR shadow, simply |
| * clear the bit from the execution control. Such a |
| * configuration is useless, but it happens in tests. |
| * For any other configuration, failing the vm entry is |
| * _not_ what the processor does but it's basically the |
| * only possibility we have. |
| */ |
| exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW); |
| } else { |
| /* |
| * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to |
| * force VM-Entry to fail. |
| */ |
| vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA); |
| } |
| } |
| |
| if (nested_cpu_has_posted_intr(vmcs12)) { |
| map = &vmx->nested.pi_desc_map; |
| |
| if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) { |
| vmx->nested.pi_desc = |
| (struct pi_desc *)(((void *)map->hva) + |
| offset_in_page(vmcs12->posted_intr_desc_addr)); |
| vmcs_write64(POSTED_INTR_DESC_ADDR, |
| pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr)); |
| } else { |
| /* |
| * Defer the KVM_INTERNAL_EXIT until KVM tries to |
| * access the contents of the VMCS12 posted interrupt |
| * descriptor. (Note that KVM may do this when it |
| * should not, per the architectural specification.) |
| */ |
| vmx->nested.pi_desc = NULL; |
| pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR); |
| } |
| } |
| if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12)) |
| exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS); |
| else |
| exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS); |
| |
| return true; |
| } |
| |
| static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu) |
| { |
| #ifdef CONFIG_KVM_HYPERV |
| /* |
| * Note: nested_get_evmcs_page() also updates 'vp_assist_page' copy |
| * in 'struct kvm_vcpu_hv' in case eVMCS is in use, this is mandatory |
| * to make nested_evmcs_l2_tlb_flush_enabled() work correctly post |
| * migration. |
| */ |
| if (!nested_get_evmcs_page(vcpu)) { |
| pr_debug_ratelimited("%s: enlightened vmptrld failed\n", |
| __func__); |
| vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| vcpu->run->internal.suberror = |
| KVM_INTERNAL_ERROR_EMULATION; |
| vcpu->run->internal.ndata = 0; |
| |
| return false; |
| } |
| #endif |
| |
| if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu)) |
| return false; |
| |
| return true; |
| } |
| |
| static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa) |
| { |
| struct vmcs12 *vmcs12; |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| gpa_t dst; |
| |
| if (WARN_ON_ONCE(!is_guest_mode(vcpu))) |
| return 0; |
| |
| if (WARN_ON_ONCE(vmx->nested.pml_full)) |
| return 1; |
| |
| /* |
| * Check if PML is enabled for the nested guest. Whether eptp bit 6 is |
| * set is already checked as part of A/D emulation. |
| */ |
| vmcs12 = get_vmcs12(vcpu); |
| if (!nested_cpu_has_pml(vmcs12)) |
| return 0; |
| |
| if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) { |
| vmx->nested.pml_full = true; |
| return 1; |
| } |
| |
| gpa &= ~0xFFFull; |
| dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index; |
| |
| if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa, |
| offset_in_page(dst), sizeof(gpa))) |
| return 0; |
| |
| vmcs12->guest_pml_index--; |
| |
| return 0; |
| } |
| |
| /* |
| * Intel's VMX Instruction Reference specifies a common set of prerequisites |
| * for running VMX instructions (except VMXON, whose prerequisites are |
| * slightly different). It also specifies what exception to inject otherwise. |
| * Note that many of these exceptions have priority over VM exits, so they |
| * don't have to be checked again here. |
| */ |
| static int nested_vmx_check_permission(struct kvm_vcpu *vcpu) |
| { |
| if (!to_vmx(vcpu)->nested.vmxon) { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 0; |
| } |
| |
| if (vmx_get_cpl(vcpu)) { |
| kvm_inject_gp(vcpu, 0); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu) |
| { |
| u8 rvi = vmx_get_rvi(); |
| u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI); |
| |
| return ((rvi & 0xf0) > (vppr & 0xf0)); |
| } |
| |
| static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12); |
| |
| /* |
| * If from_vmentry is false, this is being called from state restore (either RSM |
| * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume. |
| * |
| * Returns: |
| * NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode |
| * NVMX_VMENTRY_VMFAIL: Consistency check VMFail |
| * NVMX_VMENTRY_VMEXIT: Consistency check VMExit |
| * NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error |
| */ |
| enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, |
| bool from_vmentry) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| enum vm_entry_failure_code entry_failure_code; |
| bool evaluate_pending_interrupts; |
| union vmx_exit_reason exit_reason = { |
| .basic = EXIT_REASON_INVALID_STATE, |
| .failed_vmentry = 1, |
| }; |
| u32 failed_index; |
| |
| trace_kvm_nested_vmenter(kvm_rip_read(vcpu), |
| vmx->nested.current_vmptr, |
| vmcs12->guest_rip, |
| vmcs12->guest_intr_status, |
| vmcs12->vm_entry_intr_info_field, |
| vmcs12->secondary_vm_exec_control & SECONDARY_EXEC_ENABLE_EPT, |
| vmcs12->ept_pointer, |
| vmcs12->guest_cr3, |
| KVM_ISA_VMX); |
| |
| kvm_service_local_tlb_flush_requests(vcpu); |
| |
| evaluate_pending_interrupts = exec_controls_get(vmx) & |
| (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING); |
| if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu)) |
| evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu); |
| if (!evaluate_pending_interrupts) |
| evaluate_pending_interrupts |= kvm_apic_has_pending_init_or_sipi(vcpu); |
| |
| if (!vmx->nested.nested_run_pending || |
| !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) |
| vmx->nested.pre_vmenter_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL); |
| if (kvm_mpx_supported() && |
| (!vmx->nested.nested_run_pending || |
| !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))) |
| vmx->nested.pre_vmenter_bndcfgs = vmcs_read64(GUEST_BNDCFGS); |
| |
| /* |
| * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and* |
| * nested early checks are disabled. In the event of a "late" VM-Fail, |
| * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its |
| * software model to the pre-VMEntry host state. When EPT is disabled, |
| * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes |
| * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3. Stuffing |
| * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to |
| * the correct value. Smashing vmcs01.GUEST_CR3 is safe because nested |
| * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is |
| * guaranteed to be overwritten with a shadow CR3 prior to re-entering |
| * L1. Don't stuff vmcs01.GUEST_CR3 when using nested early checks as |
| * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks |
| * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail |
| * path would need to manually save/restore vmcs01.GUEST_CR3. |
| */ |
| if (!enable_ept && !nested_early_check) |
| vmcs_writel(GUEST_CR3, vcpu->arch.cr3); |
| |
| vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02); |
| |
| prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12); |
| |
| if (from_vmentry) { |
| if (unlikely(!nested_get_vmcs12_pages(vcpu))) { |
| vmx_switch_vmcs(vcpu, &vmx->vmcs01); |
| return NVMX_VMENTRY_KVM_INTERNAL_ERROR; |
| } |
| |
| if (nested_vmx_check_vmentry_hw(vcpu)) { |
| vmx_switch_vmcs(vcpu, &vmx->vmcs01); |
| return NVMX_VMENTRY_VMFAIL; |
| } |
| |
| if (nested_vmx_check_guest_state(vcpu, vmcs12, |
| &entry_failure_code)) { |
| exit_reason.basic = EXIT_REASON_INVALID_STATE; |
| vmcs12->exit_qualification = entry_failure_code; |
| goto vmentry_fail_vmexit; |
| } |
| } |
| |
| enter_guest_mode(vcpu); |
| |
| if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) { |
| exit_reason.basic = EXIT_REASON_INVALID_STATE; |
| vmcs12->exit_qualification = entry_failure_code; |
| goto vmentry_fail_vmexit_guest_mode; |
| } |
| |
| if (from_vmentry) { |
| failed_index = nested_vmx_load_msr(vcpu, |
| vmcs12->vm_entry_msr_load_addr, |
| vmcs12->vm_entry_msr_load_count); |
| if (failed_index) { |
| exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL; |
| vmcs12->exit_qualification = failed_index; |
| goto vmentry_fail_vmexit_guest_mode; |
| } |
| } else { |
| /* |
| * The MMU is not initialized to point at the right entities yet and |
| * "get pages" would need to read data from the guest (i.e. we will |
| * need to perform gpa to hpa translation). Request a call |
| * to nested_get_vmcs12_pages before the next VM-entry. The MSRs |
| * have already been set at vmentry time and should not be reset. |
| */ |
| kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu); |
| } |
| |
| /* |
| * Re-evaluate pending events if L1 had a pending IRQ/NMI/INIT/SIPI |
| * when it executed VMLAUNCH/VMRESUME, as entering non-root mode can |
| * effectively unblock various events, e.g. INIT/SIPI cause VM-Exit |
| * unconditionally. |
| */ |
| if (unlikely(evaluate_pending_interrupts)) |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| |
| /* |
| * Do not start the preemption timer hrtimer until after we know |
| * we are successful, so that only nested_vmx_vmexit needs to cancel |
| * the timer. |
| */ |
| vmx->nested.preemption_timer_expired = false; |
| if (nested_cpu_has_preemption_timer(vmcs12)) { |
| u64 timer_value = vmx_calc_preemption_timer_value(vcpu); |
| vmx_start_preemption_timer(vcpu, timer_value); |
| } |
| |
| /* |
| * Note no nested_vmx_succeed or nested_vmx_fail here. At this point |
| * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet |
| * returned as far as L1 is concerned. It will only return (and set |
| * the success flag) when L2 exits (see nested_vmx_vmexit()). |
| */ |
| return NVMX_VMENTRY_SUCCESS; |
| |
| /* |
| * A failed consistency check that leads to a VMExit during L1's |
| * VMEnter to L2 is a variation of a normal VMexit, as explained in |
| * 26.7 "VM-entry failures during or after loading guest state". |
| */ |
| vmentry_fail_vmexit_guest_mode: |
| if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING) |
| vcpu->arch.tsc_offset -= vmcs12->tsc_offset; |
| leave_guest_mode(vcpu); |
| |
| vmentry_fail_vmexit: |
| vmx_switch_vmcs(vcpu, &vmx->vmcs01); |
| |
| if (!from_vmentry) |
| return NVMX_VMENTRY_VMEXIT; |
| |
| load_vmcs12_host_state(vcpu, vmcs12); |
| vmcs12->vm_exit_reason = exit_reason.full; |
| if (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx)) |
| vmx->nested.need_vmcs12_to_shadow_sync = true; |
| return NVMX_VMENTRY_VMEXIT; |
| } |
| |
| /* |
| * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1 |
| * for running an L2 nested guest. |
| */ |
| static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch) |
| { |
| struct vmcs12 *vmcs12; |
| enum nvmx_vmentry_status status; |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu); |
| enum nested_evmptrld_status evmptrld_status; |
| |
| if (!nested_vmx_check_permission(vcpu)) |
| return 1; |
| |
| evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch); |
| if (evmptrld_status == EVMPTRLD_ERROR) { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED); |
| |
| if (CC(evmptrld_status == EVMPTRLD_VMFAIL)) |
| return nested_vmx_failInvalid(vcpu); |
| |
| if (CC(!nested_vmx_is_evmptr12_valid(vmx) && |
| vmx->nested.current_vmptr == INVALID_GPA)) |
| return nested_vmx_failInvalid(vcpu); |
| |
| vmcs12 = get_vmcs12(vcpu); |
| |
| /* |
| * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact |
| * that there *is* a valid VMCS pointer, RFLAGS.CF is set |
| * rather than RFLAGS.ZF, and no error number is stored to the |
| * VM-instruction error field. |
| */ |
| if (CC(vmcs12->hdr.shadow_vmcs)) |
| return nested_vmx_failInvalid(vcpu); |
| |
| if (nested_vmx_is_evmptr12_valid(vmx)) { |
| struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx); |
| |
| copy_enlightened_to_vmcs12(vmx, evmcs->hv_clean_fields); |
| /* Enlightened VMCS doesn't have launch state */ |
| vmcs12->launch_state = !launch; |
| } else if (enable_shadow_vmcs) { |
| copy_shadow_to_vmcs12(vmx); |
| } |
| |
| /* |
| * The nested entry process starts with enforcing various prerequisites |
| * on vmcs12 as required by the Intel SDM, and act appropriately when |
| * they fail: As the SDM explains, some conditions should cause the |
| * instruction to fail, while others will cause the instruction to seem |
| * to succeed, but return an EXIT_REASON_INVALID_STATE. |
| * To speed up the normal (success) code path, we should avoid checking |
| * for misconfigurations which will anyway be caught by the processor |
| * when using the merged vmcs02. |
| */ |
| if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)) |
| return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS); |
| |
| if (CC(vmcs12->launch_state == launch)) |
| return nested_vmx_fail(vcpu, |
| launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS |
| : VMXERR_VMRESUME_NONLAUNCHED_VMCS); |
| |
| if (nested_vmx_check_controls(vcpu, vmcs12)) |
| return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); |
| |
| if (nested_vmx_check_address_space_size(vcpu, vmcs12)) |
| return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); |
| |
| if (nested_vmx_check_host_state(vcpu, vmcs12)) |
| return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); |
| |
| /* |
| * We're finally done with prerequisite checking, and can start with |
| * the nested entry. |
| */ |
| vmx->nested.nested_run_pending = 1; |
| vmx->nested.has_preemption_timer_deadline = false; |
| status = nested_vmx_enter_non_root_mode(vcpu, true); |
| if (unlikely(status != NVMX_VMENTRY_SUCCESS)) |
| goto vmentry_failed; |
| |
| /* Emulate processing of posted interrupts on VM-Enter. */ |
| if (nested_cpu_has_posted_intr(vmcs12) && |
| kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) { |
| vmx->nested.pi_pending = true; |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv); |
| } |
| |
| /* Hide L1D cache contents from the nested guest. */ |
| vmx->vcpu.arch.l1tf_flush_l1d = true; |
| |
| /* |
| * Must happen outside of nested_vmx_enter_non_root_mode() as it will |
| * also be used as part of restoring nVMX state for |
| * snapshot restore (migration). |
| * |
| * In this flow, it is assumed that vmcs12 cache was |
| * transferred as part of captured nVMX state and should |
| * therefore not be read from guest memory (which may not |
| * exist on destination host yet). |
| */ |
| nested_cache_shadow_vmcs12(vcpu, vmcs12); |
| |
| switch (vmcs12->guest_activity_state) { |
| case GUEST_ACTIVITY_HLT: |
| /* |
| * If we're entering a halted L2 vcpu and the L2 vcpu won't be |
| * awakened by event injection or by an NMI-window VM-exit or |
| * by an interrupt-window VM-exit, halt the vcpu. |
| */ |
| if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) && |
| !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) && |
| !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) && |
| (vmcs12->guest_rflags & X86_EFLAGS_IF))) { |
| vmx->nested.nested_run_pending = 0; |
| return kvm_emulate_halt_noskip(vcpu); |
| } |
| break; |
| case GUEST_ACTIVITY_WAIT_SIPI: |
| vmx->nested.nested_run_pending = 0; |
| vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; |
| break; |
| default: |
| break; |
| } |
| |
| return 1; |
| |
| vmentry_failed: |
| vmx->nested.nested_run_pending = 0; |
| if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR) |
| return 0; |
| if (status == NVMX_VMENTRY_VMEXIT) |
| return 1; |
| WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL); |
| return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); |
| } |
| |
| /* |
| * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date |
| * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK). |
| * This function returns the new value we should put in vmcs12.guest_cr0. |
| * It's not enough to just return the vmcs02 GUEST_CR0. Rather, |
| * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now |
| * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0 |
| * didn't trap the bit, because if L1 did, so would L0). |
| * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have |
| * been modified by L2, and L1 knows it. So just leave the old value of |
| * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0 |
| * isn't relevant, because if L0 traps this bit it can set it to anything. |
| * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have |
| * changed these bits, and therefore they need to be updated, but L0 |
| * didn't necessarily allow them to be changed in GUEST_CR0 - and rather |
| * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there. |
| */ |
| static inline unsigned long |
| vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) |
| { |
| return |
| /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) | |
| /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) | |
| /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask | |
| vcpu->arch.cr0_guest_owned_bits)); |
| } |
| |
| static inline unsigned long |
| vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) |
| { |
| return |
| /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) | |
| /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) | |
| /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask | |
| vcpu->arch.cr4_guest_owned_bits)); |
| } |
| |
| static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12, |
| u32 vm_exit_reason, u32 exit_intr_info) |
| { |
| u32 idt_vectoring; |
| unsigned int nr; |
| |
| /* |
| * Per the SDM, VM-Exits due to double and triple faults are never |
| * considered to occur during event delivery, even if the double/triple |
| * fault is the result of an escalating vectoring issue. |
| * |
| * Note, the SDM qualifies the double fault behavior with "The original |
| * event results in a double-fault exception". It's unclear why the |
| * qualification exists since exits due to double fault can occur only |
| * while vectoring a different exception (injected events are never |
| * subject to interception), i.e. there's _always_ an original event. |
| * |
| * The SDM also uses NMI as a confusing example for the "original event |
| * causes the VM exit directly" clause. NMI isn't special in any way, |
| * the same rule applies to all events that cause an exit directly. |
| * NMI is an odd choice for the example because NMIs can only occur on |
| * instruction boundaries, i.e. they _can't_ occur during vectoring. |
| */ |
| if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT || |
| ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI && |
| is_double_fault(exit_intr_info))) { |
| vmcs12->idt_vectoring_info_field = 0; |
| } else if (vcpu->arch.exception.injected) { |
| nr = vcpu->arch.exception.vector; |
| idt_vectoring = nr | VECTORING_INFO_VALID_MASK; |
| |
| if (kvm_exception_is_soft(nr)) { |
| vmcs12->vm_exit_instruction_len = |
| vcpu->arch.event_exit_inst_len; |
| idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION; |
| } else |
| idt_vectoring |= INTR_TYPE_HARD_EXCEPTION; |
| |
| if (vcpu->arch.exception.has_error_code) { |
| idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK; |
| vmcs12->idt_vectoring_error_code = |
| vcpu->arch.exception.error_code; |
| } |
| |
| vmcs12->idt_vectoring_info_field = idt_vectoring; |
| } else if (vcpu->arch.nmi_injected) { |
| vmcs12->idt_vectoring_info_field = |
| INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR; |
| } else if (vcpu->arch.interrupt.injected) { |
| nr = vcpu->arch.interrupt.nr; |
| idt_vectoring = nr | VECTORING_INFO_VALID_MASK; |
| |
| if (vcpu->arch.interrupt.soft) { |
| idt_vectoring |= INTR_TYPE_SOFT_INTR; |
| vmcs12->vm_entry_instruction_len = |
| vcpu->arch.event_exit_inst_len; |
| } else |
| idt_vectoring |= INTR_TYPE_EXT_INTR; |
| |
| vmcs12->idt_vectoring_info_field = idt_vectoring; |
| } else { |
| vmcs12->idt_vectoring_info_field = 0; |
| } |
| } |
| |
| |
| void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu) |
| { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| gfn_t gfn; |
| |
| /* |
| * Don't need to mark the APIC access page dirty; it is never |
| * written to by the CPU during APIC virtualization. |
| */ |
| |
| if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) { |
| gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT; |
| kvm_vcpu_mark_page_dirty(vcpu, gfn); |
| } |
| |
| if (nested_cpu_has_posted_intr(vmcs12)) { |
| gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT; |
| kvm_vcpu_mark_page_dirty(vcpu, gfn); |
| } |
| } |
| |
| static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| int max_irr; |
| void *vapic_page; |
| u16 status; |
| |
| if (!vmx->nested.pi_pending) |
| return 0; |
| |
| if (!vmx->nested.pi_desc) |
| goto mmio_needed; |
| |
| vmx->nested.pi_pending = false; |
| |
| if (!pi_test_and_clear_on(vmx->nested.pi_desc)) |
| return 0; |
| |
| max_irr = pi_find_highest_vector(vmx->nested.pi_desc); |
| if (max_irr > 0) { |
| vapic_page = vmx->nested.virtual_apic_map.hva; |
| if (!vapic_page) |
| goto mmio_needed; |
| |
| __kvm_apic_update_irr(vmx->nested.pi_desc->pir, |
| vapic_page, &max_irr); |
| status = vmcs_read16(GUEST_INTR_STATUS); |
| if ((u8)max_irr > ((u8)status & 0xff)) { |
| status &= ~0xff; |
| status |= (u8)max_irr; |
| vmcs_write16(GUEST_INTR_STATUS, status); |
| } |
| } |
| |
| nested_mark_vmcs12_pages_dirty(vcpu); |
| return 0; |
| |
| mmio_needed: |
| kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL); |
| return -ENXIO; |
| } |
| |
| static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; |
| u32 intr_info = ex->vector | INTR_INFO_VALID_MASK; |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| unsigned long exit_qual; |
| |
| if (ex->has_payload) { |
| exit_qual = ex->payload; |
| } else if (ex->vector == PF_VECTOR) { |
| exit_qual = vcpu->arch.cr2; |
| } else if (ex->vector == DB_VECTOR) { |
| exit_qual = vcpu->arch.dr6; |
| exit_qual &= ~DR6_BT; |
| exit_qual ^= DR6_ACTIVE_LOW; |
| } else { |
| exit_qual = 0; |
| } |
| |
| /* |
| * Unlike AMD's Paged Real Mode, which reports an error code on #PF |
| * VM-Exits even if the CPU is in Real Mode, Intel VMX never sets the |
| * "has error code" flags on VM-Exit if the CPU is in Real Mode. |
| */ |
| if (ex->has_error_code && is_protmode(vcpu)) { |
| /* |
| * Intel CPUs do not generate error codes with bits 31:16 set, |
| * and more importantly VMX disallows setting bits 31:16 in the |
| * injected error code for VM-Entry. Drop the bits to mimic |
| * hardware and avoid inducing failure on nested VM-Entry if L1 |
| * chooses to inject the exception back to L2. AMD CPUs _do_ |
| * generate "full" 32-bit error codes, so KVM allows userspace |
| * to inject exception error codes with bits 31:16 set. |
| */ |
| vmcs12->vm_exit_intr_error_code = (u16)ex->error_code; |
| intr_info |= INTR_INFO_DELIVER_CODE_MASK; |
| } |
| |
| if (kvm_exception_is_soft(ex->vector)) |
| intr_info |= INTR_TYPE_SOFT_EXCEPTION; |
| else |
| intr_info |= INTR_TYPE_HARD_EXCEPTION; |
| |
| if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) && |
| vmx_get_nmi_mask(vcpu)) |
| intr_info |= INTR_INFO_UNBLOCK_NMI; |
| |
| nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual); |
| } |
| |
| /* |
| * Returns true if a debug trap is (likely) pending delivery. Infer the class |
| * of a #DB (trap-like vs. fault-like) from the exception payload (to-be-DR6). |
| * Using the payload is flawed because code breakpoints (fault-like) and data |
| * breakpoints (trap-like) set the same bits in DR6 (breakpoint detected), i.e. |
| * this will return false positives if a to-be-injected code breakpoint #DB is |
| * pending (from KVM's perspective, but not "pending" across an instruction |
| * boundary). ICEBP, a.k.a. INT1, is also not reflected here even though it |
| * too is trap-like. |
| * |
| * KVM "works" despite these flaws as ICEBP isn't currently supported by the |
| * emulator, Monitor Trap Flag is not marked pending on intercepted #DBs (the |
| * #DB has already happened), and MTF isn't marked pending on code breakpoints |
| * from the emulator (because such #DBs are fault-like and thus don't trigger |
| * actions that fire on instruction retire). |
| */ |
| static unsigned long vmx_get_pending_dbg_trap(struct kvm_queued_exception *ex) |
| { |
| if (!ex->pending || ex->vector != DB_VECTOR) |
| return 0; |
| |
| /* General Detect #DBs are always fault-like. */ |
| return ex->payload & ~DR6_BD; |
| } |
| |
| /* |
| * Returns true if there's a pending #DB exception that is lower priority than |
| * a pending Monitor Trap Flag VM-Exit. TSS T-flag #DBs are not emulated by |
| * KVM, but could theoretically be injected by userspace. Note, this code is |
| * imperfect, see above. |
| */ |
| static bool vmx_is_low_priority_db_trap(struct kvm_queued_exception *ex) |
| { |
| return vmx_get_pending_dbg_trap(ex) & ~DR6_BT; |
| } |
| |
| /* |
| * Certain VM-exits set the 'pending debug exceptions' field to indicate a |
| * recognized #DB (data or single-step) that has yet to be delivered. Since KVM |
| * represents these debug traps with a payload that is said to be compatible |
| * with the 'pending debug exceptions' field, write the payload to the VMCS |
| * field if a VM-exit is delivered before the debug trap. |
| */ |
| static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu) |
| { |
| unsigned long pending_dbg; |
| |
| pending_dbg = vmx_get_pending_dbg_trap(&vcpu->arch.exception); |
| if (pending_dbg) |
| vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, pending_dbg); |
| } |
| |
| static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu) |
| { |
| return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) && |
| to_vmx(vcpu)->nested.preemption_timer_expired; |
| } |
| |
| static bool vmx_has_nested_events(struct kvm_vcpu *vcpu, bool for_injection) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| void *vapic = vmx->nested.virtual_apic_map.hva; |
| int max_irr, vppr; |
| |
| if (nested_vmx_preemption_timer_pending(vcpu) || |
| vmx->nested.mtf_pending) |
| return true; |
| |
| /* |
| * Virtual Interrupt Delivery doesn't require manual injection. Either |
| * the interrupt is already in GUEST_RVI and will be recognized by CPU |
| * at VM-Entry, or there is a KVM_REQ_EVENT pending and KVM will move |
| * the interrupt from the PIR to RVI prior to entering the guest. |
| */ |
| if (for_injection) |
| return false; |
| |
| if (!nested_cpu_has_vid(get_vmcs12(vcpu)) || |
| __vmx_interrupt_blocked(vcpu)) |
| return false; |
| |
| if (!vapic) |
| return false; |
| |
| vppr = *((u32 *)(vapic + APIC_PROCPRI)); |
| |
| max_irr = vmx_get_rvi(); |
| if ((max_irr & 0xf0) > (vppr & 0xf0)) |
| return true; |
| |
| if (vmx->nested.pi_pending && vmx->nested.pi_desc && |
| pi_test_on(vmx->nested.pi_desc)) { |
| max_irr = pi_find_highest_vector(vmx->nested.pi_desc); |
| if (max_irr > 0 && (max_irr & 0xf0) > (vppr & 0xf0)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Per the Intel SDM's table "Priority Among Concurrent Events", with minor |
| * edits to fill in missing examples, e.g. #DB due to split-lock accesses, |
| * and less minor edits to splice in the priority of VMX Non-Root specific |
| * events, e.g. MTF and NMI/INTR-window exiting. |
| * |
| * 1 Hardware Reset and Machine Checks |
| * - RESET |
| * - Machine Check |
| * |
| * 2 Trap on Task Switch |
| * - T flag in TSS is set (on task switch) |
| * |
| * 3 External Hardware Interventions |
| * - FLUSH |
| * - STOPCLK |
| * - SMI |
| * - INIT |
| * |
| * 3.5 Monitor Trap Flag (MTF) VM-exit[1] |
| * |
| * 4 Traps on Previous Instruction |
| * - Breakpoints |
| * - Trap-class Debug Exceptions (#DB due to TF flag set, data/I-O |
| * breakpoint, or #DB due to a split-lock access) |
| * |
| * 4.3 VMX-preemption timer expired VM-exit |
| * |
| * 4.6 NMI-window exiting VM-exit[2] |
| * |
| * 5 Nonmaskable Interrupts (NMI) |
| * |
| * 5.5 Interrupt-window exiting VM-exit and Virtual-interrupt delivery |
| * |
| * 6 Maskable Hardware Interrupts |
| * |
| * 7 Code Breakpoint Fault |
| * |
| * 8 Faults from Fetching Next Instruction |
| * - Code-Segment Limit Violation |
| * - Code Page Fault |
| * - Control protection exception (missing ENDBRANCH at target of indirect |
| * call or jump) |
| * |
| * 9 Faults from Decoding Next Instruction |
| * - Instruction length > 15 bytes |
| * - Invalid Opcode |
| * - Coprocessor Not Available |
| * |
| *10 Faults on Executing Instruction |
| * - Overflow |
| * - Bound error |
| * - Invalid TSS |
| * - Segment Not Present |
| * - Stack fault |
| * - General Protection |
| * - Data Page Fault |
| * - Alignment Check |
| * - x86 FPU Floating-point exception |
| * - SIMD floating-point exception |
| * - Virtualization exception |
| * - Control protection exception |
| * |
| * [1] Per the "Monitor Trap Flag" section: System-management interrupts (SMIs), |
| * INIT signals, and higher priority events take priority over MTF VM exits. |
| * MTF VM exits take priority over debug-trap exceptions and lower priority |
| * events. |
| * |
| * [2] Debug-trap exceptions and higher priority events take priority over VM exits |
| * caused by the VMX-preemption timer. VM exits caused by the VMX-preemption |
| * timer take priority over VM exits caused by the "NMI-window exiting" |
| * VM-execution control and lower priority events. |
| * |
| * [3] Debug-trap exceptions and higher priority events take priority over VM exits |
| * caused by "NMI-window exiting". VM exits caused by this control take |
| * priority over non-maskable interrupts (NMIs) and lower priority events. |
| * |
| * [4] Virtual-interrupt delivery has the same priority as that of VM exits due to |
| * the 1-setting of the "interrupt-window exiting" VM-execution control. Thus, |
| * non-maskable interrupts (NMIs) and higher priority events take priority over |
| * delivery of a virtual interrupt; delivery of a virtual interrupt takes |
| * priority over external interrupts and lower priority events. |
| */ |
| static int vmx_check_nested_events(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| /* |
| * Only a pending nested run blocks a pending exception. If there is a |
| * previously injected event, the pending exception occurred while said |
| * event was being delivered and thus needs to be handled. |
| */ |
| bool block_nested_exceptions = vmx->nested.nested_run_pending; |
| /* |
| * New events (not exceptions) are only recognized at instruction |
| * boundaries. If an event needs reinjection, then KVM is handling a |
| * VM-Exit that occurred _during_ instruction execution; new events are |
| * blocked until the instruction completes. |
| */ |
| bool block_nested_events = block_nested_exceptions || |
| kvm_event_needs_reinjection(vcpu); |
| |
| if (lapic_in_kernel(vcpu) && |
| test_bit(KVM_APIC_INIT, &apic->pending_events)) { |
| if (block_nested_events) |
| return -EBUSY; |
| nested_vmx_update_pending_dbg(vcpu); |
| clear_bit(KVM_APIC_INIT, &apic->pending_events); |
| if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED) |
| nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0); |
| |
| /* MTF is discarded if the vCPU is in WFS. */ |
| vmx->nested.mtf_pending = false; |
| return 0; |
| } |
| |
| if (lapic_in_kernel(vcpu) && |
| test_bit(KVM_APIC_SIPI, &apic->pending_events)) { |
| if (block_nested_events) |
| return -EBUSY; |
| |
| clear_bit(KVM_APIC_SIPI, &apic->pending_events); |
| if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { |
| nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0, |
| apic->sipi_vector & 0xFFUL); |
| return 0; |
| } |
| /* Fallthrough, the SIPI is completely ignored. */ |
| } |
| |
| /* |
| * Process exceptions that are higher priority than Monitor Trap Flag: |
| * fault-like exceptions, TSS T flag #DB (not emulated by KVM, but |
| * could theoretically come in from userspace), and ICEBP (INT1). |
| * |
| * TODO: SMIs have higher priority than MTF and trap-like #DBs (except |
| * for TSS T flag #DBs). KVM also doesn't save/restore pending MTF |
| * across SMI/RSM as it should; that needs to be addressed in order to |
| * prioritize SMI over MTF and trap-like #DBs. |
| */ |
| if (vcpu->arch.exception_vmexit.pending && |
| !vmx_is_low_priority_db_trap(&vcpu->arch.exception_vmexit)) { |
| if (block_nested_exceptions) |
| return -EBUSY; |
| |
| nested_vmx_inject_exception_vmexit(vcpu); |
| return 0; |
| } |
| |
| if (vcpu->arch.exception.pending && |
| !vmx_is_low_priority_db_trap(&vcpu->arch.exception)) { |
| if (block_nested_exceptions) |
| return -EBUSY; |
| goto no_vmexit; |
| } |
| |
| if (vmx->nested.mtf_pending) { |
| if (block_nested_events) |
| return -EBUSY; |
| nested_vmx_update_pending_dbg(vcpu); |
| nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0); |
| return 0; |
| } |
| |
| if (vcpu->arch.exception_vmexit.pending) { |
| if (block_nested_exceptions) |
| return -EBUSY; |
| |
| nested_vmx_inject_exception_vmexit(vcpu); |
| return 0; |
| } |
| |
| if (vcpu->arch.exception.pending) { |
| if (block_nested_exceptions) |
| return -EBUSY; |
| goto no_vmexit; |
| } |
| |
| if (nested_vmx_preemption_timer_pending(vcpu)) { |
| if (block_nested_events) |
| return -EBUSY; |
| nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0); |
| return 0; |
| } |
| |
| if (vcpu->arch.smi_pending && !is_smm(vcpu)) { |
| if (block_nested_events) |
| return -EBUSY; |
| goto no_vmexit; |
| } |
| |
| if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) { |
| if (block_nested_events) |
| return -EBUSY; |
| if (!nested_exit_on_nmi(vcpu)) |
| goto no_vmexit; |
| |
| nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, |
| NMI_VECTOR | INTR_TYPE_NMI_INTR | |
| INTR_INFO_VALID_MASK, 0); |
| /* |
| * The NMI-triggered VM exit counts as injection: |
| * clear this one and block further NMIs. |
| */ |
| vcpu->arch.nmi_pending = 0; |
| vmx_set_nmi_mask(vcpu, true); |
| return 0; |
| } |
| |
| if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) { |
| int irq; |
| |
| if (block_nested_events) |
| return -EBUSY; |
| if (!nested_exit_on_intr(vcpu)) |
| goto no_vmexit; |
| |
| if (!nested_exit_intr_ack_set(vcpu)) { |
| nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0); |
| return 0; |
| } |
| |
| irq = kvm_cpu_get_extint(vcpu); |
| if (irq != -1) { |
| nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, |
| INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR | irq, 0); |
| return 0; |
| } |
| |
| irq = kvm_apic_has_interrupt(vcpu); |
| if (WARN_ON_ONCE(irq < 0)) |
| goto no_vmexit; |
| |
| /* |
| * If the IRQ is L2's PI notification vector, process posted |
| * interrupts for L2 instead of injecting VM-Exit, as the |
| * detection/morphing architecturally occurs when the IRQ is |
| * delivered to the CPU. Note, only interrupts that are routed |
| * through the local APIC trigger posted interrupt processing, |
| * and enabling posted interrupts requires ACK-on-exit. |
| */ |
| if (irq == vmx->nested.posted_intr_nv) { |
| vmx->nested.pi_pending = true; |
| kvm_apic_clear_irr(vcpu, irq); |
| goto no_vmexit; |
| } |
| |
| nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, |
| INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR | irq, 0); |
| |
| /* |
| * ACK the interrupt _after_ emulating VM-Exit, as the IRQ must |
| * be marked as in-service in vmcs01.GUEST_INTERRUPT_STATUS.SVI |
| * if APICv is active. |
| */ |
| kvm_apic_ack_interrupt(vcpu, irq); |
| return 0; |
| } |
| |
| no_vmexit: |
| return vmx_complete_nested_posted_interrupt(vcpu); |
| } |
| |
| static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu) |
| { |
| ktime_t remaining = |
| hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer); |
| u64 value; |
| |
| if (ktime_to_ns(remaining) <= 0) |
| return 0; |
| |
| value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz; |
| do_div(value, 1000000); |
| return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE; |
| } |
| |
| static bool is_vmcs12_ext_field(unsigned long field) |
| { |
| switch (field) { |
| case GUEST_ES_SELECTOR: |
| case GUEST_CS_SELECTOR: |
| case GUEST_SS_SELECTOR: |
| case GUEST_DS_SELECTOR: |
| case GUEST_FS_SELECTOR: |
| case GUEST_GS_SELECTOR: |
| case GUEST_LDTR_SELECTOR: |
| case GUEST_TR_SELECTOR: |
| case GUEST_ES_LIMIT: |
| case GUEST_CS_LIMIT: |
| case GUEST_SS_LIMIT: |
| case GUEST_DS_LIMIT: |
| case GUEST_FS_LIMIT: |
| case GUEST_GS_LIMIT: |
| case GUEST_LDTR_LIMIT: |
| case GUEST_TR_LIMIT: |
| case GUEST_GDTR_LIMIT: |
| case GUEST_IDTR_LIMIT: |
| case GUEST_ES_AR_BYTES: |
| case GUEST_DS_AR_BYTES: |
| case GUEST_FS_AR_BYTES: |
| case GUEST_GS_AR_BYTES: |
| case GUEST_LDTR_AR_BYTES: |
| case GUEST_TR_AR_BYTES: |
| case GUEST_ES_BASE: |
| case GUEST_CS_BASE: |
| case GUEST_SS_BASE: |
| case GUEST_DS_BASE: |
| case GUEST_FS_BASE: |
| case GUEST_GS_BASE: |
| case GUEST_LDTR_BASE: |
| case GUEST_TR_BASE: |
| case GUEST_GDTR_BASE: |
| case GUEST_IDTR_BASE: |
| case GUEST_PENDING_DBG_EXCEPTIONS: |
| case GUEST_BNDCFGS: |
| return true; |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR); |
| vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR); |
| vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR); |
| vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR); |
| vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR); |
| vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR); |
| vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR); |
| vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR); |
| vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT); |
| vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT); |
| vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT); |
| vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT); |
| vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT); |
| vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT); |
| vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT); |
| vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT); |
| vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT); |
| vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT); |
| vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES); |
| vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES); |
| vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES); |
| vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES); |
| vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES); |
| vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES); |
| vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE); |
| vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE); |
| vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE); |
| vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE); |
| vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE); |
| vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE); |
| vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE); |
| vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE); |
| vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE); |
| vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE); |
| vmcs12->guest_pending_dbg_exceptions = |
| vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS); |
| |
| vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false; |
| } |
| |
| static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| int cpu; |
| |
| if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare) |
| return; |
| |
| |
| WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01); |
| |
| cpu = get_cpu(); |
| vmx->loaded_vmcs = &vmx->nested.vmcs02; |
| vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01); |
| |
| sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12); |
| |
| vmx->loaded_vmcs = &vmx->vmcs01; |
| vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02); |
| put_cpu(); |
| } |
| |
| /* |
| * Update the guest state fields of vmcs12 to reflect changes that |
| * occurred while L2 was running. (The "IA-32e mode guest" bit of the |
| * VM-entry controls is also updated, since this is really a guest |
| * state bit.) |
| */ |
| static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (nested_vmx_is_evmptr12_valid(vmx)) |
| sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12); |
| |
| vmx->nested.need_sync_vmcs02_to_vmcs12_rare = |
| !nested_vmx_is_evmptr12_valid(vmx); |
| |
| vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12); |
| vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12); |
| |
| vmcs12->guest_rsp = kvm_rsp_read(vcpu); |
| vmcs12->guest_rip = kvm_rip_read(vcpu); |
| vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS); |
| |
| vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES); |
| vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES); |
| |
| vmcs12->guest_interruptibility_info = |
| vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); |
| |
| if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) |
| vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT; |
| else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) |
| vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI; |
| else |
| vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE; |
| |
| if (nested_cpu_has_preemption_timer(vmcs12) && |
| vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER && |
| !vmx->nested.nested_run_pending) |
| vmcs12->vmx_preemption_timer_value = |
| vmx_get_preemption_timer_value(vcpu); |
| |
| /* |
| * In some cases (usually, nested EPT), L2 is allowed to change its |
| * own CR3 without exiting. If it has changed it, we must keep it. |
| * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined |
| * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12. |
| * |
| * Additionally, restore L2's PDPTR to vmcs12. |
| */ |
| if (enable_ept) { |
| vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3); |
| if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) { |
| vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0); |
| vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1); |
| vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2); |
| vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3); |
| } |
| } |
| |
| vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS); |
| |
| if (nested_cpu_has_vid(vmcs12)) |
| vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS); |
| |
| vmcs12->vm_entry_controls = |
| (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) | |
| (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE); |
| |
| if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) |
| vmcs12->guest_dr7 = vcpu->arch.dr7; |
| |
| if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER) |
| vmcs12->guest_ia32_efer = vcpu->arch.efer; |
| } |
| |
| /* |
| * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits |
| * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12), |
| * and this function updates it to reflect the changes to the guest state while |
| * L2 was running (and perhaps made some exits which were handled directly by L0 |
| * without going back to L1), and to reflect the exit reason. |
| * Note that we do not have to copy here all VMCS fields, just those that |
| * could have changed by the L2 guest or the exit - i.e., the guest-state and |
| * exit-information fields only. Other fields are modified by L1 with VMWRITE, |
| * which already writes to vmcs12 directly. |
| */ |
| static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, |
| u32 vm_exit_reason, u32 exit_intr_info, |
| unsigned long exit_qualification) |
| { |
| /* update exit information fields: */ |
| vmcs12->vm_exit_reason = vm_exit_reason; |
| if (to_vmx(vcpu)->exit_reason.enclave_mode) |
| vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE; |
| vmcs12->exit_qualification = exit_qualification; |
| |
| /* |
| * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched |
| * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other |
| * exit info fields are unmodified. |
| */ |
| if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) { |
| vmcs12->launch_state = 1; |
| |
| /* vm_entry_intr_info_field is cleared on exit. Emulate this |
| * instead of reading the real value. */ |
| vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK; |
| |
| /* |
| * Transfer the event that L0 or L1 may wanted to inject into |
| * L2 to IDT_VECTORING_INFO_FIELD. |
| */ |
| vmcs12_save_pending_event(vcpu, vmcs12, |
| vm_exit_reason, exit_intr_info); |
| |
| vmcs12->vm_exit_intr_info = exit_intr_info; |
| vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); |
| vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); |
| |
| /* |
| * According to spec, there's no need to store the guest's |
| * MSRs if the exit is due to a VM-entry failure that occurs |
| * during or after loading the guest state. Since this exit |
| * does not fall in that category, we need to save the MSRs. |
| */ |
| if (nested_vmx_store_msr(vcpu, |
| vmcs12->vm_exit_msr_store_addr, |
| vmcs12->vm_exit_msr_store_count)) |
| nested_vmx_abort(vcpu, |
| VMX_ABORT_SAVE_GUEST_MSR_FAIL); |
| } |
| } |
| |
| /* |
| * A part of what we need to when the nested L2 guest exits and we want to |
| * run its L1 parent, is to reset L1's guest state to the host state specified |
| * in vmcs12. |
| * This function is to be called not only on normal nested exit, but also on |
| * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry |
| * Failures During or After Loading Guest State"). |
| * This function should be called when the active VMCS is L1's (vmcs01). |
| */ |
| static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| enum vm_entry_failure_code ignored; |
| struct kvm_segment seg; |
| |
| if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) |
| vcpu->arch.efer = vmcs12->host_ia32_efer; |
| else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) |
| vcpu->arch.efer |= (EFER_LMA | EFER_LME); |
| else |
| vcpu->arch.efer &= ~(EFER_LMA | EFER_LME); |
| vmx_set_efer(vcpu, vcpu->arch.efer); |
| |
| kvm_rsp_write(vcpu, vmcs12->host_rsp); |
| kvm_rip_write(vcpu, vmcs12->host_rip); |
| vmx_set_rflags(vcpu, X86_EFLAGS_FIXED); |
| vmx_set_interrupt_shadow(vcpu, 0); |
| |
| /* |
| * Note that calling vmx_set_cr0 is important, even if cr0 hasn't |
| * actually changed, because vmx_set_cr0 refers to efer set above. |
| * |
| * CR0_GUEST_HOST_MASK is already set in the original vmcs01 |
| * (KVM doesn't change it); |
| */ |
| vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits(); |
| vmx_set_cr0(vcpu, vmcs12->host_cr0); |
| |
| /* Same as above - no reason to call set_cr4_guest_host_mask(). */ |
| vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK); |
| vmx_set_cr4(vcpu, vmcs12->host_cr4); |
| |
| nested_ept_uninit_mmu_context(vcpu); |
| |
| /* |
| * Only PDPTE load can fail as the value of cr3 was checked on entry and |
| * couldn't have changed. |
| */ |
| if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored)) |
| nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL); |
| |
| nested_vmx_transition_tlb_flush(vcpu, vmcs12, false); |
| |
| vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs); |
| vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp); |
| vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip); |
| vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base); |
| vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base); |
| vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF); |
| vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF); |
| |
| /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */ |
| if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS) |
| vmcs_write64(GUEST_BNDCFGS, 0); |
| |
| if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) { |
| vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat); |
| vcpu->arch.pat = vmcs12->host_ia32_pat; |
| } |
| if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) && |
| kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu))) |
| WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL, |
| vmcs12->host_ia32_perf_global_ctrl)); |
| |
| /* Set L1 segment info according to Intel SDM |
| 27.5.2 Loading Host Segment and Descriptor-Table Registers */ |
| seg = (struct kvm_segment) { |
| .base = 0, |
| .limit = 0xFFFFFFFF, |
| .selector = vmcs12->host_cs_selector, |
| .type = 11, |
| .present = 1, |
| .s = 1, |
| .g = 1 |
| }; |
| if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) |
| seg.l = 1; |
| else |
| seg.db = 1; |
| __vmx_set_segment(vcpu, &seg, VCPU_SREG_CS); |
| seg = (struct kvm_segment) { |
| .base = 0, |
| .limit = 0xFFFFFFFF, |
| .type = 3, |
| .present = 1, |
| .s = 1, |
| .db = 1, |
| .g = 1 |
| }; |
| seg.selector = vmcs12->host_ds_selector; |
| __vmx_set_segment(vcpu, &seg, VCPU_SREG_DS); |
| seg.selector = vmcs12->host_es_selector; |
| __vmx_set_segment(vcpu, &seg, VCPU_SREG_ES); |
| seg.selector = vmcs12->host_ss_selector; |
| __vmx_set_segment(vcpu, &seg, VCPU_SREG_SS); |
| seg.selector = vmcs12->host_fs_selector; |
| seg.base = vmcs12->host_fs_base; |
| __vmx_set_segment(vcpu, &seg, VCPU_SREG_FS); |
| seg.selector = vmcs12->host_gs_selector; |
| seg.base = vmcs12->host_gs_base; |
| __vmx_set_segment(vcpu, &seg, VCPU_SREG_GS); |
| seg = (struct kvm_segment) { |
| .base = vmcs12->host_tr_base, |
| .limit = 0x67, |
| .selector = vmcs12->host_tr_selector, |
| .type = 11, |
| .present = 1 |
| }; |
| __vmx_set_segment(vcpu, &seg, VCPU_SREG_TR); |
| |
| memset(&seg, 0, sizeof(seg)); |
| seg.unusable = 1; |
| __vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR); |
| |
| kvm_set_dr(vcpu, 7, 0x400); |
| vmcs_write64(GUEST_IA32_DEBUGCTL, 0); |
| |
| if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr, |
| vmcs12->vm_exit_msr_load_count)) |
| nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL); |
| |
| to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu); |
| } |
| |
| static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx) |
| { |
| struct vmx_uret_msr *efer_msr; |
| unsigned int i; |
| |
| if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER) |
| return vmcs_read64(GUEST_IA32_EFER); |
| |
| if (cpu_has_load_ia32_efer()) |
| return kvm_host.efer; |
| |
| for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) { |
| if (vmx->msr_autoload.guest.val[i].index == MSR_EFER) |
| return vmx->msr_autoload.guest.val[i].value; |
| } |
| |
| efer_msr = vmx_find_uret_msr(vmx, MSR_EFER); |
| if (efer_msr) |
| return efer_msr->data; |
| |
| return kvm_host.efer; |
| } |
| |
| static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu) |
| { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct vmx_msr_entry g, h; |
| gpa_t gpa; |
| u32 i, j; |
| |
| vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT); |
| |
| if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) { |
| /* |
| * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set |
| * as vmcs01.GUEST_DR7 contains a userspace defined value |
| * and vcpu->arch.dr7 is not squirreled away before the |
| * nested VMENTER (not worth adding a variable in nested_vmx). |
| */ |
| if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) |
| kvm_set_dr(vcpu, 7, DR7_FIXED_1); |
| else |
| WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7))); |
| } |
| |
| /* |
| * Note that calling vmx_set_{efer,cr0,cr4} is important as they |
| * handle a variety of side effects to KVM's software model. |
| */ |
| vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx)); |
| |
| vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits(); |
| vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW)); |
| |
| vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK); |
| vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW)); |
| |
| nested_ept_uninit_mmu_context(vcpu); |
| vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); |
| kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); |
| |
| /* |
| * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs |
| * from vmcs01 (if necessary). The PDPTRs are not loaded on |
| * VMFail, like everything else we just need to ensure our |
| * software model is up-to-date. |
| */ |
| if (enable_ept && is_pae_paging(vcpu)) |
| ept_save_pdptrs(vcpu); |
| |
| kvm_mmu_reset_context(vcpu); |
| |
| /* |
| * This nasty bit of open coding is a compromise between blindly |
| * loading L1's MSRs using the exit load lists (incorrect emulation |
| * of VMFail), leaving the nested VM's MSRs in the software model |
| * (incorrect behavior) and snapshotting the modified MSRs (too |
| * expensive since the lists are unbound by hardware). For each |
| * MSR that was (prematurely) loaded from the nested VMEntry load |
| * list, reload it from the exit load list if it exists and differs |
| * from the guest value. The intent is to stuff host state as |
| * silently as possible, not to fully process the exit load list. |
| */ |
| for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) { |
| gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g)); |
| if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) { |
| pr_debug_ratelimited( |
| "%s read MSR index failed (%u, 0x%08llx)\n", |
| __func__, i, gpa); |
| goto vmabort; |
| } |
| |
| for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) { |
| gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h)); |
| if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) { |
| pr_debug_ratelimited( |
| "%s read MSR failed (%u, 0x%08llx)\n", |
| __func__, j, gpa); |
| goto vmabort; |
| } |
| if (h.index != g.index) |
| continue; |
| if (h.value == g.value) |
| break; |
| |
| if (nested_vmx_load_msr_check(vcpu, &h)) { |
| pr_debug_ratelimited( |
| "%s check failed (%u, 0x%x, 0x%x)\n", |
| __func__, j, h.index, h.reserved); |
| goto vmabort; |
| } |
| |
| if (kvm_set_msr_with_filter(vcpu, h.index, h.value)) { |
| pr_debug_ratelimited( |
| "%s WRMSR failed (%u, 0x%x, 0x%llx)\n", |
| __func__, j, h.index, h.value); |
| goto vmabort; |
| } |
| } |
| } |
| |
| return; |
| |
| vmabort: |
| nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL); |
| } |
| |
| /* |
| * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1 |
| * and modify vmcs12 to make it see what it would expect to see there if |
| * L2 was its real guest. Must only be called when in L2 (is_guest_mode()) |
| */ |
| void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason, |
| u32 exit_intr_info, unsigned long exit_qualification) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| |
| /* Pending MTF traps are discarded on VM-Exit. */ |
| vmx->nested.mtf_pending = false; |
| |
| /* trying to cancel vmlaunch/vmresume is a bug */ |
| WARN_ON_ONCE(vmx->nested.nested_run_pending); |
| |
| #ifdef CONFIG_KVM_HYPERV |
| if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { |
| /* |
| * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map |
| * Enlightened VMCS after migration and we still need to |
| * do that when something is forcing L2->L1 exit prior to |
| * the first L2 run. |
| */ |
| (void)nested_get_evmcs_page(vcpu); |
| } |
| #endif |
| |
| /* Service pending TLB flush requests for L2 before switching to L1. */ |
| kvm_service_local_tlb_flush_requests(vcpu); |
| |
| /* |
| * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between |
| * now and the new vmentry. Ensure that the VMCS02 PDPTR fields are |
| * up-to-date before switching to L1. |
| */ |
| if (enable_ept && is_pae_paging(vcpu)) |
| vmx_ept_load_pdptrs(vcpu); |
| |
| leave_guest_mode(vcpu); |
| |
| if (nested_cpu_has_preemption_timer(vmcs12)) |
| hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer); |
| |
| if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) { |
| vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset; |
| if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) |
| vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio; |
| } |
| |
| if (likely(!vmx->fail)) { |
| sync_vmcs02_to_vmcs12(vcpu, vmcs12); |
| |
| if (vm_exit_reason != -1) |
| prepare_vmcs12(vcpu, vmcs12, vm_exit_reason, |
| exit_intr_info, exit_qualification); |
| |
| /* |
| * Must happen outside of sync_vmcs02_to_vmcs12() as it will |
| * also be used to capture vmcs12 cache as part of |
| * capturing nVMX state for snapshot (migration). |
| * |
| * Otherwise, this flush will dirty guest memory at a |
| * point it is already assumed by user-space to be |
| * immutable. |
| */ |
| nested_flush_cached_shadow_vmcs12(vcpu, vmcs12); |
| } else { |
| /* |
| * The only expected VM-instruction error is "VM entry with |
| * invalid control field(s)." Anything else indicates a |
| * problem with L0. And we should never get here with a |
| * VMFail of any type if early consistency checks are enabled. |
| */ |
| WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) != |
| VMXERR_ENTRY_INVALID_CONTROL_FIELD); |
| WARN_ON_ONCE(nested_early_check); |
| } |
| |
| /* |
| * Drop events/exceptions that were queued for re-injection to L2 |
| * (picked up via vmx_complete_interrupts()), as well as exceptions |
| * that were pending for L2. Note, this must NOT be hoisted above |
| * prepare_vmcs12(), events/exceptions queued for re-injection need to |
| * be captured in vmcs12 (see vmcs12_save_pending_event()). |
| */ |
| vcpu->arch.nmi_injected = false; |
| kvm_clear_exception_queue(vcpu); |
| kvm_clear_interrupt_queue(vcpu); |
| |
| vmx_switch_vmcs(vcpu, &vmx->vmcs01); |
| |
| /* |
| * If IBRS is advertised to the vCPU, KVM must flush the indirect |
| * branch predictors when transitioning from L2 to L1, as L1 expects |
| * hardware (KVM in this case) to provide separate predictor modes. |
| * Bare metal isolates VMX root (host) from VMX non-root (guest), but |
| * doesn't isolate different VMCSs, i.e. in this case, doesn't provide |
| * separate modes for L2 vs L1. |
| */ |
| if (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) |
| indirect_branch_prediction_barrier(); |
| |
| /* Update any VMCS fields that might have changed while L2 ran */ |
| vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); |
| vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); |
| vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); |
| if (kvm_caps.has_tsc_control) |
| vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio); |
| |
| if (vmx->nested.l1_tpr_threshold != -1) |
| vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold); |
| |
| if (vmx->nested.change_vmcs01_virtual_apic_mode) { |
| vmx->nested.change_vmcs01_virtual_apic_mode = false; |
| vmx_set_virtual_apic_mode(vcpu); |
| } |
| |
| if (vmx->nested.update_vmcs01_cpu_dirty_logging) { |
| vmx->nested.update_vmcs01_cpu_dirty_logging = false; |
| vmx_update_cpu_dirty_logging(vcpu); |
| } |
| |
| /* Unpin physical memory we referred to in vmcs02 */ |
| kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false); |
| kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true); |
| kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true); |
| vmx->nested.pi_desc = NULL; |
| |
| if (vmx->nested.reload_vmcs01_apic_access_page) { |
| vmx->nested.reload_vmcs01_apic_access_page = false; |
| kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); |
| } |
| |
| if (vmx->nested.update_vmcs01_apicv_status) { |
| vmx->nested.update_vmcs01_apicv_status = false; |
| kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); |
| } |
| |
| if ((vm_exit_reason != -1) && |
| (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx))) |
| vmx->nested.need_vmcs12_to_shadow_sync = true; |
| |
| /* in case we halted in L2 */ |
| vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
| |
| if (likely(!vmx->fail)) { |
| if (vm_exit_reason != -1) |
| trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason, |
| vmcs12->exit_qualification, |
| vmcs12->idt_vectoring_info_field, |
| vmcs12->vm_exit_intr_info, |
| vmcs12->vm_exit_intr_error_code, |
| KVM_ISA_VMX); |
| |
| load_vmcs12_host_state(vcpu, vmcs12); |
| |
| return; |
| } |
| |
| /* |
| * After an early L2 VM-entry failure, we're now back |
| * in L1 which thinks it just finished a VMLAUNCH or |
| * VMRESUME instruction, so we need to set the failure |
| * flag and the VM-instruction error field of the VMCS |
| * accordingly, and skip the emulated instruction. |
| */ |
| (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); |
| |
| /* |
| * Restore L1's host state to KVM's software model. We're here |
| * because a consistency check was caught by hardware, which |
| * means some amount of guest state has been propagated to KVM's |
| * model and needs to be unwound to the host's state. |
| */ |
| nested_vmx_restore_host_state(vcpu); |
| |
| vmx->fail = 0; |
| } |
| |
| static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu) |
| { |
| kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
| nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0); |
| } |
| |
| /* |
| * Decode the memory-address operand of a vmx instruction, as recorded on an |
| * exit caused by such an instruction (run by a guest hypervisor). |
| * On success, returns 0. When the operand is invalid, returns 1 and throws |
| * #UD, #GP, or #SS. |
| */ |
| int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification, |
| u32 vmx_instruction_info, bool wr, int len, gva_t *ret) |
| { |
| gva_t off; |
| bool exn; |
| struct kvm_segment s; |
| |
| /* |
| * According to Vol. 3B, "Information for VM Exits Due to Instruction |
| * Execution", on an exit, vmx_instruction_info holds most of the |
| * addressing components of the operand. Only the displacement part |
| * is put in exit_qualification (see 3B, "Basic VM-Exit Information"). |
| * For how an actual address is calculated from all these components, |
| * refer to Vol. 1, "Operand Addressing". |
| */ |
| int scaling = vmx_instruction_info & 3; |
| int addr_size = (vmx_instruction_info >> 7) & 7; |
| bool is_reg = vmx_instruction_info & (1u << 10); |
| int seg_reg = (vmx_instruction_info >> 15) & 7; |
| int index_reg = (vmx_instruction_info >> 18) & 0xf; |
| bool index_is_valid = !(vmx_instruction_info & (1u << 22)); |
| int base_reg = (vmx_instruction_info >> 23) & 0xf; |
| bool base_is_valid = !(vmx_instruction_info & (1u << 27)); |
| |
| if (is_reg) { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| /* Addr = segment_base + offset */ |
| /* offset = base + [index * scale] + displacement */ |
| off = exit_qualification; /* holds the displacement */ |
| if (addr_size == 1) |
| off = (gva_t)sign_extend64(off, 31); |
| else if (addr_size == 0) |
| off = (gva_t)sign_extend64(off, 15); |
| if (base_is_valid) |
| off += kvm_register_read(vcpu, base_reg); |
| if (index_is_valid) |
| off += kvm_register_read(vcpu, index_reg) << scaling; |
| vmx_get_segment(vcpu, &s, seg_reg); |
| |
| /* |
| * The effective address, i.e. @off, of a memory operand is truncated |
| * based on the address size of the instruction. Note that this is |
| * the *effective address*, i.e. the address prior to accounting for |
| * the segment's base. |
| */ |
| if (addr_size == 1) /* 32 bit */ |
| off &= 0xffffffff; |
| else if (addr_size == 0) /* 16 bit */ |
| off &= 0xffff; |
| |
| /* Checks for #GP/#SS exceptions. */ |
| exn = false; |
| if (is_long_mode(vcpu)) { |
| /* |
| * The virtual/linear address is never truncated in 64-bit |
| * mode, e.g. a 32-bit address size can yield a 64-bit virtual |
| * address when using FS/GS with a non-zero base. |
| */ |
| if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS) |
| *ret = s.base + off; |
| else |
| *ret = off; |
| |
| *ret = vmx_get_untagged_addr(vcpu, *ret, 0); |
| /* Long mode: #GP(0)/#SS(0) if the memory address is in a |
| * non-canonical form. This is the only check on the memory |
| * destination for long mode! |
| */ |
| exn = is_noncanonical_address(*ret, vcpu); |
| } else { |
| /* |
| * When not in long mode, the virtual/linear address is |
| * unconditionally truncated to 32 bits regardless of the |
| * address size. |
| */ |
| *ret = (s.base + off) & 0xffffffff; |
| |
| /* Protected mode: apply checks for segment validity in the |
| * following order: |
| * - segment type check (#GP(0) may be thrown) |
| * - usability check (#GP(0)/#SS(0)) |
| * - limit check (#GP(0)/#SS(0)) |
| */ |
| if (wr) |
| /* #GP(0) if the destination operand is located in a |
| * read-only data segment or any code segment. |
| */ |
| exn = ((s.type & 0xa) == 0 || (s.type & 8)); |
| else |
| /* #GP(0) if the source operand is located in an |
| * execute-only code segment |
| */ |
| exn = ((s.type & 0xa) == 8); |
| if (exn) { |
| kvm_queue_exception_e(vcpu, GP_VECTOR, 0); |
| return 1; |
| } |
| /* Protected mode: #GP(0)/#SS(0) if the segment is unusable. |
| */ |
| exn = (s.unusable != 0); |
| |
| /* |
| * Protected mode: #GP(0)/#SS(0) if the memory operand is |
| * outside the segment limit. All CPUs that support VMX ignore |
| * limit checks for flat segments, i.e. segments with base==0, |
| * limit==0xffffffff and of type expand-up data or code. |
| */ |
| if (!(s.base == 0 && s.limit == 0xffffffff && |
| ((s.type & 8) || !(s.type & 4)))) |
| exn = exn || ((u64)off + len - 1 > s.limit); |
| } |
| if (exn) { |
| kvm_queue_exception_e(vcpu, |
| seg_reg == VCPU_SREG_SS ? |
| SS_VECTOR : GP_VECTOR, |
| 0); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer, |
| int *ret) |
| { |
| gva_t gva; |
| struct x86_exception e; |
| int r; |
| |
| if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), |
| vmcs_read32(VMX_INSTRUCTION_INFO), false, |
| sizeof(*vmpointer), &gva)) { |
| *ret = 1; |
| return -EINVAL; |
| } |
| |
| r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e); |
| if (r != X86EMUL_CONTINUE) { |
| *ret = kvm_handle_memory_failure(vcpu, r, &e); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Allocate a shadow VMCS and associate it with the currently loaded |
| * VMCS, unless such a shadow VMCS already exists. The newly allocated |
| * VMCS is also VMCLEARed, so that it is ready for use. |
| */ |
| static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs; |
| |
| /* |
| * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it |
| * when L1 executes VMXOFF or the vCPU is forced out of nested |
| * operation. VMXON faults if the CPU is already post-VMXON, so it |
| * should be impossible to already have an allocated shadow VMCS. KVM |
| * doesn't support virtualization of VMCS shadowing, so vmcs01 should |
| * always be the loaded VMCS. |
| */ |
| if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs)) |
| return loaded_vmcs->shadow_vmcs; |
| |
| loaded_vmcs->shadow_vmcs = alloc_vmcs(true); |
| if (loaded_vmcs->shadow_vmcs) |
| vmcs_clear(loaded_vmcs->shadow_vmcs); |
| |
| return loaded_vmcs->shadow_vmcs; |
| } |
| |
| static int enter_vmx_operation(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| int r; |
| |
| r = alloc_loaded_vmcs(&vmx->nested.vmcs02); |
| if (r < 0) |
| goto out_vmcs02; |
| |
| vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT); |
| if (!vmx->nested.cached_vmcs12) |
| goto out_cached_vmcs12; |
| |
| vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA; |
| vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT); |
| if (!vmx->nested.cached_shadow_vmcs12) |
| goto out_cached_shadow_vmcs12; |
| |
| if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu)) |
| goto out_shadow_vmcs; |
| |
| hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC, |
| HRTIMER_MODE_ABS_PINNED); |
| vmx->nested.preemption_timer.function = vmx_preemption_timer_fn; |
| |
| vmx->nested.vpid02 = allocate_vpid(); |
| |
| vmx->nested.vmcs02_initialized = false; |
| vmx->nested.vmxon = true; |
| |
| if (vmx_pt_mode_is_host_guest()) { |
| vmx->pt_desc.guest.ctl = 0; |
| pt_update_intercept_for_msr(vcpu); |
| } |
| |
| return 0; |
| |
| out_shadow_vmcs: |
| kfree(vmx->nested.cached_shadow_vmcs12); |
| |
| out_cached_shadow_vmcs12: |
| kfree(vmx->nested.cached_vmcs12); |
| |
| out_cached_vmcs12: |
| free_loaded_vmcs(&vmx->nested.vmcs02); |
| |
| out_vmcs02: |
| return -ENOMEM; |
| } |
| |
| /* Emulate the VMXON instruction. */ |
| static int handle_vmxon(struct kvm_vcpu *vcpu) |
| { |
| int ret; |
| gpa_t vmptr; |
| uint32_t revision; |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED |
| | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; |
| |
| /* |
| * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter |
| * the guest and so cannot rely on hardware to perform the check, |
| * which has higher priority than VM-Exit (see Intel SDM's pseudocode |
| * for VMXON). |
| * |
| * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86 |
| * and !COMPATIBILITY modes. For an unrestricted guest, KVM doesn't |
| * force any of the relevant guest state. For a restricted guest, KVM |
| * does force CR0.PE=1, but only to also force VM86 in order to emulate |
| * Real Mode, and so there's no need to check CR0.PE manually. |
| */ |
| if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_VMXE)) { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| /* |
| * The CPL is checked for "not in VMX operation" and for "in VMX root", |
| * and has higher priority than the VM-Fail due to being post-VMXON, |
| * i.e. VMXON #GPs outside of VMX non-root if CPL!=0. In VMX non-root, |
| * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits |
| * from L2 to L1, i.e. there's no need to check for the vCPU being in |
| * VMX non-root. |
| * |
| * Forwarding the VM-Exit unconditionally, i.e. without performing the |
| * #UD checks (see above), is functionally ok because KVM doesn't allow |
| * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's |
| * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are |
| * missed by hardware due to shadowing CR0 and/or CR4. |
| */ |
| if (vmx_get_cpl(vcpu)) { |
| kvm_inject_gp(vcpu, 0); |
| return 1; |
| } |
| |
| if (vmx->nested.vmxon) |
| return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION); |
| |
| /* |
| * Invalid CR0/CR4 generates #GP. These checks are performed if and |
| * only if the vCPU isn't already in VMX operation, i.e. effectively |
| * have lower priority than the VM-Fail above. |
| */ |
| if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) || |
| !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) { |
| kvm_inject_gp(vcpu, 0); |
| return 1; |
| } |
| |
| if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES) |
| != VMXON_NEEDED_FEATURES) { |
| kvm_inject_gp(vcpu, 0); |
| return 1; |
| } |
| |
| if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret)) |
| return ret; |
| |
| /* |
| * SDM 3: 24.11.5 |
| * The first 4 bytes of VMXON region contain the supported |
| * VMCS revision identifier |
| * |
| * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case; |
| * which replaces physical address width with 32 |
| */ |
| if (!page_address_valid(vcpu, vmptr)) |
| return nested_vmx_failInvalid(vcpu); |
| |
| if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) || |
| revision != VMCS12_REVISION) |
| return nested_vmx_failInvalid(vcpu); |
| |
| vmx->nested.vmxon_ptr = vmptr; |
| ret = enter_vmx_operation(vcpu); |
| if (ret) |
| return ret; |
| |
| return nested_vmx_succeed(vcpu); |
| } |
| |
| static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (vmx->nested.current_vmptr == INVALID_GPA) |
| return; |
| |
| copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu)); |
| |
| if (enable_shadow_vmcs) { |
| /* copy to memory all shadowed fields in case |
| they were modified */ |
| copy_shadow_to_vmcs12(vmx); |
| vmx_disable_shadow_vmcs(vmx); |
| } |
| vmx->nested.posted_intr_nv = -1; |
| |
| /* Flush VMCS12 to guest memory */ |
| kvm_vcpu_write_guest_page(vcpu, |
| vmx->nested.current_vmptr >> PAGE_SHIFT, |
| vmx->nested.cached_vmcs12, 0, VMCS12_SIZE); |
| |
| kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); |
| |
| vmx->nested.current_vmptr = INVALID_GPA; |
| } |
| |
| /* Emulate the VMXOFF instruction */ |
| static int handle_vmxoff(struct kvm_vcpu *vcpu) |
| { |
| if (!nested_vmx_check_permission(vcpu)) |
| return 1; |
| |
| free_nested(vcpu); |
| |
| if (kvm_apic_has_pending_init_or_sipi(vcpu)) |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| |
| return nested_vmx_succeed(vcpu); |
| } |
| |
| /* Emulate the VMCLEAR instruction */ |
| static int handle_vmclear(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| u32 zero = 0; |
| gpa_t vmptr; |
| int r; |
| |
| if (!nested_vmx_check_permission(vcpu)) |
| return 1; |
| |
| if (nested_vmx_get_vmptr(vcpu, &vmptr, &r)) |
| return r; |
| |
| if (!page_address_valid(vcpu, vmptr)) |
| return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS); |
| |
| if (vmptr == vmx->nested.vmxon_ptr) |
| return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER); |
| |
| if (likely(!nested_evmcs_handle_vmclear(vcpu, vmptr))) { |
| if (vmptr == vmx->nested.current_vmptr) |
| nested_release_vmcs12(vcpu); |
| |
| /* |
| * Silently ignore memory errors on VMCLEAR, Intel's pseudocode |
| * for VMCLEAR includes a "ensure that data for VMCS referenced |
| * by the operand is in memory" clause that guards writes to |
| * memory, i.e. doing nothing for I/O is architecturally valid. |
| * |
| * FIXME: Suppress failures if and only if no memslot is found, |
| * i.e. exit to userspace if __copy_to_user() fails. |
| */ |
| (void)kvm_vcpu_write_guest(vcpu, |
| vmptr + offsetof(struct vmcs12, |
| launch_state), |
| &zero, sizeof(zero)); |
| } |
| |
| return nested_vmx_succeed(vcpu); |
| } |
| |
| /* Emulate the VMLAUNCH instruction */ |
| static int handle_vmlaunch(struct kvm_vcpu *vcpu) |
| { |
| return nested_vmx_run(vcpu, true); |
| } |
| |
| /* Emulate the VMRESUME instruction */ |
| static int handle_vmresume(struct kvm_vcpu *vcpu) |
| { |
| |
| return nested_vmx_run(vcpu, false); |
| } |
| |
| static int handle_vmread(struct kvm_vcpu *vcpu) |
| { |
| struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu) |
| : get_vmcs12(vcpu); |
| unsigned long exit_qualification = vmx_get_exit_qual(vcpu); |
| u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO); |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct x86_exception e; |
| unsigned long field; |
| u64 value; |
| gva_t gva = 0; |
| short offset; |
| int len, r; |
| |
| if (!nested_vmx_check_permission(vcpu)) |
| return 1; |
| |
| /* Decode instruction info and find the field to read */ |
| field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf)); |
| |
| if (!nested_vmx_is_evmptr12_valid(vmx)) { |
| /* |
| * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA, |
| * any VMREAD sets the ALU flags for VMfailInvalid. |
| */ |
| if (vmx->nested.current_vmptr == INVALID_GPA || |
| (is_guest_mode(vcpu) && |
| get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA)) |
| return nested_vmx_failInvalid(vcpu); |
| |
| offset = get_vmcs12_field_offset(field); |
| if (offset < 0) |
| return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT); |
| |
| if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field)) |
| copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12); |
| |
| /* Read the field, zero-extended to a u64 value */ |
| value = vmcs12_read_any(vmcs12, field, offset); |
| } else { |
| /* |
| * Hyper-V TLFS (as of 6.0b) explicitly states, that while an |
| * enlightened VMCS is active VMREAD/VMWRITE instructions are |
| * unsupported. Unfortunately, certain versions of Windows 11 |
| * don't comply with this requirement which is not enforced in |
| * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a |
| * workaround, as misbehaving guests will panic on VM-Fail. |
| * Note, enlightened VMCS is incompatible with shadow VMCS so |
| * all VMREADs from L2 should go to L1. |
| */ |
| if (WARN_ON_ONCE(is_guest_mode(vcpu))) |
| return nested_vmx_failInvalid(vcpu); |
| |
| offset = evmcs_field_offset(field, NULL); |
| if (offset < 0) |
| return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT); |
| |
| /* Read the field, zero-extended to a u64 value */ |
| value = evmcs_read_any(nested_vmx_evmcs(vmx), field, offset); |
| } |
| |
| /* |
| * Now copy part of this value to register or memory, as requested. |
| * Note that the number of bits actually copied is 32 or 64 depending |
| * on the guest's mode (32 or 64 bit), not on the given field's length. |
| */ |
| if (instr_info & BIT(10)) { |
| kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value); |
| } else { |
| len = is_64_bit_mode(vcpu) ? 8 : 4; |
| if (get_vmx_mem_address(vcpu, exit_qualification, |
| instr_info, true, len, &gva)) |
| return 1; |
| /* _system ok, nested_vmx_check_permission has verified cpl=0 */ |
| r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e); |
| if (r != X86EMUL_CONTINUE) |
| return kvm_handle_memory_failure(vcpu, r, &e); |
| } |
| |
| return nested_vmx_succeed(vcpu); |
| } |
| |
| static bool is_shadow_field_rw(unsigned long field) |
| { |
| switch (field) { |
| #define SHADOW_FIELD_RW(x, y) case x: |
| #include "vmcs_shadow_fields.h" |
| return true; |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| static bool is_shadow_field_ro(unsigned long field) |
| { |
| switch (field) { |
| #define SHADOW_FIELD_RO(x, y) case x: |
| #include "vmcs_shadow_fields.h" |
| return true; |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| static int handle_vmwrite(struct kvm_vcpu *vcpu) |
| { |
| struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu) |
| : get_vmcs12(vcpu); |
| unsigned long exit_qualification = vmx_get_exit_qual(vcpu); |
| u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO); |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct x86_exception e; |
| unsigned long field; |
| short offset; |
| gva_t gva; |
| int len, r; |
| |
| /* |
| * The value to write might be 32 or 64 bits, depending on L1's long |
| * mode, and eventually we need to write that into a field of several |
| * possible lengths. The code below first zero-extends the value to 64 |
| * bit (value), and then copies only the appropriate number of |
| * bits into the vmcs12 field. |
| */ |
| u64 value = 0; |
| |
| if (!nested_vmx_check_permission(vcpu)) |
| return 1; |
| |
| /* |
| * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA, |
| * any VMWRITE sets the ALU flags for VMfailInvalid. |
| */ |
| if (vmx->nested.current_vmptr == INVALID_GPA || |
| (is_guest_mode(vcpu) && |
| get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA)) |
| return nested_vmx_failInvalid(vcpu); |
| |
| if (instr_info & BIT(10)) |
| value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf)); |
| else { |
| len = is_64_bit_mode(vcpu) ? 8 : 4; |
| if (get_vmx_mem_address(vcpu, exit_qualification, |
| instr_info, false, len, &gva)) |
| return 1; |
| r = kvm_read_guest_virt(vcpu, gva, &value, len, &e); |
| if (r != X86EMUL_CONTINUE) |
| return kvm_handle_memory_failure(vcpu, r, &e); |
| } |
| |
| field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf)); |
| |
| offset = get_vmcs12_field_offset(field); |
| if (offset < 0) |
| return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT); |
| |
| /* |
| * If the vCPU supports "VMWRITE to any supported field in the |
| * VMCS," then the "read-only" fields are actually read/write. |
| */ |
| if (vmcs_field_readonly(field) && |
| !nested_cpu_has_vmwrite_any_field(vcpu)) |
| return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT); |
| |
| /* |
| * Ensure vmcs12 is up-to-date before any VMWRITE that dirties |
| * vmcs12, else we may crush a field or consume a stale value. |
| */ |
| if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) |
| copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12); |
| |
| /* |
| * Some Intel CPUs intentionally drop the reserved bits of the AR byte |
| * fields on VMWRITE. Emulate this behavior to ensure consistent KVM |
| * behavior regardless of the underlying hardware, e.g. if an AR_BYTE |
| * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD |
| * from L1 will return a different value than VMREAD from L2 (L1 sees |
| * the stripped down value, L2 sees the full value as stored by KVM). |
| */ |
| if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES) |
| value &= 0x1f0ff; |
| |
| vmcs12_write_any(vmcs12, field, offset, value); |
| |
| /* |
| * Do not track vmcs12 dirty-state if in guest-mode as we actually |
| * dirty shadow vmcs12 instead of vmcs12. Fields that can be updated |
| * by L1 without a vmexit are always updated in the vmcs02, i.e. don't |
| * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path. |
| */ |
| if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) { |
| /* |
| * L1 can read these fields without exiting, ensure the |
| * shadow VMCS is up-to-date. |
| */ |
| if (enable_shadow_vmcs && is_shadow_field_ro(field)) { |
| preempt_disable(); |
| vmcs_load(vmx->vmcs01.shadow_vmcs); |
| |
| __vmcs_writel(field, value); |
| |
| vmcs_clear(vmx->vmcs01.shadow_vmcs); |
| vmcs_load(vmx->loaded_vmcs->vmcs); |
| preempt_enable(); |
| } |
| vmx->nested.dirty_vmcs12 = true; |
| } |
| |
| return nested_vmx_succeed(vcpu); |
| } |
| |
| static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr) |
| { |
| vmx->nested.current_vmptr = vmptr; |
| if (enable_shadow_vmcs) { |
| secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS); |
| vmcs_write64(VMCS_LINK_POINTER, |
| __pa(vmx->vmcs01.shadow_vmcs)); |
| vmx->nested.need_vmcs12_to_shadow_sync = true; |
| } |
| vmx->nested.dirty_vmcs12 = true; |
| vmx->nested.force_msr_bitmap_recalc = true; |
| } |
| |
| /* Emulate the VMPTRLD instruction */ |
| static int handle_vmptrld(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| gpa_t vmptr; |
| int r; |
| |
| if (!nested_vmx_check_permission(vcpu)) |
| return 1; |
| |
| if (nested_vmx_get_vmptr(vcpu, &vmptr, &r)) |
| return r; |
| |
| if (!page_address_valid(vcpu, vmptr)) |
| return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS); |
| |
| if (vmptr == vmx->nested.vmxon_ptr) |
| return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER); |
| |
| /* Forbid normal VMPTRLD if Enlightened version was used */ |
| if (nested_vmx_is_evmptr12_valid(vmx)) |
| return 1; |
| |
| if (vmx->nested.current_vmptr != vmptr) { |
| struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache; |
| struct vmcs_hdr hdr; |
| |
| if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) { |
| /* |
| * Reads from an unbacked page return all 1s, |
| * which means that the 32 bits located at the |
| * given physical address won't match the required |
| * VMCS12_REVISION identifier. |
| */ |
| return nested_vmx_fail(vcpu, |
| VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID); |
| } |
| |
| if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr, |
| offsetof(struct vmcs12, hdr), |
| sizeof(hdr))) { |
| return nested_vmx_fail(vcpu, |
| VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID); |
| } |
| |
| if (hdr.revision_id != VMCS12_REVISION || |
| (hdr.shadow_vmcs && |
| !nested_cpu_has_vmx_shadow_vmcs(vcpu))) { |
| return nested_vmx_fail(vcpu, |
| VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID); |
| } |
| |
| nested_release_vmcs12(vcpu); |
| |
| /* |
| * Load VMCS12 from guest memory since it is not already |
| * cached. |
| */ |
| if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12, |
| VMCS12_SIZE)) { |
| return nested_vmx_fail(vcpu, |
| VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID); |
| } |
| |
| set_current_vmptr(vmx, vmptr); |
| } |
| |
| return nested_vmx_succeed(vcpu); |
| } |
| |
| /* Emulate the VMPTRST instruction */ |
| static int handle_vmptrst(struct kvm_vcpu *vcpu) |
| { |
| unsigned long exit_qual = vmx_get_exit_qual(vcpu); |
| u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO); |
| gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr; |
| struct x86_exception e; |
| gva_t gva; |
| int r; |
| |
| if (!nested_vmx_check_permission(vcpu)) |
| return 1; |
| |
| if (unlikely(nested_vmx_is_evmptr12_valid(to_vmx(vcpu)))) |
| return 1; |
| |
| if (get_vmx_mem_address(vcpu, exit_qual, instr_info, |
| true, sizeof(gpa_t), &gva)) |
| return 1; |
| /* *_system ok, nested_vmx_check_permission has verified cpl=0 */ |
| r = kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr, |
| sizeof(gpa_t), &e); |
| if (r != X86EMUL_CONTINUE) |
| return kvm_handle_memory_failure(vcpu, r, &e); |
| |
| return nested_vmx_succeed(vcpu); |
| } |
| |
| /* Emulate the INVEPT instruction */ |
| static int handle_invept(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| u32 vmx_instruction_info, types; |
| unsigned long type, roots_to_free; |
| struct kvm_mmu *mmu; |
| gva_t gva; |
| struct x86_exception e; |
| struct { |
| u64 eptp, gpa; |
| } operand; |
| int i, r, gpr_index; |
| |
| if (!(vmx->nested.msrs.secondary_ctls_high & |
| SECONDARY_EXEC_ENABLE_EPT) || |
| !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| if (!nested_vmx_check_permission(vcpu)) |
| return 1; |
| |
| vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); |
| gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); |
| type = kvm_register_read(vcpu, gpr_index); |
| |
| types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6; |
| |
| if (type >= 32 || !(types & (1 << type))) |
| return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); |
| |
| /* According to the Intel VMX instruction reference, the memory |
| * operand is read even if it isn't needed (e.g., for type==global) |
| */ |
| if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), |
| vmx_instruction_info, false, sizeof(operand), &gva)) |
| return 1; |
| r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); |
| if (r != X86EMUL_CONTINUE) |
| return kvm_handle_memory_failure(vcpu, r, &e); |
| |
| /* |
| * Nested EPT roots are always held through guest_mmu, |
| * not root_mmu. |
| */ |
| mmu = &vcpu->arch.guest_mmu; |
| |
| switch (type) { |
| case VMX_EPT_EXTENT_CONTEXT: |
| if (!nested_vmx_check_eptp(vcpu, operand.eptp)) |
| return nested_vmx_fail(vcpu, |
| VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); |
| |
| roots_to_free = 0; |
| if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd, |
| operand.eptp)) |
| roots_to_free |= KVM_MMU_ROOT_CURRENT; |
| |
| for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { |
| if (nested_ept_root_matches(mmu->prev_roots[i].hpa, |
| mmu->prev_roots[i].pgd, |
| operand.eptp)) |
| roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); |
| } |
| break; |
| case VMX_EPT_EXTENT_GLOBAL: |
| roots_to_free = KVM_MMU_ROOTS_ALL; |
| break; |
| default: |
| BUG(); |
| break; |
| } |
| |
| if (roots_to_free) |
| kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); |
| |
| return nested_vmx_succeed(vcpu); |
| } |
| |
| static int handle_invvpid(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| u32 vmx_instruction_info; |
| unsigned long type, types; |
| gva_t gva; |
| struct x86_exception e; |
| struct { |
| u64 vpid; |
| u64 gla; |
| } operand; |
| u16 vpid02; |
| int r, gpr_index; |
| |
| if (!(vmx->nested.msrs.secondary_ctls_high & |
| SECONDARY_EXEC_ENABLE_VPID) || |
| !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| if (!nested_vmx_check_permission(vcpu)) |
| return 1; |
| |
| vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); |
| gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); |
| type = kvm_register_read(vcpu, gpr_index); |
| |
| types = (vmx->nested.msrs.vpid_caps & |
| VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8; |
| |
| if (type >= 32 || !(types & (1 << type))) |
| return nested_vmx_fail(vcpu, |
| VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); |
| |
| /* according to the intel vmx instruction reference, the memory |
| * operand is read even if it isn't needed (e.g., for type==global) |
| */ |
| if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), |
| vmx_instruction_info, false, sizeof(operand), &gva)) |
| return 1; |
| r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); |
| if (r != X86EMUL_CONTINUE) |
| return kvm_handle_memory_failure(vcpu, r, &e); |
| |
| if (operand.vpid >> 16) |
| return nested_vmx_fail(vcpu, |
| VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); |
| |
| /* |
| * Always flush the effective vpid02, i.e. never flush the current VPID |
| * and never explicitly flush vpid01. INVVPID targets a VPID, not a |
| * VMCS, and so whether or not the current vmcs12 has VPID enabled is |
| * irrelevant (and there may not be a loaded vmcs12). |
| */ |
| vpid02 = nested_get_vpid02(vcpu); |
| switch (type) { |
| case VMX_VPID_EXTENT_INDIVIDUAL_ADDR: |
| /* |
| * LAM doesn't apply to addresses that are inputs to TLB |
| * invalidation. |
| */ |
| if (!operand.vpid || |
| is_noncanonical_address(operand.gla, vcpu)) |
| return nested_vmx_fail(vcpu, |
| VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); |
| vpid_sync_vcpu_addr(vpid02, operand.gla); |
| break; |
| case VMX_VPID_EXTENT_SINGLE_CONTEXT: |
| case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL: |
| if (!operand.vpid) |
| return nested_vmx_fail(vcpu, |
| VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); |
| vpid_sync_context(vpid02); |
| break; |
| case VMX_VPID_EXTENT_ALL_CONTEXT: |
| vpid_sync_context(vpid02); |
| break; |
| default: |
| WARN_ON_ONCE(1); |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| |
| /* |
| * Sync the shadow page tables if EPT is disabled, L1 is invalidating |
| * linear mappings for L2 (tagged with L2's VPID). Free all guest |
| * roots as VPIDs are not tracked in the MMU role. |
| * |
| * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share |
| * an MMU when EPT is disabled. |
| * |
| * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR. |
| */ |
| if (!enable_ept) |
| kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu); |
| |
| return nested_vmx_succeed(vcpu); |
| } |
| |
| static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| u32 index = kvm_rcx_read(vcpu); |
| u64 new_eptp; |
| |
| if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12))) |
| return 1; |
| if (index >= VMFUNC_EPTP_ENTRIES) |
| return 1; |
| |
| if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT, |
| &new_eptp, index * 8, 8)) |
| return 1; |
| |
| /* |
| * If the (L2) guest does a vmfunc to the currently |
| * active ept pointer, we don't have to do anything else |
| */ |
| if (vmcs12->ept_pointer != new_eptp) { |
| if (!nested_vmx_check_eptp(vcpu, new_eptp)) |
| return 1; |
| |
| vmcs12->ept_pointer = new_eptp; |
| nested_ept_new_eptp(vcpu); |
| |
| if (!nested_cpu_has_vpid(vmcs12)) |
| kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); |
| } |
| |
| return 0; |
| } |
| |
| static int handle_vmfunc(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct vmcs12 *vmcs12; |
| u32 function = kvm_rax_read(vcpu); |
| |
| /* |
| * VMFUNC should never execute cleanly while L1 is active; KVM supports |
| * VMFUNC for nested VMs, but not for L1. |
| */ |
| if (WARN_ON_ONCE(!is_guest_mode(vcpu))) { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| vmcs12 = get_vmcs12(vcpu); |
| |
| /* |
| * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC |
| * is enabled in vmcs02 if and only if it's enabled in vmcs12. |
| */ |
| if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| if (!(vmcs12->vm_function_control & BIT_ULL(function))) |
| goto fail; |
| |
| switch (function) { |
| case 0: |
| if (nested_vmx_eptp_switching(vcpu, vmcs12)) |
| goto fail; |
| break; |
| default: |
| goto fail; |
| } |
| return kvm_skip_emulated_instruction(vcpu); |
| |
| fail: |
| /* |
| * This is effectively a reflected VM-Exit, as opposed to a synthesized |
| * nested VM-Exit. Pass the original exit reason, i.e. don't hardcode |
| * EXIT_REASON_VMFUNC as the exit reason. |
| */ |
| nested_vmx_vmexit(vcpu, vmx->exit_reason.full, |
| vmx_get_intr_info(vcpu), |
| vmx_get_exit_qual(vcpu)); |
| return 1; |
| } |
| |
| /* |
| * Return true if an IO instruction with the specified port and size should cause |
| * a VM-exit into L1. |
| */ |
| bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port, |
| int size) |
| { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| gpa_t bitmap, last_bitmap; |
| u8 b; |
| |
| last_bitmap = INVALID_GPA; |
| b = -1; |
| |
| while (size > 0) { |
| if (port < 0x8000) |
| bitmap = vmcs12->io_bitmap_a; |
| else if (port < 0x10000) |
| bitmap = vmcs12->io_bitmap_b; |
| else |
| return true; |
| bitmap += (port & 0x7fff) / 8; |
| |
| if (last_bitmap != bitmap) |
| if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1)) |
| return true; |
| if (b & (1 << (port & 7))) |
| return true; |
| |
| port++; |
| size--; |
| last_bitmap = bitmap; |
| } |
| |
| return false; |
| } |
| |
| static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| unsigned long exit_qualification; |
| unsigned short port; |
| int size; |
| |
| if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) |
| return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING); |
| |
| exit_qualification = vmx_get_exit_qual(vcpu); |
| |
| port = exit_qualification >> 16; |
| size = (exit_qualification & 7) + 1; |
| |
| return nested_vmx_check_io_bitmaps(vcpu, port, size); |
| } |
| |
| /* |
| * Return 1 if we should exit from L2 to L1 to handle an MSR access, |
| * rather than handle it ourselves in L0. I.e., check whether L1 expressed |
| * disinterest in the current event (read or write a specific MSR) by using an |
| * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps. |
| */ |
| static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12, |
| union vmx_exit_reason exit_reason) |
| { |
| u32 msr_index = kvm_rcx_read(vcpu); |
| gpa_t bitmap; |
| |
| if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) |
| return true; |
| |
| /* |
| * The MSR_BITMAP page is divided into four 1024-byte bitmaps, |
| * for the four combinations of read/write and low/high MSR numbers. |
| * First we need to figure out which of the four to use: |
| */ |
| bitmap = vmcs12->msr_bitmap; |
| if (exit_reason.basic == EXIT_REASON_MSR_WRITE) |
| bitmap += 2048; |
| if (msr_index >= 0xc0000000) { |
| msr_index -= 0xc0000000; |
| bitmap += 1024; |
| } |
| |
| /* Then read the msr_index'th bit from this bitmap: */ |
| if (msr_index < 1024*8) { |
| unsigned char b; |
| if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1)) |
| return true; |
| return 1 & (b >> (msr_index & 7)); |
| } else |
| return true; /* let L1 handle the wrong parameter */ |
| } |
| |
| /* |
| * Return 1 if we should exit from L2 to L1 to handle a CR access exit, |
| * rather than handle it ourselves in L0. I.e., check if L1 wanted to |
| * intercept (via guest_host_mask etc.) the current event. |
| */ |
| static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| unsigned long exit_qualification = vmx_get_exit_qual(vcpu); |
| int cr = exit_qualification & 15; |
| int reg; |
| unsigned long val; |
| |
| switch ((exit_qualification >> 4) & 3) { |
| case 0: /* mov to cr */ |
| reg = (exit_qualification >> 8) & 15; |
| val = kvm_register_read(vcpu, reg); |
| switch (cr) { |
| case 0: |
| if (vmcs12->cr0_guest_host_mask & |
| (val ^ vmcs12->cr0_read_shadow)) |
| return true; |
| break; |
| case 3: |
| if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING)) |
| return true; |
| break; |
| case 4: |
| if (vmcs12->cr4_guest_host_mask & |
| (vmcs12->cr4_read_shadow ^ val)) |
| return true; |
| break; |
| case 8: |
| if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING)) |
| return true; |
| break; |
| } |
| break; |
| case 2: /* clts */ |
| if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) && |
| (vmcs12->cr0_read_shadow & X86_CR0_TS)) |
| return true; |
| break; |
| case 1: /* mov from cr */ |
| switch (cr) { |
| case 3: |
| if (vmcs12->cpu_based_vm_exec_control & |
| CPU_BASED_CR3_STORE_EXITING) |
| return true; |
| break; |
| case 8: |
| if (vmcs12->cpu_based_vm_exec_control & |
| CPU_BASED_CR8_STORE_EXITING) |
| return true; |
| break; |
| } |
| break; |
| case 3: /* lmsw */ |
| /* |
| * lmsw can change bits 1..3 of cr0, and only set bit 0 of |
| * cr0. Other attempted changes are ignored, with no exit. |
| */ |
| val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; |
| if (vmcs12->cr0_guest_host_mask & 0xe & |
| (val ^ vmcs12->cr0_read_shadow)) |
| return true; |
| if ((vmcs12->cr0_guest_host_mask & 0x1) && |
| !(vmcs12->cr0_read_shadow & 0x1) && |
| (val & 0x1)) |
| return true; |
| break; |
| } |
| return false; |
| } |
| |
| static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| u32 encls_leaf; |
| |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) || |
| !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING)) |
| return false; |
| |
| encls_leaf = kvm_rax_read(vcpu); |
| if (encls_leaf > 62) |
| encls_leaf = 63; |
| return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf); |
| } |
| |
| static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12, gpa_t bitmap) |
| { |
| u32 vmx_instruction_info; |
| unsigned long field; |
| u8 b; |
| |
| if (!nested_cpu_has_shadow_vmcs(vmcs12)) |
| return true; |
| |
| /* Decode instruction info and find the field to access */ |
| vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); |
| field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); |
| |
| /* Out-of-range fields always cause a VM exit from L2 to L1 */ |
| if (field >> 15) |
| return true; |
| |
| if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1)) |
| return true; |
| |
| return 1 & (b >> (field & 7)); |
| } |
| |
| static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12) |
| { |
| u32 entry_intr_info = vmcs12->vm_entry_intr_info_field; |
| |
| if (nested_cpu_has_mtf(vmcs12)) |
| return true; |
| |
| /* |
| * An MTF VM-exit may be injected into the guest by setting the |
| * interruption-type to 7 (other event) and the vector field to 0. Such |
| * is the case regardless of the 'monitor trap flag' VM-execution |
| * control. |
| */ |
| return entry_intr_info == (INTR_INFO_VALID_MASK |
| | INTR_TYPE_OTHER_EVENT); |
| } |
| |
| /* |
| * Return true if L0 wants to handle an exit from L2 regardless of whether or not |
| * L1 wants the exit. Only call this when in is_guest_mode (L2). |
| */ |
| static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu, |
| union vmx_exit_reason exit_reason) |
| { |
| u32 intr_info; |
| |
| switch ((u16)exit_reason.basic) { |
| case EXIT_REASON_EXCEPTION_NMI: |
| intr_info = vmx_get_intr_info(vcpu); |
| if (is_nmi(intr_info)) |
| return true; |
| else if (is_page_fault(intr_info)) |
| return vcpu->arch.apf.host_apf_flags || |
| vmx_need_pf_intercept(vcpu); |
| else if (is_debug(intr_info) && |
| vcpu->guest_debug & |
| (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) |
| return true; |
| else if (is_breakpoint(intr_info) && |
| vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) |
| return true; |
| else if (is_alignment_check(intr_info) && |
| !vmx_guest_inject_ac(vcpu)) |
| return true; |
| else if (is_ve_fault(intr_info)) |
| return true; |
| return false; |
| case EXIT_REASON_EXTERNAL_INTERRUPT: |
| return true; |
| case EXIT_REASON_MCE_DURING_VMENTRY: |
| return true; |
| case EXIT_REASON_EPT_VIOLATION: |
| /* |
| * L0 always deals with the EPT violation. If nested EPT is |
| * used, and the nested mmu code discovers that the address is |
| * missing in the guest EPT table (EPT12), the EPT violation |
| * will be injected with nested_ept_inject_page_fault() |
| */ |
| return true; |
| case EXIT_REASON_EPT_MISCONFIG: |
| /* |
| * L2 never uses directly L1's EPT, but rather L0's own EPT |
| * table (shadow on EPT) or a merged EPT table that L0 built |
| * (EPT on EPT). So any problems with the structure of the |
| * table is L0's fault. |
| */ |
| return true; |
| case EXIT_REASON_PREEMPTION_TIMER: |
| return true; |
| case EXIT_REASON_PML_FULL: |
| /* |
| * PML is emulated for an L1 VMM and should never be enabled in |
| * vmcs02, always "handle" PML_FULL by exiting to userspace. |
| */ |
| return true; |
| case EXIT_REASON_VMFUNC: |
| /* VM functions are emulated through L2->L0 vmexits. */ |
| return true; |
| case EXIT_REASON_BUS_LOCK: |
| /* |
| * At present, bus lock VM exit is never exposed to L1. |
| * Handle L2's bus locks in L0 directly. |
| */ |
| return true; |
| #ifdef CONFIG_KVM_HYPERV |
| case EXIT_REASON_VMCALL: |
| /* Hyper-V L2 TLB flush hypercall is handled by L0 */ |
| return guest_hv_cpuid_has_l2_tlb_flush(vcpu) && |
| nested_evmcs_l2_tlb_flush_enabled(vcpu) && |
| kvm_hv_is_tlb_flush_hcall(vcpu); |
| #endif |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| /* |
| * Return 1 if L1 wants to intercept an exit from L2. Only call this when in |
| * is_guest_mode (L2). |
| */ |
| static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu, |
| union vmx_exit_reason exit_reason) |
| { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| u32 intr_info; |
| |
| switch ((u16)exit_reason.basic) { |
| case EXIT_REASON_EXCEPTION_NMI: |
| intr_info = vmx_get_intr_info(vcpu); |
| if (is_nmi(intr_info)) |
| return true; |
| else if (is_page_fault(intr_info)) |
| return true; |
| return vmcs12->exception_bitmap & |
| (1u << (intr_info & INTR_INFO_VECTOR_MASK)); |
| case EXIT_REASON_EXTERNAL_INTERRUPT: |
| return nested_exit_on_intr(vcpu); |
| case EXIT_REASON_TRIPLE_FAULT: |
| return true; |
| case EXIT_REASON_INTERRUPT_WINDOW: |
| return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING); |
| case EXIT_REASON_NMI_WINDOW: |
| return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING); |
| case EXIT_REASON_TASK_SWITCH: |
| return true; |
| case EXIT_REASON_CPUID: |
| return true; |
| case EXIT_REASON_HLT: |
| return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING); |
| case EXIT_REASON_INVD: |
| return true; |
| case EXIT_REASON_INVLPG: |
| return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING); |
| case EXIT_REASON_RDPMC: |
| return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING); |
| case EXIT_REASON_RDRAND: |
| return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING); |
| case EXIT_REASON_RDSEED: |
| return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING); |
| case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP: |
| return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING); |
| case EXIT_REASON_VMREAD: |
| return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12, |
| vmcs12->vmread_bitmap); |
| case EXIT_REASON_VMWRITE: |
| return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12, |
| vmcs12->vmwrite_bitmap); |
| case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR: |
| case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD: |
| case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME: |
| case EXIT_REASON_VMOFF: case EXIT_REASON_VMON: |
| case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID: |
| /* |
| * VMX instructions trap unconditionally. This allows L1 to |
| * emulate them for its L2 guest, i.e., allows 3-level nesting! |
| */ |
| return true; |
| case EXIT_REASON_CR_ACCESS: |
| return nested_vmx_exit_handled_cr(vcpu, vmcs12); |
| case EXIT_REASON_DR_ACCESS: |
| return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING); |
| case EXIT_REASON_IO_INSTRUCTION: |
| return nested_vmx_exit_handled_io(vcpu, vmcs12); |
| case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR: |
| return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC); |
| case EXIT_REASON_MSR_READ: |
| case EXIT_REASON_MSR_WRITE: |
| return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason); |
| case EXIT_REASON_INVALID_STATE: |
| return true; |
| case EXIT_REASON_MWAIT_INSTRUCTION: |
| return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING); |
| case EXIT_REASON_MONITOR_TRAP_FLAG: |
| return nested_vmx_exit_handled_mtf(vmcs12); |
| case EXIT_REASON_MONITOR_INSTRUCTION: |
| return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING); |
| case EXIT_REASON_PAUSE_INSTRUCTION: |
| return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) || |
| nested_cpu_has2(vmcs12, |
| SECONDARY_EXEC_PAUSE_LOOP_EXITING); |
| case EXIT_REASON_MCE_DURING_VMENTRY: |
| return true; |
| case EXIT_REASON_TPR_BELOW_THRESHOLD: |
| return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW); |
| case EXIT_REASON_APIC_ACCESS: |
| case EXIT_REASON_APIC_WRITE: |
| case EXIT_REASON_EOI_INDUCED: |
| /* |
| * The controls for "virtualize APIC accesses," "APIC- |
| * register virtualization," and "virtual-interrupt |
| * delivery" only come from vmcs12. |
| */ |
| return true; |
| case EXIT_REASON_INVPCID: |
| return |
| nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) && |
| nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING); |
| case EXIT_REASON_WBINVD: |
| return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING); |
| case EXIT_REASON_XSETBV: |
| return true; |
| case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS: |
| /* |
| * This should never happen, since it is not possible to |
| * set XSS to a non-zero value---neither in L1 nor in L2. |
| * If if it were, XSS would have to be checked against |
| * the XSS exit bitmap in vmcs12. |
| */ |
| return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_XSAVES); |
| case EXIT_REASON_UMWAIT: |
| case EXIT_REASON_TPAUSE: |
| return nested_cpu_has2(vmcs12, |
| SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE); |
| case EXIT_REASON_ENCLS: |
| return nested_vmx_exit_handled_encls(vcpu, vmcs12); |
| case EXIT_REASON_NOTIFY: |
| /* Notify VM exit is not exposed to L1 */ |
| return false; |
| default: |
| return true; |
| } |
| } |
| |
| /* |
| * Conditionally reflect a VM-Exit into L1. Returns %true if the VM-Exit was |
| * reflected into L1. |
| */ |
| bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| union vmx_exit_reason exit_reason = vmx->exit_reason; |
| unsigned long exit_qual; |
| u32 exit_intr_info; |
| |
| WARN_ON_ONCE(vmx->nested.nested_run_pending); |
| |
| /* |
| * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM |
| * has already loaded L2's state. |
| */ |
| if (unlikely(vmx->fail)) { |
| trace_kvm_nested_vmenter_failed( |
| "hardware VM-instruction error: ", |
| vmcs_read32(VM_INSTRUCTION_ERROR)); |
| exit_intr_info = 0; |
| exit_qual = 0; |
| goto reflect_vmexit; |
| } |
| |
| trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX); |
| |
| /* If L0 (KVM) wants the exit, it trumps L1's desires. */ |
| if (nested_vmx_l0_wants_exit(vcpu, exit_reason)) |
| return false; |
| |
| /* If L1 doesn't want the exit, handle it in L0. */ |
| if (!nested_vmx_l1_wants_exit(vcpu, exit_reason)) |
| return false; |
| |
| /* |
| * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits. For |
| * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would |
| * need to be synthesized by querying the in-kernel LAPIC, but external |
| * interrupts are never reflected to L1 so it's a non-issue. |
| */ |
| exit_intr_info = vmx_get_intr_info(vcpu); |
| if (is_exception_with_error_code(exit_intr_info)) { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| |
| vmcs12->vm_exit_intr_error_code = |
| vmcs_read32(VM_EXIT_INTR_ERROR_CODE); |
| } |
| exit_qual = vmx_get_exit_qual(vcpu); |
| |
| reflect_vmexit: |
| nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual); |
| return true; |
| } |
| |
| static int vmx_get_nested_state(struct kvm_vcpu *vcpu, |
| struct kvm_nested_state __user *user_kvm_nested_state, |
| u32 user_data_size) |
| { |
| struct vcpu_vmx *vmx; |
| struct vmcs12 *vmcs12; |
| struct kvm_nested_state kvm_state = { |
| .flags = 0, |
| .format = KVM_STATE_NESTED_FORMAT_VMX, |
| .size = sizeof(kvm_state), |
| .hdr.vmx.flags = 0, |
| .hdr.vmx.vmxon_pa = INVALID_GPA, |
| .hdr.vmx.vmcs12_pa = INVALID_GPA, |
| .hdr.vmx.preemption_timer_deadline = 0, |
| }; |
| struct kvm_vmx_nested_state_data __user *user_vmx_nested_state = |
| &user_kvm_nested_state->data.vmx[0]; |
| |
| if (!vcpu) |
| return kvm_state.size + sizeof(*user_vmx_nested_state); |
| |
| vmx = to_vmx(vcpu); |
| vmcs12 = get_vmcs12(vcpu); |
| |
| if (guest_can_use(vcpu, X86_FEATURE_VMX) && |
| (vmx->nested.vmxon || vmx->nested.smm.vmxon)) { |
| kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr; |
| kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr; |
| |
| if (vmx_has_valid_vmcs12(vcpu)) { |
| kvm_state.size += sizeof(user_vmx_nested_state->vmcs12); |
| |
| /* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */ |
| if (nested_vmx_is_evmptr12_set(vmx)) |
| kvm_state.flags |= KVM_STATE_NESTED_EVMCS; |
| |
| if (is_guest_mode(vcpu) && |
| nested_cpu_has_shadow_vmcs(vmcs12) && |
| vmcs12->vmcs_link_pointer != INVALID_GPA) |
| kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12); |
| } |
| |
| if (vmx->nested.smm.vmxon) |
| kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON; |
| |
| if (vmx->nested.smm.guest_mode) |
| kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE; |
| |
| if (is_guest_mode(vcpu)) { |
| kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE; |
| |
| if (vmx->nested.nested_run_pending) |
| kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING; |
| |
| if (vmx->nested.mtf_pending) |
| kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING; |
| |
| if (nested_cpu_has_preemption_timer(vmcs12) && |
| vmx->nested.has_preemption_timer_deadline) { |
| kvm_state.hdr.vmx.flags |= |
| KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE; |
| kvm_state.hdr.vmx.preemption_timer_deadline = |
| vmx->nested.preemption_timer_deadline; |
| } |
| } |
| } |
| |
| if (user_data_size < kvm_state.size) |
| goto out; |
| |
| if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state))) |
| return -EFAULT; |
| |
| if (!vmx_has_valid_vmcs12(vcpu)) |
| goto out; |
| |
| /* |
| * When running L2, the authoritative vmcs12 state is in the |
| * vmcs02. When running L1, the authoritative vmcs12 state is |
| * in the shadow or enlightened vmcs linked to vmcs01, unless |
| * need_vmcs12_to_shadow_sync is set, in which case, the authoritative |
| * vmcs12 state is in the vmcs12 already. |
| */ |
| if (is_guest_mode(vcpu)) { |
| sync_vmcs02_to_vmcs12(vcpu, vmcs12); |
| sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12); |
| } else { |
| copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu)); |
| if (!vmx->nested.need_vmcs12_to_shadow_sync) { |
| if (nested_vmx_is_evmptr12_valid(vmx)) |
| /* |
| * L1 hypervisor is not obliged to keep eVMCS |
| * clean fields data always up-to-date while |
| * not in guest mode, 'hv_clean_fields' is only |
| * supposed to be actual upon vmentry so we need |
| * to ignore it here and do full copy. |
| */ |
| copy_enlightened_to_vmcs12(vmx, 0); |
| else if (enable_shadow_vmcs) |
| copy_shadow_to_vmcs12(vmx); |
| } |
| } |
| |
| BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE); |
| BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE); |
| |
| /* |
| * Copy over the full allocated size of vmcs12 rather than just the size |
| * of the struct. |
| */ |
| if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE)) |
| return -EFAULT; |
| |
| if (nested_cpu_has_shadow_vmcs(vmcs12) && |
| vmcs12->vmcs_link_pointer != INVALID_GPA) { |
| if (copy_to_user(user_vmx_nested_state->shadow_vmcs12, |
| get_shadow_vmcs12(vcpu), VMCS12_SIZE)) |
| return -EFAULT; |
| } |
| out: |
| return kvm_state.size; |
| } |
| |
| void vmx_leave_nested(struct kvm_vcpu *vcpu) |
| { |
| if (is_guest_mode(vcpu)) { |
| to_vmx(vcpu)->nested.nested_run_pending = 0; |
| nested_vmx_vmexit(vcpu, -1, 0, 0); |
| } |
| free_nested(vcpu); |
| } |
| |
| static int vmx_set_nested_state(struct kvm_vcpu *vcpu, |
| struct kvm_nested_state __user *user_kvm_nested_state, |
| struct kvm_nested_state *kvm_state) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct vmcs12 *vmcs12; |
| enum vm_entry_failure_code ignored; |
| struct kvm_vmx_nested_state_data __user *user_vmx_nested_state = |
| &user_kvm_nested_state->data.vmx[0]; |
| int ret; |
| |
| if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX) |
| return -EINVAL; |
| |
| if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) { |
| if (kvm_state->hdr.vmx.smm.flags) |
| return -EINVAL; |
| |
| if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) |
| return -EINVAL; |
| |
| /* |
| * KVM_STATE_NESTED_EVMCS used to signal that KVM should |
| * enable eVMCS capability on vCPU. However, since then |
| * code was changed such that flag signals vmcs12 should |
| * be copied into eVMCS in guest memory. |
| * |
| * To preserve backwards compatibility, allow user |
| * to set this flag even when there is no VMXON region. |
| */ |
| if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS) |
| return -EINVAL; |
| } else { |
| if (!guest_can_use(vcpu, X86_FEATURE_VMX)) |
| return -EINVAL; |
| |
| if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa)) |
| return -EINVAL; |
| } |
| |
| if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) && |
| (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) |
| return -EINVAL; |
| |
| if (kvm_state->hdr.vmx.smm.flags & |
| ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON)) |
| return -EINVAL; |
| |
| if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) |
| return -EINVAL; |
| |
| /* |
| * SMM temporarily disables VMX, so we cannot be in guest mode, |
| * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags |
| * must be zero. |
| */ |
| if (is_smm(vcpu) ? |
| (kvm_state->flags & |
| (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING)) |
| : kvm_state->hdr.vmx.smm.flags) |
| return -EINVAL; |
| |
| if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) && |
| !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON)) |
| return -EINVAL; |
| |
| if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) && |
| (!guest_can_use(vcpu, X86_FEATURE_VMX) || |
| !vmx->nested.enlightened_vmcs_enabled)) |
| return -EINVAL; |
| |
| vmx_leave_nested(vcpu); |
| |
| if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) |
| return 0; |
| |
| vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa; |
| ret = enter_vmx_operation(vcpu); |
| if (ret) |
| return ret; |
| |
| /* Empty 'VMXON' state is permitted if no VMCS loaded */ |
| if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) { |
| /* See vmx_has_valid_vmcs12. */ |
| if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) || |
| (kvm_state->flags & KVM_STATE_NESTED_EVMCS) || |
| (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)) |
| return -EINVAL; |
| else |
| return 0; |
| } |
| |
| if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) { |
| if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa || |
| !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa)) |
| return -EINVAL; |
| |
| set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa); |
| #ifdef CONFIG_KVM_HYPERV |
| } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) { |
| /* |
| * nested_vmx_handle_enlightened_vmptrld() cannot be called |
| * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be |
| * restored yet. EVMCS will be mapped from |
| * nested_get_vmcs12_pages(). |
| */ |
| vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING; |
| kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu); |
| #endif |
| } else { |
| return -EINVAL; |
| } |
| |
| if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) { |
| vmx->nested.smm.vmxon = true; |
| vmx->nested.vmxon = false; |
| |
| if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) |
| vmx->nested.smm.guest_mode = true; |
| } |
| |
| vmcs12 = get_vmcs12(vcpu); |
| if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12))) |
| return -EFAULT; |
| |
| if (vmcs12->hdr.revision_id != VMCS12_REVISION) |
| return -EINVAL; |
| |
| if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) |
| return 0; |
| |
| vmx->nested.nested_run_pending = |
| !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING); |
| |
| vmx->nested.mtf_pending = |
| !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING); |
| |
| ret = -EINVAL; |
| if (nested_cpu_has_shadow_vmcs(vmcs12) && |
| vmcs12->vmcs_link_pointer != INVALID_GPA) { |
| struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu); |
| |
| if (kvm_state->size < |
| sizeof(*kvm_state) + |
| sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12)) |
| goto error_guest_mode; |
| |
| if (copy_from_user(shadow_vmcs12, |
| user_vmx_nested_state->shadow_vmcs12, |
| sizeof(*shadow_vmcs12))) { |
| ret = -EFAULT; |
| goto error_guest_mode; |
| } |
| |
| if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION || |
| !shadow_vmcs12->hdr.shadow_vmcs) |
| goto error_guest_mode; |
| } |
| |
| vmx->nested.has_preemption_timer_deadline = false; |
| if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) { |
| vmx->nested.has_preemption_timer_deadline = true; |
| vmx->nested.preemption_timer_deadline = |
| kvm_state->hdr.vmx.preemption_timer_deadline; |
| } |
| |
| if (nested_vmx_check_controls(vcpu, vmcs12) || |
| nested_vmx_check_host_state(vcpu, vmcs12) || |
| nested_vmx_check_guest_state(vcpu, vmcs12, &ignored)) |
| goto error_guest_mode; |
| |
| vmx->nested.dirty_vmcs12 = true; |
| vmx->nested.force_msr_bitmap_recalc = true; |
| ret = nested_vmx_enter_non_root_mode(vcpu, false); |
| if (ret) |
| goto error_guest_mode; |
| |
| if (vmx->nested.mtf_pending) |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| |
| return 0; |
| |
| error_guest_mode: |
| vmx->nested.nested_run_pending = 0; |
| return ret; |
| } |
| |
| void nested_vmx_set_vmcs_shadowing_bitmap(void) |
| { |
| if (enable_shadow_vmcs) { |
| vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap)); |
| vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap)); |
| } |
| } |
| |
| /* |
| * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6. Undo |
| * that madness to get the encoding for comparison. |
| */ |
| #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10))) |
| |
| static u64 nested_vmx_calc_vmcs_enum_msr(void) |
| { |
| /* |
| * Note these are the so called "index" of the VMCS field encoding, not |
| * the index into vmcs12. |
| */ |
| unsigned int max_idx, idx; |
| int i; |
| |
| /* |
| * For better or worse, KVM allows VMREAD/VMWRITE to all fields in |
| * vmcs12, regardless of whether or not the associated feature is |
| * exposed to L1. Simply find the field with the highest index. |
| */ |
| max_idx = 0; |
| for (i = 0; i < nr_vmcs12_fields; i++) { |
| /* The vmcs12 table is very, very sparsely populated. */ |
| if (!vmcs12_field_offsets[i]) |
| continue; |
| |
| idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i)); |
| if (idx > max_idx) |
| max_idx = idx; |
| } |
| |
| return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT; |
| } |
| |
| static void nested_vmx_setup_pinbased_ctls(struct vmcs_config *vmcs_conf, |
| struct nested_vmx_msrs *msrs) |
| { |
| msrs->pinbased_ctls_low = |
| PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR; |
| |
| msrs->pinbased_ctls_high = vmcs_conf->pin_based_exec_ctrl; |
| msrs->pinbased_ctls_high &= |
| PIN_BASED_EXT_INTR_MASK | |
| PIN_BASED_NMI_EXITING | |
| PIN_BASED_VIRTUAL_NMIS | |
| (enable_apicv ? PIN_BASED_POSTED_INTR : 0); |
| msrs->pinbased_ctls_high |= |
| PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR | |
| PIN_BASED_VMX_PREEMPTION_TIMER; |
| } |
| |
| static void nested_vmx_setup_exit_ctls(struct vmcs_config *vmcs_conf, |
| struct nested_vmx_msrs *msrs) |
| { |
| msrs->exit_ctls_low = |
| VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR; |
| |
| msrs->exit_ctls_high = vmcs_conf->vmexit_ctrl; |
| msrs->exit_ctls_high &= |
| #ifdef CONFIG_X86_64 |
| VM_EXIT_HOST_ADDR_SPACE_SIZE | |
| #endif |
| VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT | |
| VM_EXIT_CLEAR_BNDCFGS; |
| msrs->exit_ctls_high |= |
| VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR | |
| VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER | |
| VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT | |
| VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; |
| |
| /* We support free control of debug control saving. */ |
| msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS; |
| } |
| |
| static void nested_vmx_setup_entry_ctls(struct vmcs_config *vmcs_conf, |
| struct nested_vmx_msrs *msrs) |
| { |
| msrs->entry_ctls_low = |
| VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR; |
| |
| msrs->entry_ctls_high = vmcs_conf->vmentry_ctrl; |
| msrs->entry_ctls_high &= |
| #ifdef CONFIG_X86_64 |
| VM_ENTRY_IA32E_MODE | |
| #endif |
| VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS; |
| msrs->entry_ctls_high |= |
| (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER | |
| VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL); |
| |
| /* We support free control of debug control loading. */ |
| msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS; |
| } |
| |
| static void nested_vmx_setup_cpubased_ctls(struct vmcs_config *vmcs_conf, |
| struct nested_vmx_msrs *msrs) |
| { |
| msrs->procbased_ctls_low = |
| CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR; |
| |
| msrs->procbased_ctls_high = vmcs_conf->cpu_based_exec_ctrl; |
| msrs->procbased_ctls_high &= |
| CPU_BASED_INTR_WINDOW_EXITING | |
| CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING | |
| CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING | |
| CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING | |
| CPU_BASED_CR3_STORE_EXITING | |
| #ifdef CONFIG_X86_64 |
| CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING | |
| #endif |
| CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING | |
| CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG | |
| CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING | |
| CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING | |
| CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; |
| /* |
| * We can allow some features even when not supported by the |
| * hardware. For example, L1 can specify an MSR bitmap - and we |
| * can use it to avoid exits to L1 - even when L0 runs L2 |
| * without MSR bitmaps. |
| */ |
| msrs->procbased_ctls_high |= |
| CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR | |
| CPU_BASED_USE_MSR_BITMAPS; |
| |
| /* We support free control of CR3 access interception. */ |
| msrs->procbased_ctls_low &= |
| ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING); |
| } |
| |
| static void nested_vmx_setup_secondary_ctls(u32 ept_caps, |
| struct vmcs_config *vmcs_conf, |
| struct nested_vmx_msrs *msrs) |
| { |
| msrs->secondary_ctls_low = 0; |
| |
| msrs->secondary_ctls_high = vmcs_conf->cpu_based_2nd_exec_ctrl; |
| msrs->secondary_ctls_high &= |
| SECONDARY_EXEC_DESC | |
| SECONDARY_EXEC_ENABLE_RDTSCP | |
| SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | |
| SECONDARY_EXEC_WBINVD_EXITING | |
| SECONDARY_EXEC_APIC_REGISTER_VIRT | |
| SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | |
| SECONDARY_EXEC_RDRAND_EXITING | |
| SECONDARY_EXEC_ENABLE_INVPCID | |
| SECONDARY_EXEC_ENABLE_VMFUNC | |
| SECONDARY_EXEC_RDSEED_EXITING | |
| SECONDARY_EXEC_ENABLE_XSAVES | |
| SECONDARY_EXEC_TSC_SCALING | |
| SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE; |
| |
| /* |
| * We can emulate "VMCS shadowing," even if the hardware |
| * doesn't support it. |
| */ |
| msrs->secondary_ctls_high |= |
| SECONDARY_EXEC_SHADOW_VMCS; |
| |
| if (enable_ept) { |
| /* nested EPT: emulate EPT also to L1 */ |
| msrs->secondary_ctls_high |= |
| SECONDARY_EXEC_ENABLE_EPT; |
| msrs->ept_caps = |
| VMX_EPT_PAGE_WALK_4_BIT | |
| VMX_EPT_PAGE_WALK_5_BIT | |
| VMX_EPTP_WB_BIT | |
| VMX_EPT_INVEPT_BIT | |
| VMX_EPT_EXECUTE_ONLY_BIT; |
| |
| msrs->ept_caps &= ept_caps; |
| msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT | |
| VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT | |
| VMX_EPT_1GB_PAGE_BIT; |
| if (enable_ept_ad_bits) { |
| msrs->secondary_ctls_high |= |
| SECONDARY_EXEC_ENABLE_PML; |
| msrs->ept_caps |= VMX_EPT_AD_BIT; |
| } |
| |
| /* |
| * Advertise EPTP switching irrespective of hardware support, |
| * KVM emulates it in software so long as VMFUNC is supported. |
| */ |
| if (cpu_has_vmx_vmfunc()) |
| msrs->vmfunc_controls = VMX_VMFUNC_EPTP_SWITCHING; |
| } |
| |
| /* |
| * Old versions of KVM use the single-context version without |
| * checking for support, so declare that it is supported even |
| * though it is treated as global context. The alternative is |
| * not failing the single-context invvpid, and it is worse. |
| */ |
| if (enable_vpid) { |
| msrs->secondary_ctls_high |= |
| SECONDARY_EXEC_ENABLE_VPID; |
| msrs->vpid_caps = VMX_VPID_INVVPID_BIT | |
| VMX_VPID_EXTENT_SUPPORTED_MASK; |
| } |
| |
| if (enable_unrestricted_guest) |
| msrs->secondary_ctls_high |= |
| SECONDARY_EXEC_UNRESTRICTED_GUEST; |
| |
| if (flexpriority_enabled) |
| msrs->secondary_ctls_high |= |
| SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; |
| |
| if (enable_sgx) |
| msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING; |
| } |
| |
| static void nested_vmx_setup_misc_data(struct vmcs_config *vmcs_conf, |
| struct nested_vmx_msrs *msrs) |
| { |
| msrs->misc_low = (u32)vmcs_conf->misc & VMX_MISC_SAVE_EFER_LMA; |
| msrs->misc_low |= |
| VMX_MISC_VMWRITE_SHADOW_RO_FIELDS | |
| VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE | |
| VMX_MISC_ACTIVITY_HLT | |
| VMX_MISC_ACTIVITY_WAIT_SIPI; |
| msrs->misc_high = 0; |
| } |
| |
| static void nested_vmx_setup_basic(struct nested_vmx_msrs *msrs) |
| { |
| /* |
| * This MSR reports some information about VMX support. We |
| * should return information about the VMX we emulate for the |
| * guest, and the VMCS structure we give it - not about the |
| * VMX support of the underlying hardware. |
| */ |
| msrs->basic = vmx_basic_encode_vmcs_info(VMCS12_REVISION, VMCS12_SIZE, |
| X86_MEMTYPE_WB); |
| |
| msrs->basic |= VMX_BASIC_TRUE_CTLS; |
| if (cpu_has_vmx_basic_inout()) |
| msrs->basic |= VMX_BASIC_INOUT; |
| } |
| |
| static void nested_vmx_setup_cr_fixed(struct nested_vmx_msrs *msrs) |
| { |
| /* |
| * These MSRs specify bits which the guest must keep fixed on |
| * while L1 is in VMXON mode (in L1's root mode, or running an L2). |
| * We picked the standard core2 setting. |
| */ |
| #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE) |
| #define VMXON_CR4_ALWAYSON X86_CR4_VMXE |
| msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON; |
| msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON; |
| |
| /* These MSRs specify bits which the guest must keep fixed off. */ |
| rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1); |
| rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1); |
| |
| if (vmx_umip_emulated()) |
| msrs->cr4_fixed1 |= X86_CR4_UMIP; |
| } |
| |
| /* |
| * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be |
| * returned for the various VMX controls MSRs when nested VMX is enabled. |
| * The same values should also be used to verify that vmcs12 control fields are |
| * valid during nested entry from L1 to L2. |
| * Each of these control msrs has a low and high 32-bit half: A low bit is on |
| * if the corresponding bit in the (32-bit) control field *must* be on, and a |
| * bit in the high half is on if the corresponding bit in the control field |
| * may be on. See also vmx_control_verify(). |
| */ |
| void nested_vmx_setup_ctls_msrs(struct vmcs_config *vmcs_conf, u32 ept_caps) |
| { |
| struct nested_vmx_msrs *msrs = &vmcs_conf->nested; |
| |
| /* |
| * Note that as a general rule, the high half of the MSRs (bits in |
| * the control fields which may be 1) should be initialized by the |
| * intersection of the underlying hardware's MSR (i.e., features which |
| * can be supported) and the list of features we want to expose - |
| * because they are known to be properly supported in our code. |
| * Also, usually, the low half of the MSRs (bits which must be 1) can |
| * be set to 0, meaning that L1 may turn off any of these bits. The |
| * reason is that if one of these bits is necessary, it will appear |
| * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control |
| * fields of vmcs01 and vmcs02, will turn these bits off - and |
| * nested_vmx_l1_wants_exit() will not pass related exits to L1. |
| * These rules have exceptions below. |
| */ |
| nested_vmx_setup_pinbased_ctls(vmcs_conf, msrs); |
| |
| nested_vmx_setup_exit_ctls(vmcs_conf, msrs); |
| |
| nested_vmx_setup_entry_ctls(vmcs_conf, msrs); |
| |
| nested_vmx_setup_cpubased_ctls(vmcs_conf, msrs); |
| |
| nested_vmx_setup_secondary_ctls(ept_caps, vmcs_conf, msrs); |
| |
| nested_vmx_setup_misc_data(vmcs_conf, msrs); |
| |
| nested_vmx_setup_basic(msrs); |
| |
| nested_vmx_setup_cr_fixed(msrs); |
| |
| msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr(); |
| } |
| |
| void nested_vmx_hardware_unsetup(void) |
| { |
| int i; |
| |
| if (enable_shadow_vmcs) { |
| for (i = 0; i < VMX_BITMAP_NR; i++) |
| free_page((unsigned long)vmx_bitmap[i]); |
| } |
| } |
| |
| __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *)) |
| { |
| int i; |
| |
| if (!cpu_has_vmx_shadow_vmcs()) |
| enable_shadow_vmcs = 0; |
| if (enable_shadow_vmcs) { |
| for (i = 0; i < VMX_BITMAP_NR; i++) { |
| /* |
| * The vmx_bitmap is not tied to a VM and so should |
| * not be charged to a memcg. |
| */ |
| vmx_bitmap[i] = (unsigned long *) |
| __get_free_page(GFP_KERNEL); |
| if (!vmx_bitmap[i]) { |
| nested_vmx_hardware_unsetup(); |
| return -ENOMEM; |
| } |
| } |
| |
| init_vmcs_shadow_fields(); |
| } |
| |
| exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear; |
| exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch; |
| exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld; |
| exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst; |
| exit_handlers[EXIT_REASON_VMREAD] = handle_vmread; |
| exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume; |
| exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite; |
| exit_handlers[EXIT_REASON_VMOFF] = handle_vmxoff; |
| exit_handlers[EXIT_REASON_VMON] = handle_vmxon; |
| exit_handlers[EXIT_REASON_INVEPT] = handle_invept; |
| exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid; |
| exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc; |
| |
| return 0; |
| } |
| |
| struct kvm_x86_nested_ops vmx_nested_ops = { |
| .leave_nested = vmx_leave_nested, |
| .is_exception_vmexit = nested_vmx_is_exception_vmexit, |
| .check_events = vmx_check_nested_events, |
| .has_events = vmx_has_nested_events, |
| .triple_fault = nested_vmx_triple_fault, |
| .get_state = vmx_get_nested_state, |
| .set_state = vmx_set_nested_state, |
| .get_nested_state_pages = vmx_get_nested_state_pages, |
| .write_log_dirty = nested_vmx_write_pml_buffer, |
| #ifdef CONFIG_KVM_HYPERV |
| .enable_evmcs = nested_enable_evmcs, |
| .get_evmcs_version = nested_get_evmcs_version, |
| .hv_inject_synthetic_vmexit_post_tlb_flush = vmx_hv_inject_synthetic_vmexit_post_tlb_flush, |
| #endif |
| }; |